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The closed-loop control of rehabilitative technologies by neural commands has shown

a great potential to improve motor recovery in patients suffering from paralysis.

Brain–machine interfaces (BMI) can be used as a natural control method for such

technologies. BMI provides a continuous association between the brain activity and

peripheral stimulation, with the potential to induce plastic changes in the nervous

system. Paraplegic patients, and especially the ones with incomplete injuries, constitute

a potential target population to be rehabilitated with brain-controlled robotic systems,

as they may improve their gait function after the reinforcement of their spared intact

neural pathways. This paper proposes a closed-loop BMI system to control an

ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation

of incomplete spinal cord injury (SCI) patients. The integrated system was validated

with three healthy subjects, and its viability in a clinical scenario was tested with four

SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the

subjects were used to decode their gait intention and to trigger the movements of the

exoskeleton. We designed a protocol with a special emphasis on safety, as patients

with poor balance were required to stand and walk. We continuously monitored their

fatigue and exertion level, and conducted usability and user-satisfaction tests after the

experiments. The results show that, for the three healthy subjects, 84.44± 14.56% of the

trials were correctly decoded. Three out of four patients performed at least one successful

BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control

strategy implemented (i.e., the exoskeleton could only move during specific periods of

time) was effective in preventing unexpectedmovements during periods in which patients

were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials

(for healthy subjects and patients, respectively) would have suffered from unexpected

activations (i.e., false positives) without the proposed control strategy. All the patients
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showed low exertion and fatigue levels during the performance of the experiments. This

paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an

ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good

prognosis for gait rehabilitation).

Keywords: spinal cord injury (SCI), brain machine interfaces (BMI), ambulatory exoskeletons, gait rehabilitation,

movement intention decoding, electroencephalography (EEG), event related desynchronization (ERD), movement

related cortical potentials (MRCP)

1. INTRODUCTION

Recovery of lower-limb function in spinal cord injury (SCI)
patients is crucial to enhance the independence and quality of
life in this population (Ditunno et al., 2008). Two-third of SCI
patients are reported as paraplegic (Wyndaele and Wyndaele,
2006), from which a considerable percentage is able to regain
certain locomotion function, especially those with low and
incomplete lesions (Nene et al., 1996; Scivoletto et al., 2014).
Technological advances, such as robotic exoskeletons, have
emerged as a valuable option to rehabilitate and restore gait in
paraplegic patients beyond traditional means such as crutches,
walkers, and orthoses. These robotic systems can range from
clinical devices to bioinspired wearable ones. Firstly, weight-
suspended robotic systems with a treadmill, such as the Lokomat
(Hocoma Medical Engineering Inc, Zurich, Switzerland) and
the Gait Trainer (GT II, Rehastim, Berlin, Germany), have
demonstrated their rehabilitative efficacy, but they are generally
expensive and cannot be used for motor substitution (Wirz et al.,
2005). Secondly, robotic walking devices with balance control,
such as the REX (REX Bionics Ltd), can be used by people
with high SCI (up to C4/5 level), as they completely substitute
their gait function, but it may be too bulky and inefficient for
those patients whomaintain certain balance control. Hence, these
systems can be more appropriate for assistive purposes only.
Thirdly, ambulatory exoskeletons, such as the ReWalk (Bionics
Research Inc) and the H2 (Technaid S.L., Spain), are designed
to assist leg movement, but they can only be used by patients
with lower-limb weakness who still can maintain balance. These
systems are of particular interest, as they can be controlled using
assist-as-needed paradigms, which may be more effective than
other approaches for rehabilitation and functional compensation
of patients with paraplegia and also for stroke sufferers (Pons and
Torricelli, 2014).

In this context, there is a growing interest toward the
development of robotic devices controlled by brain–machine
interfaces (BMI) to assist and rehabilitate gait function
(Pfurtscheller et al., 2006; Fitzsimmons et al., 2009; Alam et al.,
2014). The contingent link between neural commands and
the peripheral feedback given by means of a rehabilitation
device can promote neuroplasticity (Mrachacz-Kersting et al.,
2012). Whereas, a BMI constitutes a natural interface that
provides an easier and more intuitive control of assistive devices
(Millán et al., 2010). Non-invasive technologies such, as the
electroencephalogram (EEG), constitute a relatively cheap and
portable option to build these BMI systems (Wolpaw et al., 2002).
The use of brain-triggered rehabilitative technologies is of special

relevance for incomplete SCI patients. These individuals can
maintain some intact fibers below the injury level, and recent
studies have shown how these spared pathways can be reinforced
by the continuous association between the activation of the brain
during the intention of movement and the stimulation of the
paralyzed limbs (Jackson and Zimmermann, 2012).

The closed-loop control of walking exoskeletons using
neural commands presents two main challenges. The first
one corresponds to the development of robust and reliable
BMIs to decode neural signals associated with gait movement
intention. In contrast to upper-limb, which is generally the
focus of BMI research for motor rehabilitation/restoration of
paralyzed patients (Lebedev and Nicolelis, 2006; Millán et al.,
2010), decoding of gait has not been so deeply studied. The
recording of neural signals during walking might be affected
by motion artifacts, which could bias the decoding and lead
to misinterpretation of the neural dynamics associated with the
movement (Castermans et al., 2014), although there is evidence
showing that the influence of these artifacts can be reduced by
using carefully designed set-ups (Nathan and Contreras-Vidal,
2016). Nonetheless, recent studies with healthy subjects have
shown that EEG neural correlates can be used to decode the gait
initiation before it occurs (Jiang et al., 2015; Sburlea et al., 2015)
and to distinguish between different walking directions (Velu
and de Sa, 2013). However, pathologies like SCI entail a brain
reorganization, which may complicate the decoding of motor
information (López-Larraz et al., 2015a). Hence, it is important
to validate how BMI systems can be applied effectively in these
patients. The EEG signals of a paralyzed patient during his/her
attempt to move the legs could be decoded without any overt
movement and used to trigger the movement of an exoskeleton
or prosthesis that assists his/her walking. The current state of
the art in non-invasive BMI technology does not allow for
precise decoding of fine limb kinematics. Therefore, an accepted
approach in the literature is to have a shared control paradigm
in which the brain activity is used to trigger the movement of
a robot/prosthesis that can autonomously perform a functional
task (e.g., walk forward two steps; Millán et al., 2010; Rohm et al.,
2013).

The second challenge arises from the complexity of the set-up
required to control a device for gait assistance with neural signals.
In the recent years, pilot studies have shown how BMIs have
been used to control weight-suspended robotic and prosthetic
systems (Do et al., 2013; King et al., 2015). Furthermore, robotic
exoskeletons with balance control have also been controlled using
brain signals (Kilicarslan et al., 2013; Kwak et al., 2015). All these
studies are performed with devices that support balance, which
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minimizes fall risks, and three of them demonstrated successful
control with SCI patients (Do et al., 2013; Kilicarslan et al.,
2013; King et al., 2015). However, the control of ambulatory
exoskeletons with a BMI presents additional issues compared
to those systems with balance support. Even if it is used by
patients with a relatively good condition (e.g., legs weakness
and/or certain degree of balance control), they are required to
maintain the balance by holding on to a walker or to parallel bars,
and to focus on the intention of motion to command the BMI.
This kind of set-up would permit the development of assist-as-
needed rehabilitative interventions for such patients, which may
lead to higher motor improvements (Cai et al., 2006). Hence,
the validation of a BMI to control an ambulatory exoskeleton
requires the design of a protocol with special considerations, such
as safety, timings and control of patients’ fatigue levels during the
experiments.

