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Assistive technology allows for intensive practice and kinematic measurements

during rehabilitation exercises. More recent approaches attach a gravity-compensating

multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in

three-dimensional space with virtual reality feedback. The movement quality, however, is

mostly captured through end-point measures that lack information on proximal inter-joint

coordination. This limits the differentiation between compensation strategies and genuine

restoration both during the exercise and in the course of rehabilitation. We extended

in this proof-of-concept study a commercially available seven degree-of-freedom arm

exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint

visualization of the user’s arm. Ten healthy subjects and three severely affected chronic

stroke patients performed reach-to-grasp exercises resembling activities of daily living

assisted by the attached exoskeleton and received closed-loop online feedback of

the three-dimensional movement in virtual reality. Patients in this pilot study differed

significantly with regard to motor performance (accuracy, temporal efficiency, range

of motion) and movement quality (proximal inter-joint coordination) from the healthy

control group. In the course of 20 training and feedback sessions over 4 weeks,

these pathological measures improved significantly toward the reference parameters of

healthy participants. It was moreover feasible to capture the evolution of movement

pattern kinematics of the shoulder and elbow and to quantify the individual degree

of natural movement restoration for each patient. The virtual reality visualization and

closed-loop feedback of joint-specific movement kinematics makes it possible to detect

compensation strategies and may provide a tool to achieve the rehabilitation goals in

accordance with the individual capacity for genuine functional restoration; a proposal that

warrants further investigation in controlled studies with a larger cohort of stroke patients.
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INTRODUCTION

Assistive rehabilitation technology allows an increase and
standardization in the amount of upper limb movement
therapy after stroke, potentially resulting in improved arm/hand
function and muscle strength, albeit respective trials have,
as yet, provided only low-quality evidence (Kwakkel et al.,
2008; Mehrholz et al., 2015). In clinical settings, therapists
often provide the patient with feedback on the movement
quality to encourage relearning of premorbid movement patterns
(Cirstea and Levin, 2007). Particularly in patients with severe
impairment, deficits in the range and coordination of elbow and
shoulder movements might interfere with reaching performance
(Cirstea and Levin, 2000; Cirstea et al., 2003). Moreover,
motor compensation could limit gains in motor function by
learned non-use and lead to pain and joint contractures in the
long run (Cirstea and Levin, 2007). However, although robot-
assisted therapy focuses on task performance, it usually does
not differentiate between compensation strategies and genuine
motor restoration despite being capable of objective movement
evaluation (Kwakkel et al., 2008). Although kinematic parameters
would be particularly suitable for assessing movement quality
during rehabilitation exercises, current robotic devices tend to
capture end-point measures that lack information on proximal
interjoint coordination (Nordin et al., 2014) which would be
necessary to differentiate recovery from compensation. In this
context, a gravity-compensating multi-joint exoskeleton could
not only support reach-to grasp movements in severely affected
stroke patients but also provide closed-loop virtual reality
feedback ofmovement quality during task-oriented training. This
pilot study intended to explore the methodological feasibility
and clinical validity of virtual reality visualization and closed-
loop feedback of joint-specific movement kinematics to capture
the evolution of upper extremity movement patterns in severely
affected stroke patients. We furthermore wanted to quantify
the individual degree of natural movement restoration or
compensation for each patient. When a proof-of-concept is
demonstrated here, such an approach would provide a tool to
follow rehabilitation goals in accordance with the individual
capacity for genuine functional restoration, a strategy that could
then be verified by further investigations in controlled studies.

