l\' frontiers
in Neuroscience

ORIGINAL RESEARCH
published: 31 August 2016
doi: 10.3389/fnins.2016.00391

OPEN ACCESS

Edited by:
Tobi Delbruck,
ETH Zurich, Switzerland

Reviewed by:

Simeon A. Bamford,
Inilabs, Switzerland
Julien N. P Martel,

ETH Zurich, Switzerland

*Correspondence:
Sio-Hoi leng
siohoi.ieng@gmail.com

Specialty section:

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

Received: 02 December 2015
Accepted: 09 August 2016
Published: 31 August 2016

Citation:

Simon Chane C, leng S-H, Posch C
and Benosman RB (2016)
Event-Based Tone Mapping for
Asynchronous Time-Based Image
Sensor. Front. Neurosci. 10:391.
doi: 10.3389/fnins.2016.00391

®

CrossMark

Event-Based Tone Mapping for
Asynchronous Time-Based Image
Sensor

Camille Simon Chane’, Sio-Hoi leng?*, Christoph Posch? and Ryad B. Benosman?

" Pixium Vision, Paris, France, ° Institut National de la Santé et de la Recherche Médicale UMRI S 968, Sorbonne Universités,
UPMC Univ Paris 06, UMR S 968, Centre National de la Recherche Scientifique, UMR 7210, Institut de la Vision, Paris,
France

The asynchronous time-based neuromorphic image sensor ATIS is an array of
autonomously operating pixels able to encode luminance information with an
exceptionally high dynamic range (>143dB). This paper introduces an event-based
methodology to display data from this type of event-based imagers, taking into
account the large dynamic range and high temporal accuracy that go beyond
available mainstream display technologies. We introduce an event-based tone mapping
methodology for asynchronously acquired time encoded gray-level data. A global and a
local tone mapping operator are proposed. Both are designed to operate on a stream of
incoming events rather than on time frame windows. Experimental results on real outdoor
scenes are presented to evaluate the performance of the tone mapping operators in
terms of quality, temporal stability, adaptation capability, and computational time.

Keywords: neuromorphic vision, HDR imaging, tone mapping, silicon retina, AER

1. INTRODUCTION

The human visual system can perceive a dynamic range of 160 dB overall (Hood, 1998), discerning
details both in bright sunlight and in dim starlight. The intra-scene dynamic range of the human
eye has been reported to exceed 120 dB even in relatively low light conditions. At the same time,
the retina can detect flashes as short as a few milliseconds. Designing a camera that matches these
characteristics is a challenge.

Commercially available high-speed cameras are routinely used to study fast phenomena. With
acquisition rates of tens of kHz and higher, these cameras beat the temporal resolution of the human
retina but must usually rely on off-line processing, prohibiting their use for real-time computer
vision. In addition, due to short exposure times at high frame rates, they must be operated under
very high scene illumination levels. Scenes (or parts of scenes) with lower illumination are not
acquired adequately. As a result, the dynamic range of high-speed cameras is limited.

The development of high dynamic range (HDR) image and video acquisition systems is an active
research topic. Such acquisition systems generally follow one of two paradigms: In one approach,
the image sensors use non-linear compressive transfer characteristics, either physical logarithmic
relations or piece-wise linear functions. In the second approach, data from multiple linear captures
are combined to obtain a single HDR frame (Yang et al., 1999). Both approaches generally lead to
increased complexity in acquiring and processing the raw sensor data, limiting the achievable frame
rate and hence the temporal resolution of the acquired image data.
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1.1. Acquiring HDR Data at High Temporal

Resolution

Another less widely used approach to HDR imaging is referred to
as “time-to-saturation.” This method encodes the light intensity
information as the amount time it takes to collect a given number
of photons rather than by how many photons have been collected
during a fixed period of time (the exposure time). Unlike the
conventional approach where both dimensions, exposure time
and full-well capacity, are limited and consequently saturation
can happen when the well is full before the end of the exposure
time, time-to-saturation capture unlocks the time dimension of
time, allowing arbitrary exposure times. Doing this, the dynamic
range can increase drastically and is now only limited by how
short an amount of time can be measured at the bright end,
and by dark current integration at the dark end of the scene.
Obviously, this increase in dynamic range is traded in for a
decrease in temporal resolution if a scene is (partially) dark and
integration takes a long time. Another drawback is the relatively
difficult and complex implementation since it is necessary to
detect the end of integration point in time separately for each
pixel and record and communicate the information off the pixel
array.

