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We demonstrate a method to estimate key electrophysiological parameters from resting

state data. In this paper, we focus on the estimation of head-position parameters. The

recovery of these parameters is especially challenging as they are non-linearly related

to the measured field. In order to do this we use an empirical Bayesian scheme to

estimate the cortical current distribution due to a range of laterally shifted head-models.

We compare different methods of approaching this problem from the division of M/EEG

data into stationary sections and performing separate source inversions, to explaining all

of the M/EEG data with a single inversion. We demonstrate this through estimation of

head position in both simulated and empirical resting state MEG data collected using a

head-cast.

Keywords: MEG inverse problem, co-registration, Hidden Markov Model, non-stationary brain activity, Bayesian

comparison

1. INTRODUCTION

Typical MEG experimental design means that more data are recorded than analyzed. This is
because M/EEG data is of such high dimension that we must restrict ourselves to experimental
hypotheses, which focus on relatively narrow peri-stimulus time-frequency windows. Although the
data outside of these windows may be of little use to address the experimental hypothesis, it still
derives from the brain and can be useful.

Here we show how one might begin to harvest this kind of useful information from any MEG
dataset. We combine two recent studies: Woolrich et al. (2013) who showed how that it is possible
to break the MEG time series into a set of labeled stationary intervals; and Lopez et al. (2012) who
showed it is possible to estimate the head position based on stationaryMEG data. The estimation of
head-position is attractive for three reasons—firstly it is non-linearly related to the measured data
and therefore poses one of the most challenging estimation problems; secondly because using new
recording techniques based on head-casts (Troebinger et al., 2014) we would be able to test our
estimates against a ground truth; and finally because imprecise knowledge of head-location adds
significant source of unmodeled error to the M/EEG source reconstruction problem (Lopez et al.,
2012; Troebinger et al., 2014).

If the cortical location can be determined, other parameters that are also highly non-linear on
the underlying current distribution can also be estimated. From any MEG dataset then in future,
we can begin to harvest other information-like current density, cortical smoothness and so on-that
can be used to update the prior information for estimating task-based data.
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This paper proceeds as follows. We re-introduce the Hidden
Markov Model (HMM) algorithm of Woolrich et al. (2013)
to estimate stationary periods of MEG data. We then estimate
the probability that these segments of MEG data derive from
each point of the three-dimensional space of possible forward
models (or head positions). We begin with a simulation study
to demonstrate that the method works in principle. We then
test the method using real data from a 10 min resting state
recording in which the subject’s head was fixed at a known
position using a 3D printed head-cast (i.e., the empirical ground
truth was known). We then compare the head position estimate
based on our algorithms to this ground truth using either HMM
segmentation, no-segmentation, or uninformed segmentation.
We find that with all approaches we can estimate the location of
the cortical mantle from MEG resting state data alone to within
2–3 mm or approximately half the cortical thickness.

2. METHODS

The basic simulation set up is laid out in Figure 1. There are
70 s of MEG data. The simulated source level data J comprise
a single stationary source plus non-stationary contributions from
five other sources. This gives rise to non-stationary sensor level
data Y . The aim now is to blindly unpack this sensor level data in
order to estimate the most-likely forward model (head-position)
that generated it.

Figure 2 shows the manipulation of the forward model. For
some real or simulatedMEG data we make an estimate of current
flow on the cortical surface. We then displace the head with
respect to the sensors and perform the same estimate again. Each
current density estimate has an associated model evidence value
(see below), and as the data remains the same (but the head
position varies) we can directly compare model evidence values
between source reconstructions at different head positions.

The estimation of head-position from stationary MEG data
was outlined in a previous work (Lopez et al., 2012). The
inversion scheme is a parametric empirical Bayes (PEB) routine
implemented in the standard SPM framework. Empirical Bayes
estimates the most likely priors based on the data. In the MEG
case, these priors take the form of active cortical patches, which
when combined provide an optimized source covariance matrix.
One can make this estimate through a search across different
possible patch combinations (here we optimized using a greedy
search algorithm: GS, Friston et al., 2008). We then compare
different ways of partitioning the data prior to the PEB stage. We
do this in one of three ways: we assume stationarity and use all
available MEG data to give a single inversion (and single model
evidence value) per location; based on an HMM we classify the
MEG data into K distinct self-similar stationary states and invert
each of these data sections independently (providing K model
evidence values per cortical location); or we use an uninformed
segmentation to break the data into K segments (providing K
model evidence values per cortical location).

