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Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however,

it remains unclear how topological properties of CBF network are altered in this disorder.

Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in

96 schizophrenia patients and 91 healthy controls. CBF covariance network of each

group was constructed by calculating across-subject CBF covariance between 90

brain regions. Graph theory was used to compare intergroup differences in global

and nodal topological measures of the network. Both schizophrenia patients and

healthy controls had small-world topology in CBF covariance networks, implying an

optimal balance between functional segregation and integration. Compared with healthy

controls, schizophrenia patients showed reduced small-worldness, normalized clustering

coefficient and local efficiency of the network, suggesting a shift toward randomized

network topology in schizophrenia. Furthermore, schizophrenia patients exhibited

altered nodal centrality in the perceptual-, affective-, language-, and spatial-related

regions, indicating functional disturbance of these systems in schizophrenia. This study

demonstrated for the first time that schizophrenia patients have disrupted topological

properties in CBF covariance network, which provides a new perspective (efficiency of

blood flow distribution between brain regions) for understanding neural mechanisms of

schizophrenia.
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INTRODUCTION

Schizophrenia is a prevalent and costly psychiatric disorder that affects 1% of the population
(Lewis and Lieberman, 2000). Because most of energy supplied to the brain is consumed to
support spontaneous activity (Raichle and Mintun, 2006), many researchers have used resting-
state functional MRI (fMRI) to investigate spontaneous activity in schizophrenia. They found that
schizophrenia patients show intra-regional activity abnormality (Huang et al., 2010), inter-regional
connectivity alteration (Wang et al., 2014) and functional network disruption (Guo et al., 2014).
However, their pathophysiological interpretations face challenges because blood oxygenation level
dependent (BOLD) signal is an indirect measure of neuronal activity and its changes depend on
multiple factors, including metabolic rate of oxygen, cerebral blood volume, and cerebral blood
flow (CBF) (Buxton et al., 2004).
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In contrast to BOLD-fMRI, arterial spin labeling (ASL)
measures CBF, a metric with definite physiological significance
(Ye et al., 2000; Vaishnavi et al., 2010). ASL studies have found
local CBF changes in several brain regions in schizophrenia,
including the prefrontal, occipital, hippocampal regions, and
basal ganglia (Pinkham et al., 2011; Walther et al., 2011; Liu
et al., 2012; Zhu et al., 2015). In addition, schizophrenia patients
have shown CBF connectivity changes, including increased
connectivity in the precuneus of the default mode network
(Kindler et al., 2015) and decreased connectivity between the left
insula and postcentral gyrus and between the left thalamus and
right medial superior frontal gyrus (Zhu et al., 2015). However,
little is known about topological alterations of CBF network in
schizophrenia.

Graph theory is a powerful method for delineating network
topology of the brain, where the brain is depicted as a graph
consisting of nodes (brain regions) and edges (connections)
(Bullmore and Sporns, 2009; Wang et al., 2010). The small-world
network is defined to have high degree of clustering and similar
characteristic path length relative to the random network (Watts
and Strogatz, 1998). This network supports both segregated and
distributed information processing (Bassett and Bullmore, 2006),
which is analogous to functional segregation and integration of
the brain. In fact, small-world organization has been repeatedly
reported in functional (Salvador et al., 2005) and anatomical
networks (Hagmann et al., 2008) of human brain, and topological
organizations of these networks are disrupted in schizophrenia
(Liu et al., 2008; Wang et al., 2012).

In addition to functional and anatomical networks that
constructed at the individual level, there is a growing interest
in investigating the brain covariance networks constructed
across subjects (i.e., group level), such as structure covariance
network (SCN) based on gray matter volume (Bassett et al.,
2008) or cortical thickness (He et al., 2007). The SCN has
emerged as a powerful tool to study the human brain, providing
complementary information to other connectivity approaches.
Moreover, Gong et al. suggest that cortical thickness correlations
partly reflect underlying anatomical connectivity and include
unique information that represents a vital aspect of interregional
relationship (Gong et al., 2012). In recent years, functional
covariance network (FCN) method has attracted increasing
attention. For instance, Di et al. (2012) report that the metabolic
covariance patterns as revealed by fluorodeoxyglucose positron
emission tomography (FDG-PET) data could partially reflect
functional connectivity as revealed by resting-state fMRI. This
study also suggests that investigation of the CBF covariance could
bridge the gap between brain structure covariance to neural
covariance. Melie-Garcia et al. (2013) subsequently construct
the single-photon emission computed tomography (SPECT)
derived CBF covariance network and examine the topological
properties of the network in healthy subjects. However, the
SPECT technique is limited by the use of invasive radioactive
tracers and relatively low spatial resolution of the image.