This paper presents an integrated system for the closed-
loop control of an ambulatory exoskeleton with a BMI. The
exoskeleton works under an assist-as-needed control paradigm,
which can be adapted to the capabilities of each patient and
assist him/her only to the extent he/she needs. The EEG neural
correlates of movement are used to decode the intention of gait
initiation, which is used as a volitional control signal for the
exoskeleton movement. The feasibility of the proposed system
is validated with two sets of experiments. The first experiment
shows the viability of the whole set-up with three healthy subjects.
The second experiment demonstrates the viability of the system
in a realistic clinical environment, involving four incomplete
SCI patients. An experimental protocol is proposed to operate
the BMI in an ecological set-up, with an emphasis on patients’
safety. Decoding performance, exertion levels, and satisfaction
and usability scores were measured as indicators of the viability
of the system for clinical applications.

2. MATERIALS AND METHODS

2.1. Participants
Three able-bodied subjects and four SCI patients participated in
the study. Demographic data of both the healthy subjects (H)
and the patients (P) can be seen in Table 1. The SCI patients
were hospitalized at the Hospital Nacional de Parapléjicos, in
Toledo (Spain), where all the experimentation sessions took
place. The inclusion criteria for the patients were: (1) SCI with
any lesion level, ASIA C or D with gait prognosis; (2) patients
in walking rehabilitation; (3) patient’s balance allows standing
between parallel bars; (4) no orthostatic complications during
standing; (5) upper-limb strength tomanage a walker or crutches,
and to transfer from the wheelchair to a chair; (6) age between
18 and 60 years; and (7) height 1.50–1.95 m and weight up
to 90 kg. The exclusion criteria were: (1) inability to stand in
upright position for at least 15 min; (2) any surgery in the
previous 3 months; (3) spasticity higher than 3 in the Modified
Ashworth Scale (Bohannon and Smith, 1987) in any of the lower-
limb muscles; (4) previous/current lower-limb bone fracture;
(5) ulcers or sores in areas of contact with the exoskeleton
and/or electrodes; (6) previous/current history of cardiovascular

disease of any kind or exercise contraindications; (7) upper-
limb pain that limits weight bearing on crutches/walker/parallel
bars; (8) significant upper/lower extremity discrepancies; (9)
uncontrolled autonomic dysreflexia; (10) pregnancy; and (11)
cognitive impairment of any kind. The selected patients met
all inclusion and no exclusion criteria. All the subjects were
duly informed about the study, and all of them gave written
consent before the first session. The experimental procedure was
approved by the Ethics Committee of the Hospital Complex of
Toledo (Spain) (C.E.I.C. 31/02-2014).

2.2. Clinical Assessment
We evaluated the clinical condition of the SCI patients before
their enrollment in the study. Their injury severity, lower
extremity strength, and mobility were measured using a set
of clinical tests, according to the standardized ASIA clinical
exams (Marino et al., 2003). The lower extremity motor score
(LEMS) was used to measure muscle strength, with 5 key
muscles examined in each leg: hip flexors, knee extensors, ankle
dorsiflexors, long toe extensors, and ankle plantar flexors. The
grading system for the muscle strength goes from 0 to 5 (0 =

absence of muscle contraction, 5 = normal active movement
with full range of motion against full resistance). The cumulative
score for the lower extremities ranges between 0 and 50. Modified
Ashworth score was used for lower-limb spasticity measurement,
ranging from 0 (no spasticity) to 4 (affected part rigid in flexion
or extension). Only patient P4 presented a very slight spasticity
(score 1) in the right ankle, below the level established in the
exclusion criteria. Walking index for spinal cord injury (WISCI
II) was used to quantify the degree of assistance required by
the patient during normal walking and 10 Meter Walk Test (10
MWT) to assess walking speed (Ditunno and Ditunno, 2001;
van Hedel et al., 2005). WISCII II grading system ranges from 0
(patient is unable to stand and/or participate in assisted walking)
to 20 (ambulates with no devices, no braces and no physical
assistance). According to the recommendations of 10 MWT,
walking speed was calculated discarding the 2 initial and the
2 final meters, to only consider walking at a constant speed.
Distance (6 m) was divided by the time measured to obtain gait
speed (m/s). The values for each patient can be found in Table 2.
Walking tests were performed using as little assistance as possible
to ensure patient safety.

2.3. Experimental protocol
The present study was divided into two stages. The first stage
aimed at validating the technology under a well-controlled
scenario. This was done by performing experiments with healthy
subjects and evaluating if the BMI could be effectively used
to close the loop and control the ambulatory exoskeleton. The
second stage sought to demonstrate that the proposed system
and protocol could be safely used in a clinical environment.
Experiments with SCI patients were conducted, in which the key
point was to measure parameters such as exertion and fatigue
levels, as well as usability and satisfaction scales.

The experimental protocol consisted of familiarization
sessions and BMI sessions. The experiments with the healthy
subjects included the familiarization and the BMI sessions in
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TABLE 1 | Demographic information of both groups: healthy subjects and SCI patients.

Age Height Weight Injury Time since

ID (years) Sex (meters) (kilograms) level ASIA injury (months) Etiology

H1 31 Male 1.74 70 – – – –

H2 29 Male 1.77 73 – – – –

H3 29 Male 1.75 74 – – – –

P1 30 Male 1.85 90 L1 C 12 Traumatic

P2 24 Male 1.92 57 L1 C 24 Traumatic

P3 21 Male 1.80 76 T11 C 5 Traumatic

P4 49 Female 1.60 57 T12 C 11 Traumatic

TABLE 2 | Clinical scores obtained by the patients before the experiments.

ID LEMS WISCI II (Technical aid) 10 MWT (m/s)

P1 15 9 (walker and braces) 0.144

P2 20 12 (two crutches and braces) 0.287

P3 17 9 (walker and braces) 0.162

P4 28 15 (one crutch and braces) 0.081

1 day. The experiments with the SCI patients required one
familiarization session and two BMI sessions in 3 separate days.
The set-up included: the EEG equipment (only for the BMI
sessions) with the amplifiers in a backpack carried by the subject,
the exoskeleton attached to the subject’s legs, and a walking
aid to help keeping balance (Figure 1). In addition, a trolley
table was used to carry the computers that processed the EEG
signals and controlled the exoskeleton. Crutches, a walker, and
parallel bars were tested as walking aids. Crutches did not provide
enough balance control for the patients and were discarded.
The walker, which is commonly used in gait rehabilitation by
these patients, worked well with the healthy subjects. However,
during some preliminary tests with the patients, we realized
that they had difficulties to move it while walking with the
exoskeleton. Therefore, all the SCI patients performed the BMI
sessions using parallel bars, whereas the healthy subjects used
the walker. The exoskeleton joints remained blocked whenever
it was not in movement in order to partially support patients’
weight.