MATERIALS AND METHODS

We recruited ten right-handed healthy subjects (6 males, mean
age: 29 ± 4 [24 39] years) and three right-handed stroke patients
(all male, mean age: 62 ± 6 [56 68] years). The patients were
in the chronic phase after stroke (57 ± 22 [34 78] months)
and presented with a severe and persistent hemiparesis of the
left side. To ensure that our results were comparable to earlier
studies, coordination, speed and reflexes were not taken into
account. This resulted in amodified upper extremity Fugl-Meyer-
Assessment scores (UE-FMA) of 12, 12, and 25, respectively.
This study was in accordance with the guidelines of the ethic
committee of the local medical faculty. Participants performed
either a single session (healthy control group) or 20 sessions
in the course of 4 weeks (patients) of reach-to-grasp training

with a multi-joint exoskeleton attached to the left arm. The
orthosis was calibrated according to the individual anatomy (e.g.,
shoulder position, forearm/upper arm length) of each patient.
This setup and calibration of the system before every session
took about 5min per patient. Each session lasted approximately
30min and consisted of 150 trials. The general experimental
setup has already been described in detail elsewhere (Grimm and
Gharabaghi, 2016; Grimm et al., under review) and is cited here
when applied in the same way.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints with seven axes (i.e., degrees of freedom)
providing antigravity support for the paretic arm and registration
of movement kinematics and grip force. This device allowed
individual adjustments e.g., of gravity compensation, thereby
supporting patients with severe impairment in performing
task-oriented practice within a motivating virtual environment.
Kinematic sensor data was provided by 7 built-in angle sensors
(sensor resolution <0.2◦) for shoulder flexion/abduction (1
sensor), shoulder rotation (2 sensors), elbow flexion/extension
(1 sensor for horizontal registration, 1 sensor for vertical
registration), forearm pronation/supination (1 sensor) and
wrist flexion/extension (1 sensor). The shoulder rotation was
calculated as the sum of the two sensors. The upper arm
movement was calculated as the angle between forearm and
upper-arm in three-dimensional space. The sensors were placed
directly in the movement axis of the exoskeleton within the
joints, allowing an accurate registration of the actual joint
position of the upper arm, forearm and hand (Figure 1).
Kinematic data of hand closure/opening could not be captured
directly with this set up. We therefore estimated the hand
function indirectly by registering the grip force. Grip force has
previously been shown to correlate with motor function in
chronic stroke patients (Boissy et al., 1999) and was captured
with an in build mid-palmar grip pressure sensor in the present
study.

FIGURE 1 | Exoskelleton setup and location of angle sensors within the

device (yellow dots).
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Thereby, a complete real-time registration of the subject’s
kinematic reach-to-grasp movement could be performed with
the orthosis. We extended these features in-house by using the
real-time sensor data of the exoskeleton to display a three-
dimensional multi-joint visualization of the user’s arm in virtual
reality (Figure 2A). The exercises where displayed to the subjects
on a monitor in front of the setup. For this purpose, we
captured the angles of all arm joints and the grip force from
a shared memory block using a file mapping communication
protocol. The virtual arm engine was programmed in aMicrosoft
XNATM framework. The arm model utilized by the engine
was constructed as a meshed bone-skin combination with 54
bones (3Ds Max 2010TM, Autodesk). The measured joint angles
and grip forces of the device were used to modify the bone-
vectors of the meshed model according to the movements
of the user thereby providing online closed-loop feedback.
The kinematic data and the 3D virtual representation were
updated in 20ms intervals. The joint angles of the exoskeleton
were directly represented in virtual reality, whereas the grip
forces were augmented to feedback natural hand function.
Prior to each session, participants were instructed to perform
a natural reach-to-grasp movement during the task by using
distal (elbow) rather than proximal (shoulder) movements. The
participants were moreover encouraged to track and adjust their
movements accordingly with the information provided by the
virtual environment. Furthermore, they were informed that their
movement quality would be captured and evaluated afterwards.
This preparation was intended to prime the participants to
exploit the information provided by the virtual feedback. The
three-dimensional visualization of the arm was then applied
during each task as an implicit online feedback of movement
quality, since explicit information can disrupt motor learning
in stroke patients (Boyd and Winstein, 2004; Cirstea and Levin,
2007). Various virtual training paradigms were designed to allow
for different rehabilitation exercises resembling activities of daily
living.