Here, we used a noninvasive ASL technique and graph
theoretical approach to investigate the topological organization
of the CBF covariance networks in patients with schizophrenia
and demographically matched healthy controls. We aimed

to investigate whether and how topological properties of
CBF covariance network are changed in schizophrenia, which
may improve our understanding on neural mechanisms of
schizophrenia from the perspective of efficiency of blood flow
distribution between brain regions.

MATERIALS AND METHODS

Subjects
The present study was approved by the Ethics Committee
of the Tianjin Medical University General Hospital. Written
informed consent was obtained from each participant before the
experiments. Ninety-six schizophrenia patients were recruited,
and diagnoses of schizophrenia were determined by trained
psychiatrists using the Structured Clinical Interview for DSM-
IV (SCID, patient edition). The Positive and Negative Symptom
Scale (PANSS) was used to evaluate severity of symptoms
(Kay et al., 1987). Among them, 89 patients were treated
with atypical antipsychotic medications when MRI examinations
were performed. Exclusion criteria included participants with
ages younger than 16 or older than 60 years, left-handedness,
poor imaging quality, MRI contraindication, histories of CNS
disorders, systemic illnesses, or substance abuse. Ninety-one
age- and gender-matched healthy controls were recruited from
the local community by advertisements and screened using the
SCID (Non-patient edition) to confirm the current absence of
any mental disorders. In addition, we excluded healthy subjects
whose first degree relatives had any mental disorders.

MRI Data Acquisition
MRI data were acquired using a 3.0-Tesla scanner (Discovery
MR750, General Electric, Milwaukee, WI, USA). Tight but
comfortable foam padding and earplugs were used to minimize
head movement and to reduce scanner noise, respectively. The
resting-state perfusion imaging was acquired using a pseudo-
continuous ASL sequence with a three-dimensional fast spin-
echo acquisition and background suppression. The tagging plane
is 24 mm below the imaging slab, which is chosen to meet two
criteria: (1) the gap between tagging plane and imaging slab as
short as possible to guarantee the homogeneity of B1/B0 field,
and (2) no magnetization transfer affection. Scan parameters
were: repetition time/echo time= 4886/10.5 ms, Post-label delay
= 2025 ms, spiral in readout of eight arms with 512 sample
points, field of view = 240 × 240 mm2, flip angle = 111◦,
reconstruction matrix = 128 × 128, number of excitation = 3,
in-plane resolution= 1.9× 1.9mm2, slice thickness= 4mm, no
gap and 40 axial slices. The total acquisition time for the ASL scan
was 4 min and 44 s. All images were visually inspected to ensure
them being free of visible image artifacts.

CBF Calculation and Data Preprocessing
The CBF values were quantified using the following equation:

CBF =
ρb(Sc − Sl)

2αCωaT1aexp(−
w
T1a

)(1− exp(− tl
T1a

))

where ρb represents the density of brain tissue, α represents
labeling efficiency, C represents the sensitivity of the image to
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water, w represents the Post-labeling delay, tl represents the
labeling duration, T1a represents the T1 of arterial blood, ωa

represents the density of water in blood, and Sc and Sl represent
signal intensities in the control and labeled images, respectively.
For details of CBF calculation, see a previous study (Xu et al.,
2010). The CBF maps were normalized to standard Montreal
Neurological Institute (MNI) space by using the following
three steps: (1) the native ASL images of the healthy controls
were nonlinearly normalized to a standard perfusion template
provided by SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/) and then averaged to generate a study-specific
standard ASL template; (2) all the native ASL images were
nonlinearly normalized to this study-specific ASL template, and
(3) all the CBF images were normalized to the standard space
using the normalization parameters estimated from step (2) and
resampled to a voxel size of 2 × 2 × 2 mm3. For standardization
purpose, the CBF value of each voxel was divided by the mean
CBF value of the whole brain (Liu et al., 2013).

