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Conventional analysis of functional magnetic resonance imaging (fMRI) data using

the general linear model (GLM) employs a neural model convolved with a canonical

hemodynamic response function (HRF) peaking 5 s after stimulation. Incorporation of

a further basis function, namely the canonical HRF temporal derivative, accounts for

delays in the hemodynamic response to neural activity. A population that may benefit

from this flexible approach is children whose hemodynamic response is not yet mature.

Here, we examined the effects of using the set based on the canonical HRF plus its

temporal derivative on both first- and second-level GLM analyses, through simulations

and using developmental data (an fMRI dataset on proprioceptive mapping in children

and adults). Simulations of delayed fMRI first-level data emphasized the benefit of

carrying forward to the second-level a derivative boost that combines derivative and

nonderivative beta estimates. In the experimental data, second-level analysis using a

paired t-test showed increased mean amplitude estimate (i.e., increased group contrast

mean) in several brain regions related to proprioceptive processing when using the

derivative boost compared to using only the nonderivative term. This was true especially

in children. However, carrying forward to the second-level the individual derivative boosts

had adverse consequences on random-effects analysis that implemented one-sample

t-test, yielding increased between-subject variance, thus affecting group-level statistic.

Boosted data also presented a lower level of smoothness that had implication for the

detection of group average activation. Imposing soft constraints on the derivative boost

by limiting the time-to-peak range of the modeled response within a specified range (i.e.,

4–6 s) mitigated these issues. These findings support the notion that there are pros and

cons to using the informed basis set with developmental data.
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INTRODUCTION

The most common approach in fMRI today is to use a standard
general linear model (GLM) regressing the blood oxygen level-
dependent (BOLD) signal against predictor variables reflecting
expected fluctuations due to the task, for each individual
separately, and then to report group statistics (e.g., Friston et al.,
1995; Worsley and Friston, 1995; Monti, 2011). To account for
the indirect relationship between BOLD signal and neuronal
activity, each task-related predictor variable is represented as a
stick or boxcar function encoding the occurrence of an event
or epoch convolved with a model of the physiological response
that captures the dynamic of the vascular processes, namely a
hemodynamic impulse response function (HRF). The consensus
in the community is that the most suitable representation of the
HRF is the sum of two gamma functions, the so-called canonical
HRF, which is peaking 5 s after stimulus onset (Friston et al., 1995;
Worsley and Friston, 1995). However, hemodynamic response
variability (e.g., variability in response latency—Friston et al.,
1998; Henson et al., 2002; Calhoun et al., 2004; Steffener et al.,
2010) induces mismatches between this standard hemodynamic
model and the actual data, leading to a mis-estimation of the
model parameters at the individual level and introducing biases
at the group-level.

There is much evidence supporting hemodynamic response
variability, involving variations in BOLD signal across trials,
sessions, subjects, and brain areas (Duann et al., 2002).
Several works showed significant variations in the hemodynamic
response across brain regions with respect to the overall shape,
the time-to-onset and the time-to-peak (Henson et al., 2002;
Mohamed et al., 2003; Handwerker et al., 2004; Steffener
et al., 2010). Using visuo-motor tasks, Handwerker et al. (2004)
and Mohamed et al. (2003) revealed time-to-onset differences
between brain regions, the hemodynamic response being faster
in the visual areas and peaking a few milliseconds later in motor-
related areas. Handwerker et al. (2004) further reported larger
between-subject variability within a given region compared to
within-subject variability across regions. BOLD signal was also
found to vary from one scan to another and 1 day to the next,
albeit to a less extent than between-subject variability (Aguirre
et al., 1998; Neumann et al., 2003). Likewise, BOLD signal
magnitude variability is task-dependent, with a larger variability
in active tasks compared to more passive ones (Garrett et al.,
2013).

In addition, there is growing evidence that hemodynamic
response variability and complexity change across the lifespan,
following possibly an inverted U-shape and reaching its
maximum in young adulthood (Grady, 2012). Such lower
magnitude variability and complexity of BOLD signal in children
and aging individuals compared to young adults might explain
weaker accuracy and stability in task performance (Grady, 2012).
Indeed, a less variable and complex BOLD signal likely underlies
a narrower spectrum of neural states (Garrett et al., 2013). On
another hand, Thomason et al. (2005) were able to reproduce
children’s BOLD signal by adding noise to adult data, which may
indicate more marked spurious fluctuations in BOLD response
to stimulations in the former compared to the latter. Within

the developmental framework, a few studies also pointed out
age-related changes in the shape of the hemodynamic response
(Richter and Richter, 2003; Arichi et al., 2012). In particular,
Arichi et al. (2012) showed a time-to-peak decrease and a peak
amplitude increase from birth to adult age.