The familiarization sessions allowed the subjects to get
used to the protocol timings and the exoskeleton movements.
On these sessions, one experimenter triggered the movements
of the exoskeleton manually, warning the subject before
every movement. For the healthy subjects, these sessions
consisted of 5–10 min walking with the exoskeleton. For
the patients, the sessions took between 20 and 30 min, in
which 2 clinicians monitored every movement and informed
the patient about the protocol and how to interact with the
exoskeleton. If required, these sessions were repeated until
both the patient and the clinicians confirmed that the patient
was accustomed to the system, and ready for the first BMI
session.

The BMI sessions consisted of screening blocks and closed-
loop feedback blocks. Given the nature of the set-up, a cue-guided
BMI was proposed, in which the EEG signals were classified
asynchronously. Hence, the exoskeleton moved as soon as the
intention of movement was decoded, but only during specific
periods of time, avoiding sudden and unexpected movements
that may result in patients’ falls. The participants performed
3 or 4 screening blocks of 20 trials each, which were used
to calibrate the BMI decoder. During this screening phase,
the participants were standing, wearing the exoskeleton, and
holding the corresponding walking aid (i.e., the walker for the
healthy subjects, and the parallel bars for the patients). Neither
the healthy subjects nor the patients could actually move the
legs during the screening blocks (as the exoskeleton joints
were blocked). Therefore, in both cases, we consider the action
performed as a movement attempt and not as a movement
execution. The screening blocks were composed of rest and
movement attempt (MA) intervals. The rest intervals had a
random duration between 4 and 7 s. An audio cue indicated
the start of the MA interval, which lasted 3 s. The participants
were instructed to attempt to move their right leg, as if they
started walking, immediately after they heard the audio cue.
The rest of the time, they were asked to stay relaxed and
move as little as possible. During the MA interval, participants
were explicitly asked to avoid compensatory movements with
the rest of the body, especially with the hip, and to attempt
to move their right leg only. The closed-loop feedback blocks
were composed of trials with four intervals: (i) “Rest,” (ii)
“Preparation,” (iii) “Movement Attempt,” and (iv) “Movement.”
The experiments with healthy subjects included 3 blocks of 20
trials each (amounting to 60 trials), in order to acquire enough
movements to have a good estimation of the performance of
the BMI system. In the experiments with the SCI patients, there
was a variable number of trials, and they were asked to reach
a distance of 10 m (i.e., the length of the parallel bars), which
corresponds to around 20–25 gait cycles. During the “Rest” state
(5 s), the subjects were not required to perform any task, but
just to relax after the previous trial. After that, a low tone was
played, whichmarked the beginning of the “Preparation” interval
(3 s), during which they were instructed to relax and be prepared
for the upcoming cue. A high tone denoted the start of the
“Movement Attempt” interval (maximum 3 s), in which they
were asked to attempt to move their right leg in the same way
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FIGURE 1 | Snapshots of experimental sessions performed by a healthy subject (left) and a SCI patient (right). The EEG cap is connected to the amplifiers

that are carried in the backpack. These amplifiers are connected with long cables to a computer placed on the trolley table. The computer processes the EEG signals

and sends decoder outputs to the exoskeleton controller, which sends to the joints the commands to move.

they had done in the screening blocks. If the BMI detected the
intention to move at any time during these 3 s, the system started
the “Movement” interval, in which the exoskeleton controller
unblocked the joints and moved for one gait cycle: one step with
right leg and one with left leg (6 s). Otherwise, after the 3 s, a
new trial started in rest state. Supplementary Video 1 shows some
trials of subject P1 triggering the exoskeleton with his motor
intention.

For safety reasons, every trial required that the experimenter
explicitly pressed an activation button during the “Rest” or
“Preparation” intervals. If that button was pressed, the BMI
decoder started sending its outputs to the exoskeleton controller.
This would trigger the start of the gait cycle if the patient
attempted to move during the “Movement Attempt” interval. If
the button was not pressed, the exoskeleton did not move even if
the participant attempted to move his/her leg. This mechanism
was included in order to avoid starting a movement with the
patient being in an unsafe position after the previous gait cycle,
and to skip trials to regularly ask the patients about their fatigue
levels. When required, the patients could sit for a few minutes to
rest, and the trials continued when they confirmed that they were
ready.

Due to the complexity of the set-up, the therapist–patient
interaction was integral for the correct execution of the BMI
experiments. Apart from being the control signal for the
exoskeleton, the BMI was used by the therapist to guide the
patient during the executions (Pichiorri et al., 2011). A therapist
interface was designed to show the experimenter information
of the BMI decoder output and the patient’s EEG activity
in real-time. The experimenter could, for instance, ask the
patient to relax if the BMI was detecting movement commands
during periods in which the patient should rest (e.g., due to
excessive movements required to keep balance) or ask the patient
to concentrate further when the BMI was not decoding any
movement when they were required. In addition, an option to
send manual triggers was included in the therapist interface
in order to manually start exoskeleton movements, and so,
reduce frustration when the BMI repeatedly failed to decode the
movements.

2.4. EEG Acquisition
The EEG was recorded using a commercial g.Tec system (g.Tec
GmbH, Graz, Austria), with 32 channels placed at AFz, FC3,
FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2,
CP4, FP1, FP2, F7, F3, Fz, F4, F8, T7, T8, P7, P3, Pz, P4, P8,
O1, and O2 (according to the international 10/10 system). The
ground and reference electrodes were placed on FPz and on the
left earlobe, respectively. The EEG was digitized at a sampling
frequency of 256 Hz and power-line notch-filtered to remove the
50 Hz line interference. The amplifiers connected to the EEG cap
were carried in a backpack by the subject. The amplifiers were
connected via long cables to a laptop placed on the trolley table.

2.5. Exoskeleton
The exoskeleton used to assist gait was a 6 degrees of
freedom wearable lower-limb orthosis with anthropomorphic
configuration (Bortole et al., 2015). It included three joints for
each leg: hip, knee, and ankle, each of which was powered
by a DC motor coupled with a harmonic drive gear. The
exoskeleton was equipped with potentiometers and strain
gauges to measure the joint angles and the human–robot
interaction torques. Its control was conceived to work under
an assist-as-needed paradigm in order to make rehabilitation
more challenging for the patients. A predefined trajectory,
obtained from healthy subjects, was used as the desired gait
pattern. The controller updated the stiffness values in real
time according to the subject’s performance in order to assist
him/her just to the extent he/she needed (Rajasekaran et al.,
2015). The exoskeleton was connected with long cables to its
controller and to the power supply, which were on the trolley
table.

2.6. EEG-Based Movement Intention
Decoder
After recording the screening blocks and before the closed-
loop blocks, the BMI classifier was trained to distinguish
between rest and movement attempt (MA) classes. The BMI
decoder was based on the one proposed in López-Larraz et al.
(2014). The decoding of movement attempt was dependent
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on the combination of two EEG movement correlates: the
event-related desynchronization (ERD) of sensorimotor rhythms
(Pfurtscheller and Lopes da Silva, 1999) and the movement-
related cortical potentials (MRCP) (Shibasaki and Hallett, 2006).
Signals from the screening datasets were trimmed down to 7-s
trials (−4 to 3 s from the MA audio cue).