Weighted CBF Covariance Network
A network is comprised of nodes and edges. Here, nodes
represent brain regions and edges represent statistical
interdependence of CBF between nodes. The automated
anatomical labeling (AAL) template (including 90 cerebral and
26 cerebellar regions) was used to divide the brain, and each
region was defined as a node (Tzourio-Mazoyer et al., 2002). In
line with previous small-world network studies in schizophrenia
(Liu et al., 2008; Wang et al., 2012), we just focused on cerebral
regions in the current study, and thus there were totally 90 nodes.
The mean CBF value in each node was extracted for each subject,
and a linear regression was performed at each node to remove
the effects of age and gender. Pearson’s correlation coefficients
between the residuals of each pair of nodes across all subjects
were considered as edges (Liu et al., 2015b). This procedure
resulted in a 90× 90 correlation matrix for each group.

This weighted network can utilize strength information of
CBF coupling to better characterize network topology than the
binary network. A sparsity threshold defined as the fraction of
the total number of existing edges divided by the maximum
possible number of edges, was applied to correlation matrices to
minimize influence of intergroup difference in overall correlation
strength and to enable all networks to have the same number of
edges (Zhang J. et al., 2011). Because sparsity threshold selection
may affect results of network analysis, we calculated network
properties over a wide range of sparsity thresholds, which were
selected using the following criteria: the average degree (the
degree of a node is the number of connections linked to the node)
over all nodes of each network was larger than log(N) (Watts
and Strogatz, 1998; Achard et al., 2006), where N is the number
of nodes (here, N = 90); and the resultant network had sparse
and distinguishable properties compared to the degree-matched
random network (He et al., 2007; Wang L. et al., 2009). Based on
these criteria, the sparsity levels were ranged from 0.05 to 0.50,
with a step of 0.01.

Small World Properties
At each sparsity threshold, we calculated global and nodal
network properties. The global measures included (1)

small-world parameters involving normalized clustering
coefficient γ (a ratio of the clustering coefficient between
real and 100 random networks, which quantifies the local
interconnectivity of a network), normalized characteristic path
length λ (a ratio of the characteristic path length between
real and 100 random networks, which quantifies the overall
routing efficiency of a network), and small-worldness σ = γ /λ

(measures the small-worldness of a network); and (2) network
efficiency involving global efficiency Eglob (measures the ability
of parallel information transmission over the network) and
local efficiency Eloc (measures of the fault tolerance of the
network). Of note, the characteristic path length was measured
by harmonic mean distance between all possible pairs of nodes
to overcome the problem from possibly disconnected network
components. We also computed nodal properties, including the
degree, efficiency, and betweenness of each node. Interpretation
of these networkmeasures please see Rubinov and Sporns (2010).
The area under the curve (AUC) at different sparsity thresholds
was calculated to provide an integrated scalar for each network
measure.

Statistical Analysis
Permutation test was used to compare intergroup differences
in AUC of each global network measure. For a given measure,
we first calculated real intergroup difference of the measure.
All subjects were then randomly reassigned to each group
keeping the number of subjects in each group unchanged,
and repeated network construction and small-world property
calculation. The permutation process was repeated 1000 times
and we counted the number of times that network measure
difference in permutations was higher than real difference (Liu
et al., 2015a). After dividing by the total number of permutations,
the p-value was obtained for each measure. The significant level
was set at p < 0.05 for each test.

Using this permutation framework, we also compared nodal
properties between schizophrenia patients and healthy controls.
Multiple comparisons were corrected using a false-positive
correction p < 1/N, where N = 90 corresponds to the number
of comparisons. This implied that we expected less than one
false-positive per analysis (Lynall et al., 2010).

Validation Analysis
To test the effect of network types on our results, we performed
the same analyses on the binary network as on the weighted
network. Because the number of nodes may affect network
analysis (Wang J. et al., 2009; Zalesky et al., 2010), we also
used a high-resolution template with 1024 nodes (Zalesky et al.,
2010; Zhang et al., 2011a) to construct CBF weighted covariance
network. Given that there is a highly computational burden and
random parcellation nature of the atlas, we only analyzed global
small-world parameters.