Yet, HRF variability is still not considered sufficiently in
neuroimaging research. The use of basis sets instead of a single
function is an appropriate approach to accommodate some
variations in BOLD response across tasks, brain regions, and
individuals. Using a basis set, the hemodynamic response, which
is convolved with the stimulus function to model task-evoked
change in BOLD signal, involves using not just a single function
but a mixture of basis functions. The most popular basis set
consists of the canonical HRF plus its partial derivatives with
respect to delay and dispersion (Friston et al., 1998). This
set, labeled informed basis set, is the most prominently used
because it offers both flexibility (while precluding over-fitting)
and efficiency (Friston et al., 2005a), capturing “small” variations
in the latency and duration of the BOLD response using a
few (two or three) basis functions. This is in contrast to other
sets such as the finite impulse response (FIR) and Fourier sets
that are more flexible but less powerful due to a larger set of
functions to capture BOLD impulse response shape (Lindquist
et al., 2009). It was also demonstrated that the informed basis set
is almost identical to the principal components of variation with
respect to the parameters of the Balloon model of neurovascular
coupling (Friston et al., 2000), conferring biophysical validity
to the set. More sophisticated basis sets/approaches have also
been developed to handle variations in the onset and duration
of activation but their use remains limited compared to that of
the informed set (Liao et al., 2002; Friman et al., 2003; Woolrich
et al., 2004; Lindquist and Wager, 2007; Lindquist et al., 2009).

The main issue regarding the informed basis set is to translate
properly parameters estimates related to the canonical HRF
and first/second derivative terms from individual- to group-
level (Calhoun et al., 2004; Steffener et al., 2010). A popular
approach is to fit the set at the individual level and to only
pass up to the group-level the canonical parameter estimate.
While this makes the analysis simpler, this is suboptimal as
it excludes the variance related to the derivative function (i.e.,
the amplitude bias is not accounted for). Accordingly, Calhoun
et al. (2004) proposed running group analyses using a first-
level summary statistics that he called “derivative boost,” which
combines derivative and nonderivative beta estimates with
different weighting. Steffener et al. (2010) generalized afterwards
the calculation of the derivative boost to un-normalized design
matrix. Constraints on the derivative boost were also proposed to
account for more or less complex BOLD response. For instance,
constraining the time-to-peak of the hemodynamic response
between 4 and 6 s with a set including the canonical HRF plus
its temporal derivative (i.e., more weight put on the canonical
term than on the derivative term in the boost) results in a BOLD
response with a single peak. Loosely time-to-peak constraints
(i.e., ∼3–7 s) lead to either unimodal or bimodal hemodynamic
response in shape.

Previous studies have already reported reduced model mis-
specification and increased estimate of the BOLD response
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amplitude using the informed basis set—derivative boost
approach instead of using the canonical HRF alone with adult
data (Calhoun et al., 2004; Lindquist et al., 2009). However, we
still have no indication as to whether this approach also improves
amplitude estimates in populations which may show different
BOLD response characteristics, such as children (Richter and
Richter, 2003; Arichi et al., 2012). Besides, although there is a
high likelihood of the approach to improve sensitivity at the
individual-level, it is trickier to foresee its impact on group-
level activation mapping. More specificity at the individual-level
considering a model that combines canonical and derivatives
regressors may offer a more accurate picture of activation
mapping (i.e., improved fit); however, it may increase between-
subject variance and impact group-level statistical testing that
assesses the magnitude of an effect with respect to the
variability across subjects (Penny and Holmes, 2007; Monti,
2011). Therefore, the goal of this paper is to investigate the effect
of using the informed basis set to model the fMRI signal in
analysis of task-based brain activation, especially in the context
of special populations such as children. Our objective is not
to derive complex methodological advances, but to provide
elements to consider for the users of standard fMRI analysis
software suites, especially SPM. As a first step, we examined
the overall impact of using the informed basis set on individual
simulated data. This simulation step was intended to show
the benefit of translating to the second-level of analysis the
derivative boost and not only the parameter estimate related
to the canonical HRF. Second, we fitted the canonical HRF
alone and the informed basis set (while varying the time-to-
peak ranges of interest) to children and adults’ data acquired
during sensory (proprioceptive) stimulations. We subsequently
examined the extent to which using the derivative boost impacts
group-level results. Based on these results we propose guidelines
for developmental neuroimaging studies.

MATERIALS AND METHODS

fMRI Modeling and Inference
A common approach for group fMRI data analysis consists in the
two-stage summary statistics random effect model (Holmes and
Friston, 1998). In the first stage, within-subject modeling assumes
that changes in BOLD signal at any voxel, y(t), is the output of a
linear time-invariant system, expressing it as the convolution of a
stimulus function, u(t), and a hemodynamic response, h(t):

y (t) = u (t) ⊗ h (t) (1)

where, u(t) is a stick or boxcar function encoding the occurrence
of events depending upon their durations. The hemodynamic
function h(t) is usually assumed to be the canonical HRF. It
can also be expressed as a mixture of K basis functions, fi(t), to
accommodate for BOLD variability:

h (t) =
∑K

i=1
βifi (t) (2)

where β i represent the weights that determine the mixture of
basis functions that best model h(t). In the present study, we

restricted the set to K = 2, including the canonical HRF plus its
first temporal derivative (i.e., the informed basis set) to capture
changes in the latency of the BOLD response. This choice was
based on the study by Lindquist et al. (2009) who showed that
including the second (dispersion) derivative provides only minor
improvements in modeling. Conversion of this convolution
model into a GLM is as follows:

y (t) = Xβ + ε (3a)

Xi = fi (t) ⊗ u (t) (3b)

where X contains the explanatory variables (i.e., the design
matrix), whose contributions to y(t) is determined by the
parameters β that are estimated using standard least squares.