In the remainder this section, we describe how the MEG
data is partitioned into stationary segments using sensor
level data, and we then go on to describe the source

FIGURE 1 | Basic simulation set up: A stationary source of neural

activity at the left primary motor cortex is simulated (blue circle in

Panel A). Then, non-stationary confound sources were added to the forward

modeling. The confound non-sources were activated and deactivated based

on simulated HMM time courses (B). Panel (C) shows the time courses of the

neural activity (blue line) and the confound sources. After projecting this source

configuration throughout the forward model, a non-stationary MEG recording

is obtained (D).

reconstruction assumptions and the model evidence metric
we use to judge between inversions. Model evidence curves
which peak at zero displacement will have higher accuracy,
and the sharper the peak the higher the precision of this
estimate.

2.1. Dynamic MEG Segmentation Based on
Hidden Markov Models (HMMs)
Let Y = {yt : t ∈ T}, with Y ∈ R

C×T, the MEG data measured
by C sensors at T time samples, where yt ∈ R

C×1 is the MEG
sensor data at time instant t. Thus, we assume an HMM of length
T, state space dimension K ∈ N, and hidden state variables

Frontiers in Neuroscience | www.frontiersin.org 2 August 2016 | Volume 10 | Article 366

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Martínez-Vargas et al. MEG Parameters from Non-stationary Data

FIGURE 2 | Different locations given to the head position, controlled by

moving the fiducials on each axis.

S = s1, . . . , sT , where the full true posterior probability of the
model is given by:

P(S|Y) = P(s0|50)
∏

t

P(st|st−1,9)P(yt|st,2)P(2)P(5),

where P(2) and P(9) are chosen to be non-informative priors,
and P(s0|50) is the initial state probability. Furthermore, 5 ∈

R
K×K is the transition probability matrix P(st|st−1), where each

element (k, j); ∀j, k = 1, . . . ,K describes the probability of
transition from states k to j within the time-intervals t − 1 and t,
respectively. The term P(yt|st,2) is the observation model that
describes the distribution of the data for each of the states st . We
assume that the observation model for state k is a multivariate
Normal distribution 2k = {µk,6k}, where µk ∈ R

K×1 is the
mean vector, and Σk ∈ R

K×K is the covariance matrix.
In this case we selected K for both simulated and real data to

be the elbow of the singular values curve computed from the data
covariance matrix YY⊤.

We choose the most probable a posteriori state at each time
point, ut ∈ R, using Viterbi decoding (Rezek and Roberts, 2005;
Woolrich et al., 2013):

ut = argmax
∀k∈K

{P(st = k|Y)}.

The resulting HMM state time courses can then be used to pool
the data over distinct and potentially short-live periods on time
to compute time-varying data covariance matrices, as follows:

Cu(t) = C(u(t)=k) =
1

Tk−1

Tk∑

j=1

(Yk − Ȳk)(Yk − Ȳk)
⊤

where Yk comprises the time-instants for which the state k is the
most probable, Tk is the length of Yk, and Ȳk ∈ R

C×1 is the mean
over those time points.

2.2. Bayesian MEG Inverse Problem
For the sake of simplicity, we will now drop notation depicting
data from each MEG segment, and describe the inversion
procedure for any segment of magnetic field data Y . Where Y

is given by (Grech et al., 2008; Dale and Sereno, 1993):

Y = LJ + 4,

where J ∈ R
D×T is the amplitude of the D current dipoles

distributed through the cortical surface with fixed orientation
perpendicular to it, and L ∈ R

C×D (commonly termed lead field
matrix) is a gain matrix representing the relationship between
sources and MEG data. We assume that the MEG measured data
are affected by a zero mean Gaussian noise 4 ∈ R

C×T with
covariance cov(4) = Q4 = λ4IC, with IC ∈ R

C×C.
Generally, source estimation can be expressed by the expected

value of the posterior source activity distribution, which can
be computed from the input data using the Bayes’ theorem, as
follows:

P(J|Y) = P(Y|J)P(J)/P(Y).