RESULTS

Demographic and Clinical Data of Subjects
A total of 96 schizophrenia patients and 91 healthy controls were
finally included. The two groups were matched for gender (42
males and 54 females for the patient group; 43 males and 48

Frontiers in Neuroscience | www.frontiersin.org 3 June 2016 | Volume 10 | Article 308

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Liu et al. Altered CBF Covariance Network in Schizophrenia

females for the control group; p = 0.63) and age (33.57 ± 8.64
years for the patient group; 33.35 ± 10.44 years for the control
group; p = 0.87). The positive, negative and general PANSS
scores for schizophrenia patients were 16.78± 7.86, 20.04± 8.86
and 34.01 ± 10.78, respectively. The detailed demographic and
clinical data are presented in Table 1.

Global Topological Measures of the
Network
Both schizophrenia patients and healthy controls showed typical
small-world topology, i.e., the CBF covariance networks had
larger clustering coefficients (γ) and almost identical shortest
path lengths (λ) compared with matched random networks
(Figure 1). However, schizophrenia patients had decreased
small-worldness, normalized clustering coefficient and local
efficiency, and unchanged normalized characteristic path length
and global efficiency relative to healthy controls (Figure 2).

Nodal Topological Measures of the
Network
Brain regions exhibiting intergroup differences at least in one
nodal property are shown in Table 2 and Figure 3. Compared
with healthy controls, schizophrenia patients showed decreased
nodal centrality (degree, efficiency, or betweenness) in the left
orbital part of the superior frontal gyrus, the right precentral,
supramarginal, superior and inferior temporal gyri, and the
bilateral middle temporal gyri; and increased nodal centrality in
the right insula, and the left superior and inferior parietal lobules,
inferior occipital gyrus, angular gyrus, and superior part of the
temporal pole.

Validation Analyses
We found that our main results were preserved in validation
analyses of the binary network (Figures S1–S3, Table S1) and the
weighted network constructed by 1024 nodes (Figures S4, S5).

DISCUSSION

This study used graph theory to investigate topological changes
of CBF covariance network in schizophrenia. Both groups

TABLE 1 | Demographic and clinical characteristics of subjects.

Variables (Mean ± SD) Schizophrenia HC P-values

Gender (M/F) 42/54 43/48 0.63a

Age (years) 33.57 ± 8.64 33.35 ± 10.44 0.87b

Duration (months) 121.38 ± 97.30 – –

PANSS

Positive score 16.78 ± 7.86 – –

Negative score 20.04 ± 8.86 – –

General score 34.01 ± 10.78 – –

aThe p-value was obtained by chi-square test.
bThe p-value was obtained by two sample t-test.

F, female; HC, healthy controls; M, male; PANSS, positive and negative symptom scale;

SD, standard deviation.

exhibited a small-world topology, implying an optimal balance
between global and local information processing. At the global
level, schizophrenia patients showed reduced small-worldness,
normalized clustering coefficient and local efficiency, suggesting a
shift toward random topology in CBF covariance network. At the
nodal level, schizophrenia patients had altered nodal properties
in the frontal, parietal, temporal, and occipital regions. These
findings suggest imbalance in blood flow distribution between
brain regions in schizophrenia, which indicates low efficiency of
energy supply in schizophrenia.

Small-world topology is characterized by dense local
connections with few long-range connections mediating short
path length between distant pair of nodes in the network. This
topology has both high global and local efficiency at low wiring
cost (Bullmore and Sporns, 2009), making the brain to obtain an
optimal balance between segregated and integrated information
processing (Bassett and Bullmore, 2006). Small-world topology
is an important organization of human brain and presents
in various brain networks, including structural, anatomical,
functional, metabolic, and electrical networks (Salvador et al.,
2005; Iturria-Medina et al., 2008; Liu et al., 2008; Jhung et al.,
2013; Hu et al., 2015). In line with these findings, we found
that both schizophrenia patients and healthy controls showed
small-world topology in CBF covariance network, indicating that
the human brain irrespective of disease states is organized into
small-world topology to support efficient information processing.

Although schizophrenia patients showed small-world
topology in CBF covariance network, organizational efficiency
of the network would be compromised in schizophrenia.
In this study, schizophrenia patients had a decreased small-
worldness, suggesting inefficient topological organization of

TABLE 2 | Brain regions with altered nodal properties of CBF covariance

network in schizophrenia.