In the second stage, the individual parameter estimates (i.e.,
or contrast of β̂, labeled cβ̂) are considered as random quantities
for inferences to apply at the population level. Specifically,
they are combined voxel-wise into an estimator (e.g., t-statistic)
relating the overall effect size (mean parameter estimate across
subjects) to the between-subject variability, which is used tomake
an inference about the significance of the effect at the voxel or the
cluster level (e.g., whether or not there is voxelwise or clusterwise
activation in case of a one-sample t-test).

While the random effect model via summary statistics is
in widespread use and is the default procedure in SPM, the
generalized mixed-effect model is implemented by default in
other software packages (e.g., FSL) to account for settings where
first level variances would not be homogeneous (more generally
the sphericity assumption not met), by relating the variance
associated with the group effect estimate to a mixture of both
within- and between-subject variability (Mumford and Nichols,
2006, 2009)1. However, several studies found the random-effect
approach to be robust to violations of homoscedaticity (Friston
et al., 2005b; Mumford and Nichols, 2009), with the approach
being almost equivalent to the mixed-effect approach in the
special case of second-level one sample t-test. Accordingly,
although the present study relies on the random effect model
via summary statistics implemented in the SPM package, we
restricted second-level analyses to one-sample SPM models (see
experimental data section below) to make outcomes the most
generalizable to other fMRI packages.

Simulations
A slow event-related design dataset including 10 s-events
interspersed by 10 s-rest periods was simulated using Matlab
codes adapted from Pernet (2014). Specifically, the simulated
BOLD time series, y(t), was obtained by convolving hypothetical
neural events of various height [i.e., u(t), the boxcar function]
with the standard HRF [i.e., h(t), the double-gamma function]
using a time resolution of 0.5 s. Our simulation mimicked a
slow event-related design, specifically a periodic event presented
at 0.05Hz, to approach the experimental design described later.
To demonstrate the impact of adding one basis function on
parameter estimates and model accuracy in case of temporal
variability, events were afterwards modeled with temporal shifts

1Note, however, that mixed effects model is also available in SPM through the

spm_mfx.m function.
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(from −2 to 2 s, time step of 0.5 s) relative to the design
matrix and convolved by the HRF alone vs. the HRF plus
its first derivative. In the latter case, the temporal derivative
was orthogonalized relative to the regressor convolved by the
canonical HRF.

Experimental Data
Data are from a sensory experiment during which participants
experienced vibrations of the tibialis anterior muscles (i.e.,
proprioceptive stimulation). The sample included 17 adults
(mean age ± SD: 32.2 ± 4.5 years; 9 females) and 19 children
(mean age ± SD: 8.7 ± 1.2 years; 11 females). Adult participants
and parents of minors who participated in the study gave written
informed consent. The study was approved by the research ethics
committee CPP Sud-Méditerranée 1.

The scanning session was composed of five runs including
12-s long conditions (epochs) of vibration on the right and
left tendons at 30Hz (R30, L30) or 100Hz (R100, L100). Each
vibration condition was repeated three times per run. The
order of vibration conditions was randomized within a run
and REST epochs (12-s long on average) were inserted between
all vibration conditions. Complete details on the protocol are
provided in Cignetti et al. (2014). fMRI time series were
acquired using a 3-T fMRI scanner (Medspec 30/80 AVANCE,
Bruker, Ettlingen, Germany) with a T2∗-weighted gradient echo-
planar imaging sequence (42 interleaved axial slices acquisition;
3mm thickness; 0.5mm interslice gap; reco matrix = 64 × 64;
field of view = 192mm × 192mm; repetition time = 2.8 s;
echo time = 30ms; flip angle = 84◦). The scanning planes
were parallel to the anterior commissure-posterior commissure
and covered the top of the cortex down to the base of the
cerebellum. Structural MRI data were also acquired using a
three-dimensional T1-weighted scanning sequence (MPRAGE;
repetition time = 9.4ms; echo time = 4.4ms; inversion time
= 800ms; field of view = 256mm × 256mm × 180mm, reco
matrix= 256 × 256× 180).

Image preprocessing and statistical fMRI data analysis were
conducted with SPM8 (Wellcome Department of Imaging
Neuroscience, London, UK) running in Matlab 7.5 environment
(Mathworks Inc., Sherbon, MA, USA) and custom-made Matlab
scripts. Each run included 113 images, including 6 dummy
images acquired before magnetic field saturation was reached,
which were discarded. The remaining images were (i) slice-time
corrected, (ii) realigned to the first image of the time series to
correct for head movement between scans, (iii) unwarped to
remove residual movement-related variance (Andersson et al.,
2001), and (iv) co-registered to the high-resolution structural
image. The structural image was normalized to the MNI T1
template image and the resulting parameters were used for spatial
normalization of the functional images, which were resampled to
3-mm isotropic voxel size and smoothed with an 8-mm FWHM
Gaussian kernel.