2.6.1. Artifact Removal
Before training, an automatized procedure based on z-scores was
applied to eliminate the trials containing artifacts (López-Larraz
et al., 2014). For each trial, the power in delta (1–4 Hz), theta (4–
8 Hz), alpha (8–12 Hz), and beta (12–40 Hz) frequency bands,
as well as the trial variance and the maximum amplitude were
computed. Trials that went over a threshold set at 2.5 standard
deviations of themean in any of these parameters were discarded.
Statistical methods like this are especially useful for clinical set-
ups as the one presented here, since they do not require human
supervision and can be used quickly to eliminate the artifacts
before training the BMI (Nolan et al., 2010; Maeder et al., 2012).
In principle, this method should be able to remove the most
common types of artifacts that can be found in a set-up like this.
For instance, analyzing the power in delta band and the signal
amplitude may serve to remove low-frequency motion artifacts,
whereas analyzing the power beta and signal variance could help
to get rid of trials contaminated with EMG artifacts.

For the closed-loop blocks, we considered two options: (1)
having an online system to detect EEG artifacts and stopping the
BMI every time that it detected one; or (2) considering that the
possible artifacts would not highly influence the performance of
the system. Given that we trained the BMI with clean trials, the
existence of artifacts during test should not deceitfully increase
the performance, and at most, they would decrease it. Since
we considered that this is not worse than stopping the BMI
every time that an online artifact detector detects an artifact, no
artifacting was performed during the closed-loop trials.

2.6.2. Feature Extraction and BMI Training
Features were computed from the clean trials using a 1-s long
window with a sliding step of 250 ms. Features corresponding to
the rest and MA classes were computed on the [−3,−1] s and [0,
2] s intervals, respectively (with 0 being the time when the high
tone indicating the start of the MA interval was played). On these
windows, the features were computed as follows:

• ERD features were calculated after applying a small Laplacian
filter to the frontocentral, central, and centroparietal EEG
channels. After that, a 16th order autoregressive model with
a frequency resolution of 1 Hz was used to obtain the power
values in the frequency range [7–25] Hz.

• MRCP features were calculated after subsampling the EEG
signals to 64 Hz and applying a bandpass filter, [0.1–1] Hz, to
them. Then, a common average reference (CAR) was applied
to the channels FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3, CP1,
CPz, CP2, and CP4, and their amplitudes were added to the
feature vectors.

For each time window, 1192 features were extracted. Sparse
discriminant analysis (SDA) was used to select the 30 most

discriminant non-redundant features and as a linear classifier
(Clemmensen et al., 2011; López-Larraz et al., 2014).

2.6.3. Closed-Loop BMI
During the closed-loop blocks, the EEG was processed
continuously. A sliding window was computed every 62.5 ms and
its features were extracted following the same procedure detailed
in Section 2.6.2, and the classifier trained with the screening
blocks generated a new BMI output. For each sliding window,
the BMI classifier determined if the signal corresponded to rest
or to MA classes. In order to ensure a consistent brain activation,
the BMI generated a movement trigger when five consecutive
windows of MA class were detected (Ramos-Murguialday et al.,
2013). If the BMI was active (i.e., if the experimenter pressed the
activation button during the “Rest” or “Preparation” intervals
of a trial, see Section 2.3), the movement trigger was sent to the
exoskeleton controller; otherwise, the trigger was not sent. The
controller ignored those triggers that arrived during the “Rest”
and “Preparation” intervals to avoid starting an unexpected
movement, which could make the patients fall. Therefore, on
each feedback trial, the exoskeleton moved if the experimenter
activated the BMI and the BMI generated a trigger during the
“Movement Attempt” interval. In addition, the exoskeleton
could also be moved if the experimenter sent a manual trigger
during the “Movement Attempt” interval.

2.7. Exertion and Satisfaction Assessments
In order to evaluate the feasibility of the system for clinical
applications, the patients were assessed with exertion and
satisfaction scales.

The exertion level was assessed three times on each BMI
session: before starting (i.e., when the patient was still sitting on
the wheelchair), after the screening blocks, and after the closed-
loop blocks. The Borg scale was used with values ranging from 6
(“very, very light”) to 20 (“very, very hard”) (Borg, 1970).

After the last BMI session, the patients were asked to evaluate
how satisfied they were with the system (i.e., the complete set-
up, including the exoskeleton and the EEG system) by using
a modified version of the QUEST (Quebec user evaluation of
satisfaction with assistive technology) scale (Demers et al., 2002).

3. RESULTS

3.1. Movement Attempt EEG Correlates
The features used by the BMI to decode the attempts of
movement were based on two well-studied EEG correlates: the
event-related desynchronization (ERD) of sensorimotor rhythms
and the movement-related cortical potentials (MRCP). Figure 2
shows a summary of these correlates computed using the signals
recorded in the screening blocks after removing artifactual trials
(see Section 2.6.1). For the SCI patients, the screenings from
both BMI sessions were combined. Following the methodology
proposed in López-Larraz et al. (2014), we used optimal spatial
filters (OSF) to visualize the ERD and the MRCP activities by
combining the electrodes placed over the motor cortex. Activity
recorded on electrodes FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3,
CP1, CPz, CP2, and CP4 was combined with an optimization
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FIGURE 2 | Significant ERD and MRCP for each subject in the channels obtained by applying optimized spatial filtering. For each of the 7 subjects (the 3

healthy subjects on top and the 4 patients at the bottom), the left plot shows the ERD, and the right plot shows the MRCP. For the ERD, the x-axis correspond to the

time interval [−4, 3] s, and the y-axis represent the frequency range [1–50] Hz. For the MRCPs, the x-axis correspond to the time interval [−4, 3] s, and the y-axis

represent the MRCP amplitude [−5, 5] µv.

algorithm, which computed the coefficients that maximized the
signal-to-noise ratio of both ERD and MRCPs (Graimann and
Pfurtscheller, 2006; Niazi et al., 2011).

Two out of three healthy subjects (H1 and H2) showed
strong ERD and MRCP activations, where as H3 showed weak
activations of both correlates. For the SCI patients, the ERD
patterns of P4 were similar to the ones of H1 and H2; P1 and P2
showed smoother ERD and only in the beta band; and P3 showed
no ERD at all. Regarding the MRCPs, P1 and P4 showed similar
morphology to H1 and H2, whereas P2 and P3 presented more
noisy activity.