As outlined in Lopez et al. (2012), we can incorporate uncertainty
about anatomical assumptions of the head model, that is, L =

L(h), where h denotes the set of anatomical parameters (in this
case the head-position data). Thus, the source reconstructed
solution is rewritten in the form:

P(J|Y, h) =
P(Y|J, h)P(J|h)

P(Y|h)
, (1)

where the probability P(Y|h) (termed evidence) makes explicit
the relationship between source reconstructed solutions and
assumed anatomical parameters. Here, we consider h as the head
location inside the MEG device. Therefore, provided the n-th
head model, hn, implying L = L(hn), we can solve Equation
(1) by assuming that J is a zero mean Gaussian process with
prior covariance cov(J) = Q, with Q ∈ R

D×D. Thus, brain
activity estimation, Ĵ, is carried out by solving the widely known
maximum-a-posteriori problem in the form:

Ĵ = argmax
J

{
p(J|Y, hn)

}
= argmax

J

{
p
(
Y|J, hn

)
p
(
J, hn

)}
,

(2)

The optimization problem of Equation (2) yields the estimate
Ĵ = QL(h)n

⊤(Q4 + L(h)nQL(h)n
⊤)−1Y, that requires prior

knowledge about the sensor noise covariance Q4 and the
source covariance matrix Q. In order to supply the sensor noise
covariance, we set Q4 = exp(λ4)IC where IC ∈ R

C×C is
an identity matrix scaled by a hyper parameter modulating the
sensor noise variance λ4 (Phillips et al., 2002). The source
covariance matrix is constructed as a sum of a set of P patches
{Qp, p = 1, . . . , P} each one reflecting one potentially activated
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region of cortex weighted by the respective hyperparameter λp,
as follows (Friston et al., 2008; Belardinelli et al., 2012):

Q =

P∑

p=1

exp(λp)Qp. (3)

2.3. Assessment Quality Measure of
Source Estimation Solutions
To estimate the hyperparameter set determining the best
covariance weight of a given head location hn, we use the so
termed free energy:

F(h)n =−
T

2
tr(1−1C)−

T

2
ln |1| −

CT

2
ln 25

−
1

2
(µ − η)⊤�−1(µ − η)+

1

2
ln |ϒ�−1|, (4)

where 1 ∈ R
C×C is the estimated model covariance, computed

as 1 = L(h)nQL(h)n
⊤ + Q4; C ∈ R

C×C is the measured
data covariance, µ ∈ R

P×1 is the vector of prior means on
the hyperparamters, η ∈ R

P×1 is the posterior means on the
hyperparameters. ϒ ∈ R

P×P is the posterior covariance of
the hyperparameters, and Ŵ ∈ R

P×P is the a prior covariance
of hyperparameters {λp}. Also, T and C are the number of
temporal and spatial modes, respectively. Therefore, the Free
Energy estimated in Equation (4) can be considered as the
difference between the model accuracy (the first two terms) and
the model complexity (the last two terms). The Free Energy
can be maximized using standard variational schemes such as
Expectation Maximization (EM) (Friston et al., 2008; Wipf et al.,
2010).

In order to perform this optimization scheme we use a
greedy search (GS) algorithm. The priors used to form the
set of covariance components in the GS scheme were those
implemented in the Statistical Parametric Mapping (SPM12)
software package. That is, we used 512 covariance components
with selected columns of a Greens function covering the entire
cortical surface (see Lopez et al., 2014 for implementation
details). Further, the set of GS hyperparameters were tuned
through the Restricted Maximum Likelihood (ReML) algorithm,
as explained and detail in Belardinelli et al. (2012) and Friston
et al. (2008).

2.4. Fixed Effect Analysis
The problem is now to aggregate these model evidence values (K
per-position for HMM and ST-GS, 1 per position for stationary
case) across the different dimensions of the optimization (in this
case x, y, and z). Here, we make use of the formalism behind
Bayesianmodel comparison for families (Penny et al., 2010). This
allows us to treat the multiple free energy values in the different
dimensions as different model families. For these analyses we
successively divided our parameter space in families of x, y, and
z coordinates (steps of 5mm) in each dimension; and therefore,
they were able to produce posterior probability maps with one or
two of the dimensions marginalized out.