Task Design
In this study, participants performed a reach-to-grasp movement
toward a ball which changed its position in virtual space after
each trial, necessitating three-dimensional transfer movements.
The ball had to be grasped, carried to a distant basket and then
released again (Figure 2B). The virtual hand could interact with
the ball as soon as it entered a defined range around the latter. The
ball changed its color according to the hand position (white: out
of range, green: possible to grasp, yellow: possible to transfer, red:
possible to release). The grasping and releasing of the virtual ball
was performed by applying force to the grip sensor and opening
the hand, respectively, while the threshold was adjusted to the
individual strength of the user. No other support was provided
during the exercises. The level of orthotic assistance remained
constant in the course of the 20 sessions.

Outcome Measures
The kinematic assessment included both motor performance and
movement quality (Nordin et al., 2014). The motor performance
was estimated with regard to accuracy, temporal efficiency and

range of motion. Movement accuracy, more specifically the
decrease of inaccuracy, was captured by calculating changes of
movement direction along an optimal path toward the targets,
by estimating the distance function between the hand-position
and the final endpoint, and by calculating the second derivative
of the function to acquire the number of turning points for each
task (Cirstea et al., 2006). Temporal efficiency was captured as the
mean velocity of the hand between the targets while calculating
their distance for X-, Y- and Z-directions in virtual units (vu).
The range of motion of each joint was measured according
to the orthosis and displayed in degrees along with the mean
change in grip pressure. Movement quality of proximal inter-
joint coordination was defined as the amount of compensatory
shoulder inward rotation during the task and quantified by
a shoulder/elbow index, i.e., the degree of inward rotation of
the shoulder in relation to the degree of elbow movement.
More specifically, a larger proportion of shoulder movement
would indicate compensation, while a larger proportion of elbow
movement for the same task would indicate a rather natural
movement.

Statistics
Statistical analysis was performed on a Matlab 2010b Engine.
Data was tested for linear distribution using the Lilliefors-test (2-
sided goodness-of-fit test). The non-parametric Kruskal–Wallis
was used for group comparisons. To estimate the evolution
of parameters during training, a robust multilinear regression
model was fitted. Although the Lilliefors-test revealed normality
of the data, a robust multilinear regression analysis was applied in
order to minimize the impact of outliers. The fitting function was

FIGURE 2 | (A) Bone architecture of the three-dimensional multi-joint

visualization of the user’s arm in virtual reality. (B) Virtual training environment

for reach-to-grasp movements toward a ball which changes its position in

space after each trial. The ball has to be grasped, carried to a distant basket

and then released again.
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TABLE 1 | Overview of kinematic data for subjects and patients, respectively.

Parameter Subjects Patients p-value

Inaccuracy, number of turning points 4.20± 0.42 [4.00 5.00] 8.75± 2.51 [6.00 13.00] <0.001

Average velocity (distance/time) (vu/s) 13.86± 2.17 [11.31 17.53] 3.89± 1.85 [0.90 8.04] <0.001

Grip pressure 0.45± 0.19 [0.14 0.69] 0.684± 0.27371 [0.22 1.04] <0.001

Shoulder movement, angle in degrees (◦) 32.90± 8.03 [21.81 44.42] 22.00± 12.48 [11.93 35.97] <0.001

Elbow movement, angle in degrees (◦) 36.83± 7.65 [19.65 44.79] 19.18± 5.03 [6.94 28.87] <0.001

Shoulder/elbow index 0.78± 0.05 [0.71 0.88] 1.36± 0.30 [1.0 1.58] <0.001

TABLE 2 | Individual slopes of robust multilinear regression models of kinematic changes in the three stroke patients (n.s.: not significant).