3.2. BMI Performance
On average, 14.58% of the trials were rejected before training the
BMI decoder (15 ± 1.25% for the healthy subjects and 14.43 ±

2.62% for the patients). Figure 3 shows one representative trial
for one healthy subject (H1) and two patients (P2 and P3). For
each subject, the following information is shown: data of 3 EEG
channels (i.e., C3, Cz, and C4), the decoder output, the triggers
generated (i.e., the BMI triggers and the manual triggers), the
system states during the trial, the angle of both knees, and the
interaction torques measured by the strain gauges of both knees.
As can be seen in the left plot, a BMI trigger generated out of
the “Movement Attempt” state does not start any movement of
the exoskeleton. When it is generated in the appropriate state,
the “Movement” period starts, first with the right leg and then
followed by the left leg. In the right plot, the BMI did not
detect any movement. Instead, the experimenter sent a manual
trigger to start the “Movement” phase. The movement of the

exoskeleton seems to cause relatively large motion artifacts in the
EEG, especially in the patients (center and right plots).

Decoding results for the healthy subjects are presented in
Table 3, and for the SCI patients in Table 4. Each of the healthy
subjects performed 60 trials (3 blocks of 20 trials each). On
average, 84.44% of the trials were correctly decoded, generating
a walking movement with the exoskeleton. For the correctly
decoded trials of the three subjects, the average time between the
auditive cue and the beginning of the exoskeleton movement was
1.07± 0.63 s.

Given the complexity of the set-up and the unfamiliarity
of the patients with the technology, they were asked to attend
two BMI sessions. In the first session, which can be considered
as a BMI-familiarization session, they were carefully informed
about how the BMI system works. Then, they performed the
screening blocks and a few closed-loop trials to familiarize with
the whole system and protocol. On the second session, patients
also performed screening blocks, and subsequently, they started
with the closed-loop blocks until reaching a distance of 10 m.

Patient P1 was the only one who performed two successful
BMI sessions (i.e., reaching the 10 m distance). In the first one, he
achieved a high performance (84%), whereas in the second one,
it dropped to 55.56%. For patients P2 and P4, the first session was
prematurely interrupted, but both of them performed a successful
second session, with more than 85% of decoded trials. For patient
P3, performances were low in both sessions, especially in the
second one, in which the experimenter had to repetitively use the
manual trigger due to the lack of movement attempt commands
decoded by the BMI. Notice that the decoding performances
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FIGURE 3 | Time series of three representative trials for healthy subject S1 (left), and patients P2 (center) and P3 (right). The three first lines correspond to

three EEG channels located over the motor cortex: C3, Cz, and C4. The decoder output indicates the classifier label (Rest or MA) provided for each 1-s window in real

time. The BMI triggers were generated only when five consecutive classifier outputs corresponded to MA class, after being in Rest class (they were ignored when

generated out of the “Mov.” Attempt period–see left plot). The manual triggers correspond to the movements generated by an explicit command sent by the

experimenter (see right plot). The states of the system during a normal trial were: “Rest,” “Preparation,” “Movement Attempt,” and “Movement.” The right and left knee

angles (in a normalized scale) indicate the flexion of the knee joints of the exoskeleton. The right and left knee interaction torques (in a normalized scale) measure the

forces performed by the subjects in the strain gauges located on the knee joint of the robot. The vertical lines indicate the change of state of the system. The red,

green and blue lines correspond to the beginning of the “Preparation,” “Movement Attempt,” and “Movement” phases, respectively.

presented in Table 4 are computed as the ratio between the
number of trials that the BMI correctly decoded and the total
number of trials in which the experimenter did not activate
the exoskeleton manually. The average decoding accuracy of the
successful sessions (i.e., P1 sessions 1 and 2; P2 session 2; and P4
session 2) was 77.61± 14.72%, and their average time was 1.35±
0.71 s.

Notice that the decoding times reported in Tables 3, 4

correspond to the average time that triggering the movement
took with respect to the presentation of the audio cue that
indicated the beginning of the “Movement Attempt” interval.
Given that different types of delays have an influence on this
time (e.g., computational, cognitive, and/or physiological), we
also evaluated the average decoding time with respect to the
negative peak of the MRCPs. These peaks have been observed
to be aligned with the beginning of the muscular activity (Niazi
et al., 2011), and hence, may constitute a better indicator of when
the subjects started the attempt of movement. For the healthy
subjects, the average MRCP negativity appeared 1.02 ± 0.02 s
after the auditory cue (Figure 2, first row). Hence, the average
decoding time was 50ms after the MRCP peak. For the 3 SCI
patients who performed successful BMI sessions (i.e., P1, P2, and
P4), the MRCP negativity appeared on average 1.37± 0.20 s after
the cue. Therefore, the average decoding time for the patients was
20 ms before the occurrence of their MRCP peak.

TABLE 3 | Decoding results of healthy subjects.

Number Number of Decoding Decoding time (s)

ID of trials gait cycles accuracy (% ) mean ± std

H1 60 53 88.33 1.26 ± 0.53

H2 60 58 96.67 0.90 ± 0.60

H3 60 41 68.33 1.09 ± 0.76

Given is the number of trials performed, the number of trials in which the BMI decoded

the intention of motion (resulting in a walking movement), the decoding accuracy (i.e., the

percentage of correctly decoded trials), and the time between the auditive cue and the

exoskeleton movement.

Although the proposed protocol impeded that the exoskeleton
could start moving during “Rest” and “Preparation” time
intervals, we analyzed the offline movement triggers that were
generated by the BMI in those intervals. To that end, we
calculated the number of trials in which, at least, one movement
trigger was generated during non-movement periods. For the
healthy subjects, movement triggers were generated in 52.22 ±

16.69% of the trials during the “Preparation” interval, and in
66.67 ± 13.02% of the trials during the “Rest” interval. For
the successful sessions with the patients, movement triggers
were generated in 40.45 ± 16.98% of the trials during the
“Preparation” interval, and in 63.42 ± 14.15% of the trials

Frontiers in Neuroscience | www.frontiersin.org 8 August 2016 | Volume 10 | Article 359

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


López-Larraz et al. Control of an Ambulatory Exoskeleton for Paraplegics with a BMI

TABLE 4 | Decoding results of SCI patients.

Session Number Number of Number of Decoding Decoding time (s)

ID number of trials gait cycles manual triggers accuracy (%)* mean ± std

P1
1 25 21 0 84.00 1.08 ± 0.61

2 40 20 4 55.56 1.59 ± 0.76

P2
1 2** 2 0 100.00 2.69 ± 0.01

2 28 24 0 85.71 1.54 ± 0.84

P3
1 16 7 2 50.00 1.68 ± 0.67

2 25 2 14 18.18 0.50 ± 0.52

P4
1 6*** 5 0 83.33 1.59 ± 0.97

2 27 23 0 85.19 1.19 ± 0.51

For each patient and session, given is the number of trials performed, the number of trials in which the BMI decoded the intention of motion (resulting in a walking movement), the

number of manual triggers sent by the experimenter, the decoding accuracy (i.e., the percentage of correctly decoded trials), and the time between the auditive cue and the exoskeleton

movement.

*The decoding accuracy was calculated as the number of decoded trials divided by the number of trials in which the experimenter did not send a manual trigger:

%Acc =
#Gait cycles

#Trials − #Manual triggers × 100.