3. EXPERIMENTS

3.1. Simulated Data Description
Simulations were carried out using MEG system geometry based
on the third order synthetic gradiometer configuration of a 274
(275 with one channel disabled) channel whole head CTF MEG
system. The location of the brain anatomy with respect to the
sensors was taken from a real experimental recording. For source
space modeling, we made use of a tessellated surface of the
gray-white matter interface with 8196 vertices (possible source
localizations), with source orientations fixed and perpendicular
to the surface. The leadfields were computed using a single-shell
volume conductor (Nolte, 2003). Simulated data were generated
with a sampling rate of 200 Hz and length of 75s. A dipolar source
located in the left primary motor cortex at the MNI coordinate
[41, −25, 49] mm was simulated. This source time course
comprised Gaussian random noise with unit standard deviation
[the units here are arbitrary (AU) as the SNR is specified by the
simulated sensor level noise]. To generate non-stationary activity,
five confound sources, located at the MNI coordinates in Table 1,
were also simulated using a five state HMM with a transition
probability of 0.25 between all states. Thus, when state k was
active, the source time course corresponding to the k-th confound
source was sampled from Gaussian random noise with standard
deviation equal to 10 (AU), and otherwise the source time course
had zero standard deviation. Additive Gaussian noise equivalent
to the r.m.s. signal power was added in sensor space to give an
effective Signal-to-Noise Ratio (SNR) of 0dB. Simulation scheme
is shown in Figure 1.

In order to illustrate the capability of the HMM to identify
the underlying non-stationary activity of MEG data, Figure 3
shows a simulation with five confound sources. As explained
above, the number of states was set according to the singular
values of the data covariance matrix, which are shown in the left
panel. As expected, the number of singular values with significant
amount of energy corresponds to the same number of simulated
confound sources. Also, the simulated (black line) and obtained
(dashed green line) HMM time courses are shown overlapped
in the right panel. There is a high correspondence between the
simulated and reconstructed states, achieving correlation values
around 0.95 for all the states.

3.2. Experiment Description
To carry out a direct comparison of the stationary and non-
stationary assumptions, we explored the influence of the head
movement along a single axis (i.e., x, y, or z) taking as

TABLE 1 | MNI coordinates used for the confound sources in the

simulated data.

State (#) MNI coordinate (mm)

1 50, −62, 26

2 −50, −62, 26

3 26, 32, 40

4 −26, 32, 40

5 −4, 50, 14
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FIGURE 3 | Example of data simulated to contain time-varying sources using a 5 state HMM. The singular values of the data covariance matrix that were

used to estimate the number of states are shown in the left panel. Additionally, the simulated (black line) and estimated (dashed green line) HMM state time courses

are overlapped in the right panel.

starting point the ground truth, which was accurately calculated
with subject-specific head-casts produced using 3D printing
(Troebinger et al., 2014). Afterwards, the head placement was
varied within a ±30 mm interval centered at its original position
with steps of 5mm at time, as shown in Figure 2. In this way, the
actual position of the head can be objectively compared against
the position obtained with each method.

As the forward model is free to vary in this case, it is necessary
to generate a new lead field matrix at each head location. Given
the lead fields and the data covariance matrix (estimated under
stationary or non-stationary assumptions), it is possible to make
an estimate of J on the (displaced) cortical surface in addition to
a model evidence value.

We consider three possible analyses which, depending on the
stationarity assumptions, deliver either 1 or K free energy values
per head position:

1. For the HMM-GS, we used the HMM to break up the N

sample dataset into K distinct data segments. Each data
segment comprised the Tk time points for which state k was
the most probable. This gave K Free energy values per head

position. For the stationary and the ST-GS cases (2 and 3
below), we selected the length (p samples) of successive time
windows segments as T/K to again have K distinct data

segments.
2. For the short-time GS (denoted as ST-GS), we did not use the

HMM but broke the data up into K successive windows. For
each of the K windows we made a source level estimate. This
gave K free energy values per head position.

3. For the stationary case, we computed K covariance matrices
obtained from each of the K windows from the stationary case
above, and averaged them together in order to obtain a single
covariance estimate. This gave a single Free energy value per
dataset.

These three possible schemes are outlined schematically in
Figure 4.

3.3. Simulation Results
Figure 5 shows the computed covariance matrices for each
stochastic assumption, i.e., Figure 5A for each HMM state,
Figure 5B for each short time window and Figure 5C for
the full data. The data covariance matrices obtained for
the HMM states are distinct from one another unlike
the short time strategy that shows very similar covariance
estimates for all windows. Additionally, to obtain an objective
comparison between the covariance matrices, we used the
Symmetrised Kullback-Leibler (KL) divergence, which provides a
measure of dissimilarities for the different states k, j (Woolrich
et al., 2013):

SKL(k, j) = 0.5 tr(6−1
j 6k)+ 0.5 tr(6−1

k
6j)− 2C,

where larger values of SKL(k, j) indicate larger differences in
the covariance matrices. Figures 5D,E show the symmetric KL
computed between all five states and windows, respectively,
where it can be seen that there are minimal differences between
the covariances estimated with the short time strategy. However,
the larger differences found between the covariance matrices
estimated for the HMM suggest that the data were successfully
decomposed into distinct dynamic components.