Task-dependent changes in BOLD signal were afterwards
modeled as boxcar functions time-locked to the onsets of
the vibration conditions (R30, L30, R100, and L100). These
regressors were convolved with either the HRF alone or the
basis set and were entered into the GLM. Constant terms and

realignment parameters (3 translations, 3 rotations) were also
included into the GLM as covariates of no interest to account
for shifting signal levels across runs and influence of head
motion on BOLD signal, respectively. A high-pass filter (cutoff
period = 128 s) was applied to remove low-frequency drifts
in the data. Note that translational and rotational realignment
estimates indicated minimal (“acceptable”) head movements in
all participants including children, with values of the quality
control measures broadly comparable to standards reported in
previous neurodevelopmental studies ( e.g., Fair et al., 2007;
Kelly et al., 2009; Power et al., 2015; Cignetti et al., 2016).
All participants exhibited within-run (i) maximal amplitude of
translational and rotational displacements below 3mm and 3
degrees, respectively, (ii) root mean square values for translation
and rotation below 1mm and 1 degree, respectively, and (iii) a
mean framewise displacement (see Power et al., 2015 for details)
below 0.2mm. Contrast of parameter estimates were finally
computed for the 100Hz condition (i.e., sensory stimulation
condition) and for the pair of conditions 100 and 30Hz (i.e.,
sensory stimulation condition > sensory control condition). For
the basis set, estimates related to the HRF and the temporal
derivative were combined in a derivative boost (Calhoun et al.,
2004; Steffener et al., 2010):

H =

√
β̂1

2
∑N

t=1
x12 + β̂2

2
∑N

t=1
x22 ∗

β̂1∣∣β̂1

∣∣ (4)

with H the derivative boost, β1 the parameter estimate for the
canonical HRF, x1 the regressor convolved with the canonical
HRF, β2 the parameter estimate for the temporal derivative,
and x2 the regressor convolved with the temporal derivative.
We considered constrained and unconstrained derivative boosts,
investigating a response shifted by either ±1 s relative to the
canonical HRF (i.e., a time to peak between 4 and 6 s) or
approximately ±2 s (i.e., the entire time interval covered by
the basis set; Henson et al., 2002), respectively (Figure 1).
Previous studies have shown already that the difference in the
peak-time of hemodynamic responses compared to that of the
canonical HRF is often greater than 1 s, extending up to 2.5 s
(Handwerker et al., 2004). Therefore, it was important to consider
shifts in response peak beyond ± 1 s, although we are aware
that it might include more complex hemodynamic responses
difficult to interpret (Calhoun et al., 2004; Steffener et al., 2010).
Exact computations of the boosted contrast maps involved (i)
estimating the time-to-peak of the BOLD response voxel-wise,
(ii) creating a mask of the voxels whose responses peaking
was within the specified temporal range (either 4–6 s or the
full range of the basis set; see Figure 1), (iii) replacing the
parameter estimates with their boosted counterparts for voxels
within the mask, and (iv) re-estimating the contrast of interest.
The core code (spmup_hrf_boost.m) we used is available at
the GitHub repository: https://github.com/CPernet/spmup/blob/
master/spmup_hrf_boost.m.

One-sample t-tests using the first-level 100Hz and 100minus
30Hz contrast images were finally conducted both in children
and adults, for each of the three modeling approaches (i.e.,
canonical HRF and basis set with temporal restriction or not).
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FIGURE 1 | (A) The canonical double-gamma hemodynamic response

function (HRF—solid line) and its first temporal derivative (dashed line) plotted

against post-stimulus time. (B) The relationship between the ratios of

derivative and canonical HRF parameter estimates (β2/β1) and the latency

difference from the canonical HRF’s time to peak (i.e., 5 s). Colored letters

match with the different shapes of the HRFs shifted (or not) in time in (C), and

the canonical (β1) and derivative (β2) parameter estimates in (D). (C) The

canonical HRF (green), peaking at 5 s, together with HRFs shifted earlier (cyan

and blue) and later (yellow and red) in time. (D) Parameter estimates for

canonical HRF (β1) and temporal derivative (β2) associated with different

shapes of the HRFs shifted (or not) in time in (C).