P values

Regions Degree Efficiency Betweenness

Schizophrenia > HC

Right insula – – 0.005

Left inferior occipital gyrus – – 0.007

Left superior parietal lobule 0.004 – –

Left inferior parietal lobule 0.006 – –

Left angular gyrus 0.006 – –

Left temporal pole, superior part – – 0.007

Schizophrenia < HC

Right precentral gyrus – – 0.011

Left superior frontal gyrus, orbital part – – 0.008

Right supramarginal gyrus 0.006 0.001 –

Right superior temporal gyrus – 0.002 –

Left middle temporal gyrus – 0.011 –

Right middle temporal gyrus <0.001 <0.001 –

Right inferior temporal gyrus 0.001 0.001 –

Regions were considered abnormal in the patients with schizophrenia if they exhibited

significant between-group differences in at least one of the three nodal topological

characteristics. HC, healthy controls.
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FIGURE 1 | Small-world parameters of CBF covariance network as function of sparsity thresholds. Both the schizophrenia and control groups show a

small-worldness (σ) >1, normalized clustering coefficient (γ) >1 and normalized characteristic path length (λ) approximately equal to 1, indicating that both groups

exhibited a small-world topology. HC, healthy controls.

FIGURE 2 | Global topological differences in CBF covariance network between schizophrenia patients and healthy controls. Each measure is expressed

as the integrated area under the curve (AUC). The black stars in bar plots denote statistically significant differences between the two groups (permutation test, p <

0.05). The histogram plots around the bar plots are null distributions of permutation tests of global network measures and the real measures are marked with black

arrows. SCH, schizophrenia; HC, healthy controls.

CBF covariance network in schizophrenia. After scrutinizing
topological properties, we found patients showing reduced local
efficiency and unchanged global efficiency. Local efficiency is
predominantly related to short-range connections between
nearby regions that regulate the modularized information
processing or fault-tolerance of a network (Latora andMarchiori,
2001); while the global efficiency is associated with information
transfer between the remote cortical regions, and it is mainly
linked with long-range connections. Thus, altered local but
maintained global efficiencies may reflect that the impaired
CBF covariance mainly concentrates on short-range rather than

long-range covariance, which is also observed in functional
connectivity studies (Chen et al., 2015). Based on these two
measures, one can assess deviation of the patients’ network from
small-world topology, and particularly, suggest a shift toward
random network architecture in schizophrenia. Because blood
is the main source of energy supply to the brain, the inefficient
CBF covariance network suggests low efficient energy supply in
schizophrenia.

In addition to global properties, we also assessed nodal
properties of CBF covariance network. Nodal degree, efficiency,
and betweenness reflect the importance of a node in the network
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FIGURE 3 | Nodal topological differences in CBF covariance networks between schizophrenia patients and healthy controls (permutation test,

p < 1/90). Results are rendered using the BrainNet viewer (Xia et al., 2013). Red and blue spheres represent regions with significantly increased and decreased nodal

properties in schizophrenia, respectively. Gray spheres represent regions without significant intergroup difference. The histogram plots below the render plots are the

null distributions of permutation tests of significant nodal network measures and the real measures are marked with black arrows. ANG, angular gyrus; INS, insula;

IPL, inferior parietal lobule; IOG, inferior occipital gyrus; ITG, inferior temporal gyrus; L, left; MTG, middle temporal gyrus; PreCG, precentral gyrus; R, right; ORBsup,

orbital part of superior frontal gyrus; SMG, supramarginal gyrus; SPL, superior parietal lobule; STG, superior temporal gyrus; TPOsup, superior part of temporal pole.

from different perspectives. We found altered nodal properties
in regions involving in perceptual (i.e., precentral gyrus, inferior
occipital gyrus, superior temporal gyrus, middle temporal gyrus,
and inferior temporal gyrus), affective (i.e., insula, temporal pole,
and orbitofrontal cortex), lingual and spatial processing (i.e.,
angular gyrus, supramarginal gyrus, and superior parietal lobule).
These functional impairments have been frequently reported in
schizophrenia (Bellani et al., 2009; De Sanctis et al., 2013; Postmes
et al., 2014; Agarwal et al., 2015; Strauss et al., 2015). These
findings are consistent with the concept that schizophrenia is
linked with disturbance of multiple systems (Karbasforoushan
and Woodward, 2012).