**This session was prematurely interrupted due to technical problems with the exoskeleton.

***This session was prematurely interrupted due to temporal restrictions of the participant.

during the “Rest” interval. We performed 3 statistical tests to
compare the percentages of trials with correct triggers during
the “Movement Attempt” period (true positives) and with
erroneous triggers generated during “Rest” (false positives during
“Rest”) and “Preparation” (false positives during “Preparation”)
periods. For each measure, a single vector was generated by
concatenating the percentages of the three healthy subjects and
the four successful sessions of the patients, and paired Wilcoxon
signed rank tests were used to measure significant differences.
The number of true positives was significantly higher than the
number of false positives generated during the “Preparation”
interval (p < 0.05), although true positive was not significantly
higher than the number of false positives during the “Rest”
interval (p = 0.08). In addition, the number of false positives
during the “Rest” interval was significantly higher than the ones
generated during the “Preparation” interval (p < 0.05).

3.3. Features
As an automatic feature selection algorithm was used during
the experiments, we performed a post-hoc analysis to evaluate
the selected features for each participant. Figure 4 shows the
features selected by the SDA algorithm for the healthy subjects
and the patients. For the patients, the reported results correspond
to the second BMI session. As can be seen, more frequency
(ERD) than temporal (MRCP) features were consistently selected
in both groups. For the ERD features, pairs in the whole
channel-frequency space were selected for all the subjects.
Central and centroparietal electrodes were more consistently
selected than frontocentral ones. In addition, certain subjects
showed a higher density of features allocated in specific regions
of the channel-frequency map. For instance, for subject H1,
more features were selected in the alpha band (8–12Hz),
whereas for subject H2, there were more in beta band (15–
25 Hz). MRCP features were more scarcely chosen by the

algorithm, although in all of the participants, some of them were
selected.

3.4. Exertion and Satisfaction Assessments
Table 5 shows the values of the Borg scale given by each patient
on each session. At the beginning of the session, all the patients
reported the minimum exertion level. As described above, each
patient performed 3 or 4 screening blocks (each of which lasted
around 3 min), resting between blocks as long as they required.
After these screening blocks, all the patients reported an increase
between 3 and 5 points on their exertion level. Subsequently, they
started the closed-loop blocks, in which they walked a maximum
of 10 m with the exoskeleton. Here, exertion levels slightly
increased for 1 or 2 points in most cases. The only exceptions
were P2 in session 1 (which just performed 2 gait cycles due
to technical problems), who did not report any increase after
screening; and P3 in session 2, who increased 5 points. None of
the values of the Borg scale exceeded 17, which is considered as
the limit value for maximal exertion.

The results of the satisfaction test are presented in Table 6.
The highest score for the QUEST scale was obtained in the
questions about safety and security, and easiness of use (4.25 on
average), whereas the lowest was obtained by the question about
comfortability (2.5 on average).

3.5. Exoskeleton Adaptive Control
An important feature of the system introduced in this paper
was that, since we used an ambulatory exoskeleton, we could
introduce an assist-as-needed control paradigm, whichmay serve
to make the rehabilitation interventions more challenging (Pons
and Torricelli, 2014). Although it was not one of the main goals
of this study, we measured the degree of assistance that the
control strategy provided to healthy subjects and patients. The
gait assistance for the healthy and SCI individuals is provided
based on the adaptive control model presented in Rajasekaran
et al. (2015). The adaptive control applies an efficient stiffness to
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FIGURE 4 | Features selected by the SDA algorithm for each subject. Upper/lower panel corresponds to the features of the healthy subjects/patients. The left

part of each panel shows the ERD features that were selected as channel-frequency pairs. The right part of each panel shows the MRCP features that were selected

as channel-time pairs.

each joint, which is computed based on the interaction torques
and position error of each joint. Hence, the assistance level is
defined based on the variation in the stiffness parameter. For
healthy subjects, the stiffness values for hip, knee, and ankle
were 60 ± 4 Nm/deg, 60 ± 2 Nm/deg, and 60 ± 5Nm/deg,
respectively. For the SCI patients, the stiffness for hip, knee, and
ankle were 80± 2 Nm/deg, 82± 5 Nm/deg, and 80± 5 Nm/deg,
respectively.

4. DISCUSSION

The present study proposed a novel system BMI with an
ambulatory walking exoskeleton. Its feasibility has been shown
with experiments performed by three healthy subjects and four
spinal cord injury (SCI) patients. The BMI decoded the brain
activity related to the intention of movement and sent the
commands to the robotic system. The robot moved for two steps
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(one with the right and one with the left leg), using an assist-as-
needed strategy, which assisted the patients only to the extent
they needed. The degree of assistance was shown to be higher
for the SCI patients, which could not perform the movement
autonomously, compared to the healthy subjects, who did not
have to make a high effort to follow the exoskeleton during its
walkingmovements. This is, to the best of our knowledge, the first
study in which a walking exoskeleton with no weight or balance
support is controlled by incomplete SCI patients with a BMI.
This may serve as a proof-of-concept for future studies in which
a larger sample could allow the assessment of the rehabilitative
effects of this type of BMI-controlled ambulatory exoskeletons.

In spite of the fact that EEG-based BMI technology is still far
from being a practical control system for gait-assistive devices,
its applicability for rehabilitation within clinical environments
may be available in the next few years. In fact, its use has a
great potential for rehabilitation of incomplete SCI patients. In
these patients, there are still some pathways communicating
the brain and the limbs, which can support some degree of

TABLE 5 | Results of the Borg scale.

ID Session Pre session After screening Post session

P1
1 6 11 12

2 6 10 11

P2
1 6 11 11

2 6 9 10

P3
1 6 11 13

2 6 10 15

P4
1 6 10 11

2 6 10 11

For each patient and session, the exertion levels were measured when the patient arrived

(Pre session), after performing the screening blocks (After screening), and at the end of

the session (Post session). The values of this scale range from 6 (“very, very light”) to 20

(“very, very hard”).

functional recovery (Jackson and Zimmermann, 2012). The
persistent causal relationship between the brain activation during
the intention of movement and the stimulation of the limb (e.g.,
with an exoskeleton or electrical stimulation) has demonstrated
its viability to induce Hebbian plasticity in animal studies
(Jackson et al., 2006). Most BMI studies aiming to control
rehabilitative devices are focused on the upper-limb, and they
have demonstrated the possibility of controlling robotic systems
(Gomez-Rodriguez et al., 2011; Ramos-Murguialday et al., 2012,
2013; Bhagat et al., 2016) or functional-electrical stimulation
(FES) (Pfurtscheller et al., 2003; Rohm et al., 2013). For the
lower-limb, there are less examples in the literature of closed-
loop non-invasive brain-controlled systems. The group led by
Dr. Nenadic (University of California, USA) demonstrated the
BMI-based control of weight-suspended robotic (Do et al., 2013)
and FES (King et al., 2015) gait-assistance systems. Furthermore,
two recent studies have used brain signals to control the REX
(REX Bionics Ltd), a robotic system that provides weight and
balance support for patients with a high degree of gait disability
(Kilicarslan et al., 2013; Kwak et al., 2015). The system proposed
in this paper utilized an ambulatory exoskeleton, which does not
rely on any weight support beyond the walker or the parallel bars.
Hence, our approach targets patients with incomplete and lower
lesions, who can walk short distances with the help of crutches
or walkers, and who are the ones with best prognosis for gait
rehabilitation (Nene et al., 1996; Scivoletto et al., 2014).