This was intended to evaluate the extent to which average
group activation (reflecting here sensory mapping) was impacted
by using the derivative boost. In practice, second-level one-
sample t-test is implemented in SPM following a random-effects
approach via summary statistics, which pools voxelwise the first-
level contrast estimates cβ̂1, . . . , cβ̂N from N subjects into the
t-statistic

t = cβ̂G/

√
Var

(
cβ̂G

)
(5)

where cβ̂G and Var
(
cβ̂G

)
represent the average group contrast

estimate and the across-subject variance in contrast estimate,
respectively (e.g., Mumford and Nichols, 2006, 2009; Penny and
Holmes, 2007). β̂G needs to be replaced by HG in Equation
(5) for second-level one-sample t-test that uses the derivative
boost. After pooling the data comes the inference phase whose
aim is to detect activation in the statistical images at the set-
level, the cluster-level or the voxel-level (Friston et al., 1996). We
considered the most popular cluster-extent inference (Hayasaka
and Nichols, 2003; Woo et al., 2014), which consisted in
(i) identifying clusters of contiguous voxels whose intensity
exceeded a primary threshold set at the value p < 0.001 in
our t-statistic images, and (ii) estimating the probability that
(the spatial extent of) any of these clusters occurs as a chance
process as derived using distributional approximations from the

random field theory (RFT), thereby rejecting those clusters whose
probability of being due to chance given the smoothness of our
data was highly unlikely—or equivalently thresholding the t-
statistic images at p < 0.05 family-wise error (FWE) corrected
over all clusters. Although a detailed description of cluster-extent
statistical inference with RFT is beyond the scope of the present
study (see for details Friston et al., 1996; Hayasaka and Nichols,
2003; Nichols and Hayasaka, 2003), it is worth to mention that
thresholding of statistic image with the RFT method works by
calculating the smoothness of the image and then estimating the
cluster-level p-values, a high smoothness more likely decreasing
the p-values and revealing larger clusters of significant activation.

Hence, it results from the above steps that any change
in first-level contrast estimates related to the hemodynamic
response modeling strategy may affect group average activations
not only through a change in the mean contrast estimate, but
also through a change in the between-subject variability in
contrast estimate and/or in the smoothness of the t-statistic
image. Accordingly, we examined each of these factors separately
to better interpret differences in group average activations across
the modeling strategies. Differences in mean contrast estimates
between the approach that used the canonical HRF and those
that used the basis set (either restricted or not) were assessed
using group-level paired t-tests on 100Hz and 100minus
30Hz contrast images, whose results no longer depend on the
between-subject variance (Beckmann et al., 2003). The effect of
first-level modeling on between-subject variance was investigated
from the denominator of Equation (5). Finally, change in data
smoothness caused by first-level modeling was examined by
estimating the intrinsic spatial smoothness (full width at half
maximum of the theoretical Gaussian function responsible
for the observed smoothness) of the individual contrast
images. Our smoothness estimation (using rest_Smoothest.m;
https://github.com/Chaogan-Yan/REST/blob/master/rest_Smoot
hest.m) relied on the algorithm described in Flitney and
Jenkinson (2000).

RESULTS

Simulated Individual Data
The simulation showed that adding a temporal shift while
modeling the data with only the canonical HRF decreased
parameter estimates (canonical HRF beta estimate or β1 and
T-scores) and model fitting (R2). The more the shift, the
larger the decrease in parameter estimates and model fitting
(Figures 2A,C). Using both the canonical HRF plus its first
derivative to model shifted data enabled getting R2 at the same
level as when using the canonical HRF on original (not shifted)
data. Likewise, there was a beneficial effect of using the basis set
on individual T-scores, although no benefit was observed with
respect to β1 (see Figures 2B,C). In other words, including the
derivative term together with the nonderivative term reduces
deviation between the data and themodel (i.e., decreased residual
error), which in turn improves the T-score (i.e., the ratio
between the β1 estimate and the residual error). Therefore, the
rationale of decreasing the error term by regressing out the
variance associated with the derivative term is valid to boost
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FIGURE 2 | Simulation results with data mimicking a periodic event related design. (A) Data modeling using the HRF alone while adding or not a temporal

shift of 2 s between the model (blue dashed lines) and the simulated data (red lines). Adding a temporal shift deteriorates the model fit (R2), the canonical HRF

estimate (β1) and the T-score. (B) Data modeling using the HRF plus its first derivative while adding a temporal shift of 2 s between the model (blue dashed lines) and

the shifted data (red lines). Adding the derivative improves substantially R2 and to a lower extent T-score, but has very limited impact on β1. (C) Variations in temporal

shift from -2 to 2 s confirmed the previous observation, with the largest effect of including the first derivative being on R2 and the poorest effect being on β1.

the individual T-statistics. However, it does not constitute a
valid solution for second-level random-effects analysis that only
relies on beta estimates, discarding first-level variance (cf. Section
fMRI Modeling and Inference for details). To overcome this
limit, we ran (on the experimental data) group analyses using a
derivative boost that combines both nonderivative and derivative
beta estimates.