Parameter Patient 1 Patient 2 Patient 3

Inaccuracy, turning points −0.24, p = 0.26 (n.s.) −0.14, p = 0.02 −0,06, p < 0.001

Average velocity (distance/time) (vu/s) + 0.14e-3, p < 0.001 + 0.13e-3, p < 0.001 + 0.17e-3, p < 0.001

Grip pressure +1.1e-3, p = 0.08 (n.s.) +4.4e-3, p < 0.001 +8.4e-3, p < 0.001

Shoulder movement, angle in degrees (◦) +0.14, p = 0.45 (n.s.) +0.4, p = 0.01 +1.2, p < 0.001

Elbow movement, angle in degrees (◦) +0.49, p = 0.01 +0.36, p = 0.01 +0.36, p < 0.001

Shoulder/elbow index −27e-3, p = 0.007 −15e-3, p = 0.05 −6e-3, p = 0.46 (n.s.)

based on an iteratively reweighted least squares algorithm. The
weights of each iteration were calculated by applying a bisquared
function to the residuals of the previous iteration. For every
fitting function the slope b of coefficient estimates was presented.
The significance level was set to p = 0.05 for all tests.

RESULTS

Patients differed significantly with regard to motor performance
(accuracy, temporal efficiency, range of motion) and
movement quality (proximal inter-joint coordination) from
the healthy control group (Table 1). Most notably, they applied
compensatory strategies by using more shoulder than elbow
movements.

However, the patients showed motor learning in the course of
the training program with significant changes in most kinematic
measures toward the reference parameters of healthy participants
(Table 2) paralleled by improved FMA-UA scores (+1, +2, +5
points, respectively) in the end of the training.

Most importantly, the evolution of movement pattern
kinematics of the shoulder and elbow enabled us to quantify
the individual degree of natural movement restoration for
each patient: Patient 1 had the lowest scores in all kinematic
parameters and also showed the poorest motor performance
(Figure 3). However, he presented with the steepest evolution of
movement quality and was the only patient to reach the reference
parameter of healthy participants (Figure 4). By contrast, patient
3 showed the highest kinematic parameters, i.e., the best
motor performance (Figure 3), but also revealed the strongest
compensatory movements with the shoulder (Figure 4).

DISCUSSION

Rehabilitation devices with a gravity-compensating arm
exoskeleton provide assistance for intensive exercises in severely

affected stroke patients and may thereby improve motor
performance in the course of a training intervention (Housman
et al., 2009). However, functional gains in hemiparetic patients
are often achieved by non-physiologic movements with a
disturbed shoulder-arm inter-joint coordination (Levin, 1996;
Levin et al., 2002). Although these compensatory strategies might
be efficient in short-term task accomplishment, they may lead
to long-term complications such as pain and joint-contracture
(Cirstea and Levin, 2007). Movement pattern kinematics may
provide accurate, valid, reproducible and predictive measures
of the impairment severity in chronic stroke (Subramanian
et al., 2010) and of atypical movement patterns that aim to
compensate the diminished range of motion of the affected limb
(Cirstea and Levin, 2000). In this context, providing detailed
information about how the movement is carried out, i.e., the
movement quality regarding inter-joint coordination, is more
liable to recover premorbid movement patters and to avoid
compensatory movements than to provide information about
movement outcome, i.e., end-point based accuracy information,
only (Cirstea et al., 2006; Cirstea and Levin, 2007). When this
feedback is administered during virtual reality training, even less
compensation was achieved in the moderate-to-severe group
(Subramanian et al., 2013). However, in these previous studies,
information on movement quality was provided explicitly to
the patients via auditory feedback. Moreover, all patients who
received this feedback on their movement pattern kinematics
were mildly or moderately-to-severely affected and were able to
perform reach-to-grasp movements without assistance.

In the present feasibility study, we extended this line of
research by incorporating information on movement quality
as implicit closed-loop feedback in the virtual environment
of an exoskeleton-based rehabilitation device suitable for
severely affected stroke patients who require gravity-support
to perform activities of daily living such as reach-to-grasp
exercises. Notably, antigravity-support did not interfere with the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2016 | Volume 10 | Article 280

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grimm et al. Closed-Loop Feedback of Movement Quality

FIGURE 3 | Motor performance data for subjects (boxplots) and individual patients over the time course of training.