Figure 6 shows (log) posterior probability computed for each
direction by marginalizing over the complementary cardinal
dimensions. As seen for x-axis (left), all curves put the most likely
position of the head at the origin, although no prior knowledge of
this location was used in the simulations. Comparing stationary
with non-stationary assumptions, it is clear that the non-
stationary (HMM and ST-GS) analysis gave rise to a steeper
function or a higher precision estimate of the true underlying
head-position. The y and z displacements show a similar
picture. We were surprised that the arbitrarily segmented ST-
GS algorithm performed almost as well as the data-driven
segmentation (HMM-GS). We speculate that this could be due to
a ceiling effect in which both algorithms perform well despite the
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FIGURE 4 | Schematic representation of each stochastic assumption about MEG data. The stochastic assumptions as explained above are schematized.

Left: K estimated state time courses and their respective covariance matrices and free energy values; Middle: estimated short time windows, and their respective

covariance matrices and free energy values; Right: Estimated covariance and free energy value for the stationary assumption.

FIGURE 5 | (A) Data covariance matrices computed by pooling the data during the points in time where those states are active. (B) Data covariance matrices

computed in each stationary window. (C) Averaged data covariance matrix. (D,E) The symmetric KL computed between all five covariance windows for HMM and

ST-GS, respectively.
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FIGURE 6 | Graphs of different normalized model evidence trajectories for a single axis with 5mm of resolution, for simulated data with SNR = 0 dB.

Left: x-axis, Middle: y-axis, Right: z-axis.

imperfect data segmentation.We note however, when comparing
the estimated covariance matrices that these estimates are based
(Figure 5) that we might expect more robustness from the HMM
algorithm which is based on a number of distinct states (rather
than a single repeated state).

3.4. Resting State Data
The empirical data were collected within a CTF 275 channel
Omega systemwhilst the subject wore a nylon headcast machined
to fit the subject’s scalp, and provides an independent estimate of
cortical anatomy with respect to the MEG sensors (Troebinger
et al., 2014). For modeling of the source space, we used a
tessellated surface of the gray–white matter interface with 21401
vertices (possible source localizations), with source orientations
fixed and being orthogonal to the surface. Data were sampled at
600 Hz with 150 Hz hardware anti-aliasing filters. The resting
state data were obtained from a 10 min closed eyes recording.
Finally, MEG data were frequency filtered into the beta (13–30
Hz) and gamma (60–90 Hz) frequency bands.

3.5. Results Resting State Data
The head model was moved in three possible directions (x, y, and
z axes) from−10 to 10 mm in steps of 2.5 mm. Also, the number
of states K was restricted to be the minimum value between the
elbow of the singular values and 10, based on previous work using
the HMMwith resting state data (Woolrich et al., 2013). Figure 7
shows posterior probability maps estimated for the resting state
data. The intersection of the red lines show the true (based on
head-cast) estimated head position, while the intersection of the
blue lines shows the peak of the posterior probability map (or the
MEG data estimated head position) for three orthogonal views
of the cube (xy, xz, and yz). Results show that with all three
stationarity assumptions theMEG-estimated head positions were
within around 2.5 mm of the head-cast estimated position. No
algorithm estimated the head to be at (what we have assumed
to be) the true location (0,0,0). We also looked at the same data
filtered in 13–30 and 60–90 Hz bands; these results, which were
less robust, are shown at a coarser (5mm) scale in Figures S1–
S3. In these cases of low SNR it would seem that the simplest
approach GS (based on the average data covariance matrix) is
the most robust. Additionally, we used a fixed proportion of the
probability mass function (95%) as probabilistic performance
metric. With this measure we are able to objectively compare

which of the methods provides a solution closer to the true
location. The HMM-GS was the most accurate method, with the
lowest distance to the true location, and also the proportion of
the probability mass is closer to the origin coordinate, i.e., the
probability distribution was more compact than the obtained
with the ST-GS and GS methods.