Experimental Group-Level Data
One-sample t-tests run on the children 100Hz contrast images
revealed a similar proprioceptive mapping network topology
when using eiher the canonical HRF alone or the derivative boost
constrained between 4 and 6 s (Figure 3A). The network involved

central (e.g., primary motor cortex), frontal (e.g., supplementary
motor area, anterior cingulate cortex), parietal (e.g., inferior
parietal lobule), and subcortical (e.g., putamen, thalamus)
regions, which are common regions in proprioceptive processing.
Extending the time interval covered by the derivative boost to
3–7 s decreased the spatial extent of the network (Figure 3B). A
similar network was also found in adults when using either the
canonical HRF alone or the derivative boost constrained between
4 and 6 s, although its spatial extent was restricted compared
to that of the children2 (Figure 3C). As observed in children,

2 The spatial contraction of the activation patterns from childhood to adulthood is

a typical phenomenon of functional brain networks development, likely related to

synaptic pruning and experience-dependent modulation of functional wiring (e.g.,
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FIGURE 3 | Effect of derivative boost on proprioceptive mapping (one-sample t-maps) in the 100Hz condition. (A,C) Mapping obtained using the canonical

HRF alone (red) and the derivative boost constrained between 4 and 6 s (green) in children and adults. Overlapping active voxels (i.e., conjunction) are represented in

yellow. (B,D) Impact of the absence of constraints on the derivative boost (i.e., the full time range covered by the basis set, as represented in purple) in children and

adults. Overlapping active voxels between the two derivative boosts are represented in white. Maps are thresholded at a voxel-wise threshold of p < 0.001

uncorrected and a cluster extend threshold of p < 0.05 FWE-corrected.

the proprioceptive network of the adults became narrower when
using the full derivative boost (Figure 3D). Furthermore, similar
changes in proprioceptive mapping as a function of the modeling
strategies were observed for the 100minus 30Hz contrast images
(Figure S1).

Interestingly, paired t-tests ran on the children 100Hz
contrast images showed increased mean amplitude estimate
(i.e., increased average group contrast estimate) when using the
derivative boost (peak between 4 and 6 s) compared to using the
canonical HRF alone. This increased amplitude was observed in
several regions (e.g., anterior cingulate cortex, inferior parietal
lobule, and putamen) previously identified using the one-sample
t-tests. The full derivative boost (peak between ∼3 and 7 s)
led either to a further increased amplitude in some of these
regions or to increased amplitude in other proprioceptive regions
whose amplitude was not magnified while using the derivative
boost constrained between 4 and 6 s (Figures 4A,B). In adults,
there was no benefit of using the derivative boost constrained
between 4 and 6 s (Figure 4C), and only limited regional gains
when using the full derivative boost (Figure 4D). A similar
tendency was observed for the analysis of the 100minus 30Hz

Durston et al., 2006; Kelly et al., 2009; Cignetti et al., 2016). Thus, this result does

not mark a lack of sensitivity of the analysis that would have occurred with adult

data.

contrast images, which is available in the supplementary data
(Figure S2). Therefore, an intermediate conclusion is that using
the derivative boost was beneficial with respect to average
group contrast estimate—magnifying the values especially in
children—while, paradoxically, there was either no improvement
or adverse consequence in using it when considering group
activation maps.

Importantly, the between-subject variance in contrast estimate
was modulated as a function of the modeling strategy, with
a slight increase of the variance for the derivative boost
constrained between 4 and 6 s and a large increase of the
variance for the full derivative boost (Figure 5; see also Figure
S3). Recalling that test for significance using one-sample t-test
is carried out by relating the average group contrast estimate
on the between-subject variance (cf. Equation 5), the rise in
the latter term therefore decreases the t-statistics which in
turn increases cluster-level p-values (i.e., narrower clusters of
significant activation).

Furthermore, a lower amount of spatial smoothness
was found in the boosted contrast images, especially in
those generated using the unconstrained boost (Figure 6;
see also Figure S4), which also contributed to increase the
likelihood of finding clusters of significant activation smaller
in size.
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FIGURE 4 | Effect of the derivative boost on amplitude estimates in the 100Hz proprioceptive condition. Panel (A,C) display voxels where amplitude

estimate is increased while using the derivative boost constrained between 4 and 6 s (as compared with the model including the canonical HRF alone) in children and

adults. Panel (B,D) illustrate additional increase in amplitude estimates while using the full derivative boost compared to that constrained between 4 and 6 s, in

children and adults. Maps are thresholded at a voxel-wise threshold of p < 0.001 uncorrected and a cluster extend threshold of p < 0.05 FWE-corrected. Numbers

refer to main regions in which amplitude estimate was increased; 1, supplementary motor area; 2, anterior cingulate cortex; 3, inferior parietal lobule; 4, putamen; 5,

anterior insula; 6, inferior frontal gyrus; 7, caudate.

DISCUSSION

The present study falls within the framework of examining
the extent to which implementation of the informed basis set
is relevant for modeling task-evoked BOLD responses (e.g.,
Calhoun et al., 2004; Lindquist et al., 2009; Steffener et al.,
2010), when considering developmental data (children vs. adults
data). Simulations of fMRI individual data demonstrated that
incorporating the canonical HRF plus its temporal derivative
into the hemodynamic model is meaningless in case only beta
estimate related to the canonical HRF would be used at group
level, as expected (Calhoun et al., 2004). More importantly,
findings showed pros and cons of using the derivative boost at the
second level. Therefore, accounting for hemodynamic response
variability at the group level using the informed basis set has
complex consequences that need to be discussed in details.