Although weighted edges can more accurately delineate the
brain network than binary ones, it may be sensitive to noise. We
found similar differences in binary network topological measures
between the two groups, suggesting independency of our findings
on network types. Furthermore, previous studies have shown
dependence of topological measures of brain functional and
anatomical networks on node numbers (Wang J. et al., 2009;

Zalesky et al., 2010). To test the effect of node numbers on CBF
covariance network topology, we repeated network analyses with
1024 nodes (Zalesky et al., 2010). We found that the overall
patterns of network topological differences between the two
groups were similar, suggesting the robustness of our results.

As a matter of fact, functional and anatomical connectivity
networks are the two types of most widely used networks.
In the past few years, there is growing evidence that SCN
is a valuable avenue to explore the human brain (He et al.,
2007; Zielinski et al., 2010; Alexander-Bloch et al., 2013; Evans,
2013). Recently, several researches suggest that investigation of
FCN could also provide complementary yet crucial information
for deep understanding the human brain. For example, Zhang
et al. (2011b) examine inter-subject covariance of regional
spontaneous activity and observe similar networks of the
task-positive and task-negative networks as resting-state fMRI
studies. Di and colleagues report that the covariance patterns
of the brain metabolism partially reflect resting-state functional
connectivity (Di et al., 2012). In consideration of the SCN partly
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mirroring underlying anatomical connectivity, we speculated
the FCN has a close relationship with functional connectivity.
On the other hand, BOLD fMRI is an indirect measure of
neuronal activity and provides a relative measure of blood
perfusion by measuring differences in oxygen consumption
(Kim and Ogawa, 2012). Instead, CBF is a quantitative and
absolute measure that closely links with neuronal activity.
Thus, systematically analyzing the CBF covariance network
may consolidate the foundation of findings observed in
resting-state BOLD fMRI. Up to now, several researches have
demonstrated altered small-world networks in schizophrenia
by using resting-state fMRI. For instance, Liu et al. (2008)
demonstrate disrupted small-world networks in schizophrenia,
including significantly decreased small-worldness, normalized
clustering coefficient, and local efficiency. Similarly, Lynall
et al. (2010) observe reduced clustering and small-worldness in
functional connectivity networks. Our results in the present study
were consistent with previous findings, which provided further
evidence of topological alterations of functional brain networks
in schizophrenia.

It is worthy to note that a prior study has investigated the ASL-
derived CBF networks using graph theoretical approaches (Liang
et al., 2014). However, the method to construct CBF networks in
their study is different from the current study, which is largely
due to the different ASL sequence. Liang and colleagues used a
3D GRASE pCASL sequence and 120 images (60 label/control
pairs) were acquired. Thus, they could obtain 60 CBF images for
each subject and construct the CBF network at the individual
level (across different CBF images of this subject). By contrast,
we adopted a pseudo-continuous ASL sequence with a three-
dimensional fast spin-echo acquisition. The signal to noise ratio
of each image would be greatly improved but the acquisition time
of each image is long. There were just 6 images (3 label/control
pairs) and thus 3 CBF images were obtained. The final CBF image
for each participant was generated by averaging the 3 CBF images
and the CBF network was constructed at the group level (across
subjects).

There were several limitations of the current study that
merit consideration. First, most of the patients were chronic
schizophrenia with mixed symptoms and had been received

prescribed antipsychotic medications. Accordingly, we cannot

rule out the influence of these factors on CBF covariance
network. In the future, a large cohort of first-episode, drug-
naïve patients with schizophrenia should be analyzed to validate
our findings. Second, all covariance networks can only be
constructed at the group level (He et al., 2007; Zielinski et al.,
2010), we cannot examine relationships between topological
properties and clinical parameters. Third, CBF covariance may
reflect synchronization of blood flow distribution between brain
regions; however, the biological meaning of CBF covariance
needs to be further explored. Fourth, intravascular artifacts
would inevitably affect CBF values. Although inflow saturation is
implemented to suppress the intravascular signal results from the
inflow blood during post labeling delay, we cannot fully exclude
the influence of this issue to the network properties. Finally,
the phase tracking errors is inherent to pseudo-continuous ASL
(Jung et al., 2010; Fazlollahi et al., 2015), which will cause
systematic biases. This issue was listed as a limitation of this
study.
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