4. DISCUSSION

We have shown how it is possible to extract key source
level parameters from resting state MEG data. We validated
this approach empirically through estimation of head-position,
where head-position constrained by a head-cast was known.
The interesting thing about estimating head-position is that the
problem is well-posed. A solution exists, it is stable to initial
conditions, and the solution is directly verifiable from MEG
recordings.

With all methods we were able to locate the cortical surface
to within a 2.5–3.5mm of where we believed the cortex to be
based on our head-cast construction. Given that the cortical sheet
which is between 2 and 5mm thick and these estimates of head-
position were made based purely on MEG data, we found this
performance impressive. In order for the proposed methodology
to work out, several assumptions have to be fulfilled: current
flow must be normal to the cortical surface; the forward models
must accurately describe the propagation of magnetic field; the
inversion assumptions (in this caseMSP)must be reasonable, and
finally the goodness of fit metric (in this case Free energy) must
be useful. In other words, as we improve upon functional and
anatomical modeling assumptions, our estimate of head-position
should become more accurate and precise. The formalism here is
attractive as its performance is quantified in millimeters.

There are a number of possible sources of the residual
displacement error. Notably the inversion scheme and the head-
cast. We have considered only a single optimization scheme with
a single set of cortical patches (or priors); it may be that these
patches are not physiologically reasonable (see below) or are
sub-optimally located and hence bias the location estimate. Here
we estimated the three head-location parameters for simplicity.
In previous work (Lopez et al., 2012) we estimated both head
position and orientation.We see no reason why all six parameters
could not be estimated in practice. Indeed it is possible that some
of the deviation between our ground-truth and our estimate of
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FIGURE 7 | Resting state raw data. The posterior probability maps for the grid of head locations computed with (A) HMM-GS, (B) ST-GS, and (C) GS. HMM-GS

from −10 to 10mm with steps of 2.5mm. The dashed black lines represent the 95% of the probability mass function.

head-position is due to imprecise head orientation. The head-cast
also has errors associated with it—for example absolute errors in
coregistration—due to the cortical surface extraction based on an
MRI scan from a supine subject, whilst the MEG was performed
seated.

In simulation and in the empirical tests we found relatively
small differences between the informed (HMM-GS) and un-
informed (ST-GS) data partitioning. This could be because
despite imperfect partitioning the GS optimization scheme was
able to identify the multiple temporally overlapping sources. For
the empirical data we had also anticipated improved performance
when looking at sub-bands as we thought the stationary states
within a narrower frequency band would be simpler and hence
easier to optimize. Because of this we used the HMM to identify
stationary states in the same dataset but pre-filtered to the Beta
(15–30 Hz) and Gamma (60–90 Hz) bands. To our surprise, we
found the most robust estimation of head-position when we used
the broad-band data. It is possible that for low SNR data any
imperfect partitioning at the HMM stage simply adds noise to
the signal.

It may seem that using complex Bayesian methods to
demonstrate something as straightforward as head-position is
excessive. We should point out that our main aim here was
to estimate how non-linear parameter estimates could be made
from non-stationary MEG data. We see the main utility of this
approach as allowing us to answer questions about the underlying
cortical structure that generated the MEG data. For example—
with this approach we can mine large amounts of resting state
data and ask if the MEG data in a specific frequency band more
likely to have arisen from the superficial or deep cortical manifold
(Bastos et al., 2012). One could imagine an algorithm that mines
MEG records, first refining head position and then estimating
the effect of different volume conductor models, different cortical
patch extents, or even estimating cortical structure (Lopez et al.,
2012).

It is now becoming clear that resting state brain activity can
be thought of as an ongoing rehearsal of task related dynamics.
Recent work by Brookes et al. (2014) for example showed how
states identified at rest can explain much of the task related
variance (O’Neil et al., 2014). If this resting state activity is a
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continuous and evolving rehearsal of useful task related brain
states, we can make use of all these data to update our estimates
of key electrophysiological parameters. Resting state activity is
attractive as it is easy to measure consistently across sites and
over long periods. This is especially exciting with the prospect
of wearable MEG systems in the near future, where one might
expect to have extremely long data recordings.

Another interesting avenue would be to use this method
to test generic generative models of resting (and hence task)
state dynamics. For example, algorithms like MSP can be used
to compare specific source covariance priors corresponding to
canonical resting state modes. This would provide a direct
and compact parameterization that might explain away a
considerable amount of MEG signal variance—as well as giving
a better understanding of these networks in health and disease.
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