During the screening blocks, the exoskeleton joints were
blocked, and hence, even the healthy subjects could just perform
the attempt of movement, and not an overt movement. The EEG
correlates of these movement attempts, namely the ERD and the
MRCPs, were used as features to train the BMI decoder for the
closed-loop blocks. The combination of both activation patterns
has been shown to be beneficial to improve the movement
intention decoding (Ibáñez et al., 2014; López-Larraz et al., 2014),
as it may prime the use of features from the signals with higher
degree of activation (e.g., P2 which showed a significant ERD,
but an MRCP with a low amplitude, see Figure 2). In a post-
hoc analysis, we observed that, in general, ERD features were

TABLE 6 | Results of each patient on the modified QUEST scale.

Question P1 P2 P3 P4 Mean

How satisfied are you with:

1. the dimensions (size, height, length width) of the device? 4 2 4 1 2.75

2. the weight of the device? 3 3 5 1 3

3. the ease in adjusting (fixing, fastening) the parts of the device? 2 4 4 2 3

4. how safe and secure the device is? 5 4 5 3 4.25

5. the durability (endurance, resistance to wear) of the device? 3 3 4 4 3.5

6. how easy is it to use the device? 5 3 5 4 4.25

7. how comfortable the device is? 3 2 4 1 2.5

8. how effective the device is to solve the problem for which you are using it? 4 4 4 3 3.75

9. What is your level of satisfaction with the device in general? 5 2 4 3 3.5

Total: 34/45 27/45 39/45 22/45 30.5/45

1, Not satisfied at all; 2, Not very satisfied; 3, More or less satisfied; 4, Quite satisfied; 5, Very satisfied.
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more consistently selected by the automatic feature selection
algorithm thanMRCP features. There is certain controversy with
regard to how these correlates can be affected by motion artifacts
during walking (Castermans et al., 2014; Nathan and Contreras-
Vidal, 2016). In fact, we observed that slow oscillations were
present in some trials during the movements of the exoskeleton,
especially in the patients (see Figure 3, center and right plots).
Anticipating this, we preferred to train the decoder using signals
recorded during the attempt of movement and not during
actual movement. To minimize artifacts in the training data,
we used an automatic artifact rejection method that eliminated
contaminated trials (e.g., by slow movement oscillations or EMG
artifacts). Moreover, we carefully instructed all the participants to
only perform the attempt of movement of their right leg, avoiding
compensatory movements with the rest of the body. However,
the attempt of movement of a paralyzed limb is a complex task,
especially for the paraplegic patients, who had to concentrate
on keeping balance at the same time. Therefore, in the protocol
we proposed, it is not possible to guarantee that they were only
attempting to move the right leg, as they may also be activating
arm or trunk muscles, which normally help them to move their
legs during their normal walking rehabilitation. This means that
the brain activations wemeasured in the patients may include not
only the attempt of movement of the leg but also compensations
of other body parts. Comparison of the brain activation patterns
between the groups of healthy subjects and patients was out of the
scope of this work. Firstly, because the number of participants
was small to perform an accurate neuroimaging study, and
secondly, because the set-up and task performed by each group
were slightly different (i.e., walker and attempt of movement of
a healthy limb for the healthy subjects; parallel bars and attempt
of movement of a paretic limb for the SCI patients). Nonetheless,
in terms of the brain activations, we observed that the subjects
who presented weaker brain activations during the attempt of
movement were the ones with poorer decoding performances: H3
and P3. Three of four patients had long-term injuries, between 11
and 24months. Curiously, these three patients were the ones with
best decoding performances, showing similar values to healthy
subjects, in contrast to P3, who had a 5-months injury but could
not control the BMI correctly.

SCI modifies the brain activity related to movement (Müller-
Putz et al., 2007; Castro et al., 2013; López-Larraz et al.,
2015a). Although there is a large body of literature showing
that movement intention can be decoded from EEG signals on
these patients (Pfurtscheller et al., 2003; López-Larraz et al.,
2012; Rohm et al., 2013; King et al., 2015), among others, this
neuroplastic process may affect the reliability of rehabilitative
and assistive BMI systems to be used by SCI patients. The
heterogeneity of incomplete lesions will probably result in
significant differences in the neural reorganization processes
followed by the patients’ brains (Freund et al., 2013). Hence,
an interesting research pursuit for the next years will be the
characterization of the brain changes following SCI, which
will set the basis to personalize the systems to improve their
applicability.

Regarding the decoding algorithms to detect the movement
intention, extensive research is being conducted toward the

optimization of signal processing and classification techniques
to increase BMI performance (Bashashati et al., 2015; López-
Larraz et al., 2015b). The procedure used in this work has been
previously used to decode movements of the upper-limb with
incomplete tetraplegic patients (López-Larraz et al., 2014), and
the accuracies that we achieved were similar to other recent
studies detecting gait initiation (Jiang et al., 2015; Sburlea et al.,
2015). Five consecutive windows with the classifier indicating
a motor attempt output were required to start the movement.
Although it implied a constant delay of 250 ms with respect
to the first output, this mechanism was used to ensure a
consistent brain activation and not just a spurious change that
may lead to false positive activations There is evidence stating
that short delays are beneficial to facilitate plasticity in the brain
(Mrachacz-Kersting et al., 2012), and recent studies have worked
on developing methodologies to anticipate movements or to
decode them with a short latency (López-Larraz et al., 2014; Xu
et al., 2014; Jiang et al., 2015; Sburlea et al., 2015). However,
these studies require a precise measurement of the time instant
when the movement starts in order to calibrate the BMI. Due
to the typology of the patients recruited for this study, we could
not have a reliable signal to identify the movement onset, even
measuring the muscle activity with electromyography. Therefore,
we considered that the delay induced by our methodology to
detect the movement intention could be acceptable to control the
exoskeleton, as a similar procedure has demonstrated its efficacy
for neurorehabilitation of stroke patients (Ramos-Murguialday
et al., 2013). In a post-hoc analysis, we compared the latency
of the decoder with respect to the MRCP peak negativity, and
observed that the difference was minimal (+50 ms for the healthy
subjects and −20 ms for the patients). MRCP negativity is,
in general, aligned to the onset of muscular activity during
voluntary movements (Niazi et al., 2011). Although it should
not be used as a robust measurement of decoding latency, this
metric allowed us to estimate how this time would be with
respect to the EMG activations. In any case, we consider that
more investigation is required to evaluate how different trade-
offs (e.g., priming temporal precision, or guaranteeing consistent
brain activation) can affect BMI performance and rehabilitative
outcomes.