kinematic evaluation of proximal inter-joint coordination. By
contrast, this approach allowed disentangling in patients with
severe impairments whether improved motor performance was
achieved by compensation or by functional restoration. Notably,
improvement in kinematic measures may be misleading since
driven by compensatory strategies. The observations of this
study highlighted that these measures were not sufficient to
fully assess the evolution during motor rehabilitation thereby
supporting the analysis of multi-joint information along the
movement trajectory. Moreover, the continuous visual feedback
of the whole arm kinematics allowed the patients to adjust
their movement quality online during each task; an approach
closely resembling natural motor learning. Although pathological
measures improved significantly toward the reference parameters
of healthy participants, this study did not provide evidence for the
specificity of these effects to the implemented setup, i.e., feedback
modality. Future studies need therefore to address this question
by directly comparing multi-joint with end-effector feedback
in controlled trials with long-term follow up evaluation, before
conclusions about the therapeutic superiority of the presented
approach can be drawn. In any case, however, the diagnostic

advantage of detecting compensatory strategies (i.e., use of
proximal instead of distal joints in a reach-to-grasp task) with the
help of the multi-joint orthosis remains evident.

Future studies may explore the additional effects of brain
stimulation on movement quality for assisted reach-to-grasp
exercises: a recent study which applied bilateral transcranial
direct current stimulation has demonstrated improved motor
performance beyond the natural learning curve while using the
very same multi-joint arm exoskeleton studied in the present
work (Naros et al., 2016a). Moreover, brain state-dependent
transcranial magnetic stimulation has been demonstrated to
induce robust increases of corticospinal excitability (Kraus
et al., 2016b) and may thereby amplify use-dependent plasticity
when applied in conjunction with orthotic rehabilitation devices
(Gharabaghi, 2015). Future approaches may also address patients
with even more limited residual motor function as well (which
might not benefit from the presented approach) by providing
closed-loop feedback with a robotic multi-joint exoskeleton
during brain-states in which both the participant’s effort to move
and the responsiveness of the brain for peripheral input are
reflected (Brauchle et al., 2015). In such a restorative framework,
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FIGURE 4 | Movement quality data for subjects (boxplots) and individual patients over the time course of training.

closed-loop interfaces follow an operant conditioning rationale,
providing contingent feedback to facilitate self-regulation of
specific brain activity which is considered to be beneficial for
recovery andmight ultimately lead to functional gains (Bauer and
Gharabaghi, 2015a). Accordingly, these brain-robot interfaces
were found to constitute a back-door to the motor system
(Bauer et al., 2015; Gharabaghi et al., 2014a), since this type of
feedback training may result in connectivity changes of cortico-
spinal (Kraus et al., 2016a) and cortico-cortical motor networks
(Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a,b) and
thereby lead to behavioral gains after the intervention (Naros
et al., 2016b). Recently, pilot data has suggested that such
restorative brain-robot interfaces may even lead to task-specific
motor improvement in chronic stroke (Naros and Gharabaghi,
2015).

Problematic for restorative approaches is, however, that the
considerable challenge of these devices (Bauer and Gharabaghi,
2015b; Fels et al., 2015) might condition the patients to

explore alternative, i.e., therapeutically non-desired, strategies
(Gharabaghi et al., 2014b). Particularly in patients with severe
impairments, motor compensation could limit genuine motor
restoration. In this context, detection and closed-loop feedback
of movement quality during rehabilitation exercises would allow
differentiating recovery from compensation and thus encourage
the relearning of premorbid movement patterns. For those
patients, however, who benefit less from the implicit closed-loop
information provided in the presented set-up (e.g., patient 3)
more explicit feedback or even segmental movement restriction
by the orthosis might be necessary to reinforce the targeted
movement pattern.

In conclusion, virtual reality visualization and feedback of
joint-specific movement kinematics facilitates to monitor the
evolution of upper extremity movement kinematics and to
quantify the individual degree of natural movement restoration
in the course of rehabilitation training of severelymotor impaired
patients; controlled studies with a larger cohort of stroke patients
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need to investigate whether this approach also allows to achieve
the rehabilitation goals in accordance with the individual capacity
for functional recovery.
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