Pros of Using the Derivative Boost
Several cortical (e.g., anterior cingulate cortex, supplementary
motor area, inferior frontal gyrus, inferior parietal lobule)
and subcortical (e.g., putamen) regions typically involved in
proprioceptive processing (e.g., Goble et al., 2011, 2012; Cignetti
et al., 2014) showed increased amplitude values of parameter
estimates when combining derivative and nonderivative terms

in the derivative boost, particularly in children (see Figure 4

and Figure S2). This finding confirms the potential of using
the derivative boost to account for delays in the hemodynamic
responses in adults, eventually reaching their peak amplitudes
earlier or later than the canonical HRF’s peak of 5 s (Henson
et al., 2002; Calhoun et al., 2004; Lindquist et al., 2009; Steffener
et al., 2010). It also indicates more systematic delays in the time-
to-peak amplitude in children compared to adults, which seems
consistent with previous developmental studies having reported
age-related changes in the shape of the BOLD response, and
especially in the time taken to reach the positive peak of the
HRF that would be longer earlier in life (Richter and Richter,
2003; Arichi et al., 2012). Besides, there is evidence of noisier
BOLD responses in children than in adults, or in other words
more fluctuations in the BOLD signal changes in response to
stimulations (Thomason et al., 2005). Accordingly, the stronger
benefits in children of having used the derivative boost may
not only relate to a hemodynamic response time course that is
different from that of the canonical HRF (i.e., a response shifted
in time) but also to a BOLD signal that is more variable in time
(i.e., a response less stable and less well-calibrated to the inputs)
at younger ages.

Although speculative, we can mention several factors that
likely subtend changes in the BOLD-evoked response during
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FIGURE 5 | Between-subject variability maps in the proprioceptive 100Hz condition expressed as a function of the model used. (A,B) Both children and

adults showed an increase in variability when using the derivative boost, especially for the full derivative boost (peaking approximately between 3 and 7 s).

development, and ultimately calls for the use of flexible basis
sets, here as the informed basis set, to model neurodevelopmental
fMRI data. A main factor would be age-related change in cerebral
blood flow, whose localized increase is known to be the key to
the positive peak of the BOLD response (Buxton et al., 2004;
Chen and Pike, 2009a,b). However, the physiology of the BOLD
response is complex and current findings support a picture where
not only cerebral blood flow but also cerebral metabolic rate of
oxygen, both driven by different aspects of neural activity (e.g.,
synaptic activity, spiking, neurotransmitters, neuromodulators),
contribute to the BOLD signal (Buxton, 2012). Therefore, it is
likely that all of these factors mature with age and experience and
as such play a key role in the larger deviations from the canonical
HRF in children. However, although using the derivative
boost effectively increased individual amplitude estimates and
magnified the mean effect over subjects, any conclusion requires
also considering between-subject variability (i.e., second-level
random effects) and data smoothness.

Cons of Using the Derivative Boost
An important finding was that using the derivative boost did not
magnify the proprioceptive network for a latency shift relative to
the canonical HRF of ±1 s (Figures 3A–C and Figures S1A–C),

and even deteriorated it for a latency of ±2 s (Figures 3B–D and
Figures S1B–D) in both children and adults. Such a result was
found to be related to an increased between-subject variability
of the amplitude estimate, the increment in the between-subject
variability being the most important for the model allowing the
hemodynamic response to be shifted up to approximately ±2 s
(Figure 5 and Figure S3). This indicates that the more flexible the
model was in term of the fitted response, the more the amplitude
estimates varied between the subjects and affected the t-statistics.
This is a direct consequence of the random-effect approach
where statistical testing is equivalent to examining whether the
magnitude of an effect is significant with respect to the variability
across subjects (e.g., Friston et al., 2002; Mumford and Nichols,
2006, 2009; Mumford and Poldrack, 2007; Penny and Holmes,
2007; Monti, 2011). Thus, although using the informed basis set
is a common strategy to increase model flexibility or sensitivity
while adequately controlling for power consumption and the risk
of over-fitting (e.g., Lindquist et al., 2009; Monti, 2011), there
is also a cost in using it when dealing with multiple subjects’
analysis, namely an increase in the likelihood of a rise in subject-
to-subject variation. The use of the basis set also affected the
amount of smoothness (FWHM) of the fMRI data conveyed
to the second-level of analysis, with a significant decrease of
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FIGURE 6 | Group mean ± SD smoothness estimates (mm full width at half maximum) of the 100 Hz contrast images as obtained using the HRF only,

the constrained boost (boost #1) and the unconstrained boost (boost #2) in adults (A) and children (B). The violin plots show the probability density (using

kernel density estimation). Reductions in smoothness occurred for boosted data, especially those boosted by means of the unconstrained basis set.

smoothness especially when no constraints were applied on
the basis set. Given that smoothness is a key parameter for
the RFT based p-values—a reduction in smoothness increasing
the corrected p-values and decreasing significance (Nichols and
Hayasaka, 2003)—this outcome is problematic. Besides, the
recommended rule of thumb is three voxels FWHM smoothness
(here, FWHM 9mm) for the RFT theory to work correctly
(Petersson et al., 1999; Nichols and Hayasaka, 2003), which
was only marginally met when using the full derivative boost
(Figure 6).