The field of biologically-inspired neuromorphic vision and
image sensing (Posch et al., 2014; Lenero-Bardallo et al., 2015)
has been investigating this approach to visual information
capture for quite some time and has tackled these problems.
E.g., the AER (address event representation) protocol (Lazzaro
and Wawrzynek, 1995) developed in this community allows the
encoding and reading out of time information from individual
pixels efficiently and with high temporal precision.

The asynchronous time-based neuromorphic image sensor
(ATIS) proposes a frame-free event-driven auto-sampling way
of acquiring exposure information for individual pixels (Posch
et al,, 2008, 2011). Each fully autonomous pixel combines a
relative light intensity level-crossing sampling change detector
and a conditional exposure measurement circuit. The change
detector initiates the measurement of an exposure/gray-level
value when it detects a brightness change of a certain magnitude
in its field of view. When triggered by the change detector,
the exposure measurement circuit carries out an absolute
intensity measurement and encodes the pixel illuminance into
the timing of asynchronous pulses using the time-to-saturation
approach independently for each pixel (Figure1). Thanks to
the aforementioned time-domain encoding of the exposure
information, the dynamic range of the acquired gray-levels is
large and exceeds 140 dB for scenes changing relatively slowly.

Another advantage of the per-pixel, event-driven mode of
acquisition is the redundancy suppression as data are acquired
and transmitted only from the parts of the scene that have
changed (Figure 2). Still, the temporal resolution is limited
if light levels are low. By using additional information from
the fast continuous-time level-crossing sampling circuit, an
interpolation scheme that enables intermediate estimations of
the instantaneous gray-levels from pixels that receive low light
levels from the scene has been proposed (Orchard et al., 2014).
This approach provides high temporal resolution data even from

dark parts of scenes and permits HDR image data acquisition
(>120dB) at relatively high temporal resolutions—equivalent to
kiloframes per second.

1.2. Vizualizing HDR Data at High Temporal

Resolution

Processing HDR images and video instead of LDR data usually
requires minor (or no) changes to the algorithms. However, there
are no corresponding high speed, high dynamic range displays
to visualize the video data. Conventional displays, monitors or
projectors have both a limited dynamic range and a limited
display frequency. LCD displays generally advertise alcontrast
ratiol of 1000:1, which is equivalent to a 60 dB dynamic range.
CRT displays have an even lower dynamic range of 40 dB. HDR
displays are under development (Seetzen et al., 2004) and few
are commercially available. Dolby has been developing HDR
displays, such as the DR 37P (dynamic range of 100dB), and
they have announced a future product that can reach 120 dB. The
display frequency of such displays rarely exceeds 60 Hz.

On the other hand, there are only a few high speed displays
available and they are mostly used for research purposes. It has
been shown that it is possible to tweak CRT displays to obtain e.g.,
a 480 Hz refresh rate (Kuroki et al., 2007). Digital Micro-mirror
Devices (DMDs) can be used to display binary images at up to
4kHz. They are capable of displaying gray-level images with a
dynamic range of 60 dB, but this reduces the display frequency,
since binary pulse-width modulation is used to produce the
various shades of gray.

There is increasing evidence that high speed displays are useful
and important. E.g,, if changes in the visual field are involved,
such as with a moving camera, displaying at higher frequencies
influences both visual comfort and perceived spatial accuracy.
Kuroki et al. (2007) showed that increasing the projection rate
improves the perceived quality of a video sequence. They asked
subjects to evaluate various video sequences captured at 1000 Hz
and projected between 60 and 480Hz using a custom CRT
monitor. They found that the perceived quality is improved by
increasing the projected frame rate up to 240 Hz though no
improvement has been noticed for higher rates. In addition,
preliminary results suggest that a high frequency display (up to
1000 Hz) can compensate for low spatial accuracy.

The visualization of HDR data on LDR display devices
requires a compression of the dynamic range that preserves the
visual sensation of the scene as faithfully as possible. This process
is called tone mapping. The LDR output must preserve visual
details and contrasts provided by the HDR data as much as
possible, e.g., to simultaneously display details in shadows and
in sunlit areas of a scene.