A cue-guided BMI protocol was proposed so that the
participants always knew in which phase of the trial they
were. Furthermore, the shared control strategy implemented
implied that the exoskeleton movements were only enabled in
specific time periods (i.e., the “Movement Attempt” intervals),
ensuring that no unexpected movements could happen when
the patients were not ready. The BMI analyzed the brain
signals continuously, meaning that the movement triggers were
generated asynchronously at any time during the trial. If
these triggers were generated during the “Movement Attempt”
interval, then the gait cycle gets started, and otherwise, they were
ignored. The offline analysis revealed that movement triggers
were generated in a high percentage of trials during the “Rest”
(i.e., accommodation period, in which subjects could move and
rest) and “Preparation” (i.e., relaxation period preceding the
“Movement Attempt”) intervals. The movement attempts were
correctly decoded in 84.44 ± 14.56% and 77.61 ± 14.72% of
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the trials, for healthy subjects and patients, respectively. These
percentages were significantly higher than the number of trials
with movement triggers generated during “Preparation” interval
(52.22 ± 16.69% and 40.45 ± 16.98%), but not greater than the
trials with triggers generated during “Rest” interval (66.67 ±

13.02% and 63.42± 14.15%). Notice that in this latter period, the
participants sometimes moved to accommodate their position
after the previous trial. These numbers suggest that the use of
shared-control strategies designed to avoid non-desired robot
movements, like the one proposed in this paper, can facilitate
the integration of BMI technology in clinical set-ups (Rohm
et al., 2013). These take special relevance in gait rehabilitation
therapies, in which keeping the balance may cause movements
during rest periods that lead to more false positives.

The proposed approach aims at decoding the intention of
motion to generate a functional movement (i.e., a gait cycle)
with the exoskeleton. The repetitive association between the brain
activation related to the motion intention and the peripheral
feedback may reinforce the corticospinal circuits and promote
Hebbian synaptic plasticity (Jackson and Zimmermann, 2012).
An alternative and interesting approach for future would be
to develop a system that continuously controls the exoskeleton
movements instead of decoding the intention of movement and
triggering a predefined trajectory. This should be the preferred
strategy for assistive devices. Presumably, it may also improve
rehabilitative effects by a more consistent association between
paired firing of neurons, which may accelerate the neuroplastic
changes (Jackson and Zimmermann, 2012). To date, promising
results toward the continuous control of gait rehabilitations
devices with EEG have been shown in preliminary studies
with weight-suspended and self-supported systems (Do et al.,
2013; Kilicarslan et al., 2013; King et al., 2015; Kwak et al.,
2015). However, there are still several issues that need to be
improved before the effective implantation of this technology
in clinical practice, such as signal processing techniques or
artifacts management (Castermans et al., 2014; Nathan and
Contreras-Vidal, 2016). Some of these issues are of especial
relevance when using ambulatory exoskeletons, which require
extra considerations to improve safety, as the control strategy
implemented to deal with possible false positives. Furthermore,
the rehabilitative effects of each type of intervention still have
to be quantified with clinical studies. For now, the development
and improvement of novel interventions, like the one proposed
here, aim at increasing the number of possible interventions to
rehabilitate gait. Eventually, the clinicians will be in charge of
evaluating the risks and benefits to recommend the most suitable
interventions for each specific patient (e.g., BMI continuous
control of prosthesis, or BMI-triggered predefined movements,
as the one proposed in this study).

The main goals of this study were to test the BMI-exoskeleton
system and to propose a methodology that may be followed
in future studies combining BMI and ambulatory exoskeletons.
Therefore, the design of the protocol was a key point to be able
to validate the technology and the set-up with the patients. We
observed that a familiarization session with the exoskeleton was
necessary before the BMI session to allow the participants to
get used to the dynamics of the system. While for the healthy
subjects, a 5–10 min familiarization was enough, the patients

required a specific session due to their poor balance and walking
capabilities. Several issues have to be tailored for each patient
depending on his/her capabilities, like the cadence or the distance
between joints. Rehabilitative devices such as the one used in this
study have to prioritize patient’s safety. The recruited patients
were capable of standing and ambulating without the aid of a
harness, which required a complex set-up and additional safety
measures to avoid falls. In this respect, the experimenter played
an important role by controlling the system, which functioned
as a “dead-man’s” switch. This means that at the beginning of
every trial, the experimenter had to make sure that the patient’s
legs and feet position were appropriate and ask him/her if he/she
was ready for another step. This methodology tried to imitate
the procedure followed by physiotherapists for patients in the
early stages of gait rehabilitation with rigid leg orthoses. In
addition, the experimenter had to monitor the EEG signals and
the BMI output in order to verify that everything was correct
and guide the patients when they lost concentration or generated
artifacts by excessive movements. The use of BMI technology
to provide the therapist with objective information about the
patient’s performance has been stated to be very important for
the implantation of this type of systems in clinical environments
(Mattia et al., 2013; Asín Prieto et al., 2014). We consider that
the good results achieved in this study were, in part, due to the
therapist–patient interaction that was augmented—thanks to the
designed therapist interface.

The fatigue level of the patients was also continuously
monitored, and they could ask for a pause whenever they wanted
to relax for some minutes. This is, probably, the reason of the
relatively low levels of exertion shown by the patients when asked
at the end of the session. In terms of usability and satisfaction,
the patients were not so positive as we had expected, but they
provided very useful information that encourages the authors to
continue working to improve the wearability and comfort of the
system. Based on the high scores of the questions about safety
and security, we believe that the security measures implemented
in this study succeeded and they could be applied for future
studies. In general, two of the patients (P1 and P3) were rather
satisfied with the system, whereas the other two (P2 and P4)
reported that several issues could be improved, especially those
related with comfort and wearability of both the exoskeleton and
the EEG system. Nonetheless, all of them appraised the potential
of the combination of both technologies. Patients found the use
of the conductive gel for the EEG recording as one of the main
inconveniences, which is in line with other works (Rupp, 2014).
We believe that the potentiality of dry electrodes will have to
be explored for future prototypes to be used with patients in
clinical practice. Another important limitation of the system is
the difficulty to wear the exoskeleton, as at least two people had
to assist the process. This is an important factor to improve for
future designs of exoskeletons with clinical applicability. Ideally,
the patients should be able to wear the exoskeleton by themselves.
All of them reported their willingness to keep participating
in rehabilitation interventions with this technology, which is a
promising sign for the future of BMI-based gait rehabilitation.

It is important to mention that due to the nature of the
study and the typology of patients recruited, the number of trials
recorded with these patients was small. Nonetheless, the BMI
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performances are in line with similar works performed for the
upper- and lower-limbs. The main contribution of this work is to
validate the feasibility of a BMI system and protocol to control
an ambulatory exoskeleton for gait rehabilitation without weight
or balance support. However, this preliminary study does not
allow yet to draw conclusions about the rehabilitative potential of
this technology. Further experiments with a larger population of
patients and with a larger number of sessions will be required to
evaluate if the therapeutic potential of BMI for gait rehabilitation
approaches the traditional therapies. New challenges appear
when it comes to pursuing clinical trials integrating this kind
of novel technologies with patients. Adapting the systems for
different pathologies and personalization of the technology
will be of paramount importance for the use of BMI systems
in clinical practice (Rupp, 2014). In addition, standardizing
metrics to evaluate system performances and clinical outcomes
will facilitate the validation of BMIs for their implantation in
rehabilitative centers (Venkatakrishnan et al., 2014).
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