Therefore, the best case scenario in using the informed basis
set-derivative boost approach requires imposing soft constraints
(i.e., response peak between 4 and 6 s) to the full model
(i.e., nonderivative and derivative together) fitting the actual
data. Under such condition, one may expect the approach to
outperform the most common canonical HRF approach at the
individual level and to achieve good network detection at the
group-level. Limiting hemodynamic responses peaking within

the 4–6 s range also avoid dealing with physiologically ambiguous
results, such as responses with a bimodal shape (Calhoun et al.,
2004; Steffener et al., 2010).

Limitations and Future Directions
A limit of the study relates to design considerations. Focus was
only on a slow event-related design and thus the generalizability
of the outcomes to other designs, including block and fast event-
related designs, remains to be explored. If we consider the
mean contrast estimate over subjects, it is reasonable to expect
a beneficial effect (i.e., increased estimate) of the informed basis
set-derivative boost approach in any design, the effect being
likely the least important with block design data and the most
important with fast event-related design data (Aguirre et al.,
1998; Hopfinger et al., 2000). However, making predictions on its
potential impact on second-level random effects corresponding
to between-subject variability is a far more delicate matter that
requires further studies.
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Our modeling strategy was also restricted to the informed
basis set while many other models, more or less flexible, could
have been tested (e.g., Lindquist et al., 2009). Although our
results argue against using too much flexible models (such as
the FIR model) when examining group activation, these models
that better fit individual data could nevertheless be used to
better characterize the shape of the hemodynamic response in
children. Likewise, flexible basis sets are likely to be relevant for
brain/behavior correlational studies, where focus is put not on
mean (group) effect size but on variations of the effect across
subjects. On the other hand, approaches that use group-level HRF
profile to model individual data would take better account of
between-subject variability and may lead to less biased group-
level statistics (Vincent et al., 2014).

Another note has to do with the assumptions made by the
random effects model used in the present study (implemented
by default in SPM), which assumes that first-level variances
are homogeneous and that second-level effect estimates follow
a Gaussian distribution (i.e., no outliers). However, improving
model fitting at the fist-level using the informed basis set may
decrease the likelihood of these assumptions being correct.
An alternative would be to use mixed-effects models that
should work reasonably well if the previous assumptions do
not hold, down-weighting outliers and subjects with relatively
high intrasubject variability at the second level. Thus, a mixed
effects model may be theoretically capable of better controlling
the rise in across-subject variations in effect magnitude induced
by the informed basis set-derivative boost approach. In practice,
however, studies showed very modest improvement in group-
level statistics using the mixed-effects model compared to the
random-effects model (Beckmann et al., 2003; Friston et al.,
2005b; Mumford and Nichols, 2009; Chen et al., 2012). Using
outlier-induced heteroscedastic data, Mumford and Nichols
(2009) even demonstrated that the two models are almost
equivalent for second-level one-sample t-tests as used in the
present study. Accordingly, we feel confident that incorporating
the informed basis set to the mixed effects model should affect
group-level statistics in a close way as for the random effects
model. This said, investigating empirically this issue is left for
future research.

Finally, we used the most popular RFT method for (cluster-
extent) thresholding our statistical maps. This method requires
the images to be sufficiently smooth (∼FWHM 3 voxels), which
was met when using the recommended constrained basis set
(despite a slight decrease in smoothness). However, depending on

the Gaussian kernel smoothing applied as part of preprocessing,
this criteria might not be met. Applying kernel smoothing on
boosted data and not on preprocessed data may constitute a
more adequate solution to meet smoothness RFT prerequisite.
This said, one should always check the estimated FWHM of their
analysis and consider permutation methods in case the images
are not sufficiently smooth (Hayasaka and Nichols, 2003).

CONCLUSION

The present study demonstrates that using the informed basis
set-derivative boost approach captured individual variance in
the hemodynamic responses better, especially in children whose
mean amplitude estimate (i.e., the group mean estimate) were
significantly increased over several brain regions. However,
such an approach had adverse consequences on random effects
analysis for a group contrast mean (i.e., second level one-
sample t-test), where the group-level statistics suffered from
the increased subject-to-subject variability and decreased data
smoothness. Limiting the time-to-peak range of the modeled
response between 4 and 6 s (i.e., imposing soft constraints on
the basis set) appeared as an effective solution that mitigated
these drawbacks. Exploring solutions to make the approach
more suitable for random effects analysis at the second level is
needed before drawing any firm conclusion on its usefulness with
developmental fMRI data.
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