The problem this work addresses is to tone-map the output
of an event-based HDR high temporal resolution ATIS imaging
sensor (Posch et al,, 2011). The tone mapping must be done
in real time even at a high event rates. The high event rate
is necessary to completely describe scenes presenting a lot of
movement, for example when the camera is in motion. The
tone mapping must also automatically adapt to unpredictable
illumination changes. Real-time processing and display is
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FIGURE 1 | Functional diagram of the event-based acquisition sensor used in this work. Two types of asynchronous events, encoding change and
brightness information, are generated and transmitted individually by each pixel of the imaging array. At is the time difference between the crossing of two thresholds
and is inversely proportional to the pixel luminosity. Top right: Change events accumulated over a few milli seconds. Pixels that transmitted an ON event are
represented in white, those that transmitted an OFF event are represented in black. The gray background represents pixels for which the luminosity has not changed
over the selected time frame. Bottom right: Gray levels are proportional to the inverse of the time difference between two successive events emitted by the exposure
detector. Pixels for which the luminosity has not changed over the selected time frame are represented in black.

necessary to enable the adjustment of optical parameters such as
focus and zoom.

Existing solutions to the LDR display of HDR video are
all frame-based. Adapting frame-based solutions to event-based
tone-mapping requires selecting those that are adapted to an
event-based formulation. Event-based algorithms are generally
incremental: each incoming event is processed independently
and few calculations are performed on it. A non greedy
event-based algorithm requires few calculations on small
neighborhood. The data are then tone-mapped and, depending
on the application, displayed at the required frequency. The
current focus has not been on the display of event-based data
but on its processing for computer vision applications, e.g.,
for visual motion estimation (Orchard and Etienne-Cummings,
2015), feature tracking (Lagorce et al., 2015), optical flow
(Benosman et al., 2012), or machine learning (Perez-Carrasco
etal., 2013).

We present a simple algorithm for the tone mapping of an
event-based video stream. Our algorithm has been tested on two
outdoor scenes taken from the inside of a car. All results are
given for an 8-bit output (48 dB). We first present the event-based
sensor used in this work, followed by an overview of event-based
HDR tone mapping. We then present a global and a local tone
mapping algorithm for event-based vision sensors. Finally, we
evaluate these operators and compare them to those currently
used for the display of event-based acquisitions.

1.3. Frame-Based HDR Tone Mapping

The problem of displaying high dynamic range data on
low dynamic range displays dates from the advent of HDR
photography and the beginning of computer graphics. The main
requirements of a satisfying image tone mapping operator is that
all features, dark and bright, should be visible simultaneously,
while preserving the contrast impression of the visual scene
(Duan and Qiu, 2004). Further requirements, given by Krawczyk
et al. (2007) are that the tone mapping must provide consistent
results despite the vast diversity of natural scenes; it must avoid
introducing artifacts such as contrast reversal or black halos; the
overall brightness of the output image must be faithful to the
context; a daylight scene should be distinguishable from a night
scene. Tone mapping operators should also have few, intuitive
parameters. They should be fast for interactive and realtime
applications.

Until recently, tone mapping operators were developed for
static images and were not adapted to the tone mapping of a
video stream. In addition to the aforementioned requirements,
video tone mapping operators must provide temporal adaptation
and coherence. This means that the tone mapping operators must
adapt to varying light conditions throughout a video, without
introducing sharp jumps in scene luminosity nor flickering.
They must also retain the same visual sensation throughout the
video. Ideally we want algorithms with no manual parameters,
otherwise it is generally difficult to fix a parameter that is
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FIGURE 2 | The spatio-temporal space of imaging events: Static objects and scene background are acquired first. Then, dynamic objects trigger
asynchronous gray-level pixel-events after each change. Frames are absent from this acquisition process.
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satisfactory over a video stream where the scene can vary greatly
and unpredictably.

Tone mapping operators are generally classified in two
categories: global (or spatially uniform) vs. local (or spatially
varying) (DiCarlo and Wandell, 2000; Krawczyk et al., 2007).
In the global case, a single monotonic function, the Tone
Reproduction Curve (TRC), is applied to the full image (or
successive frames). In this case, a given input value is always
mapped to the same output gray-level.

Local algorithms are referred to as tone mapping operators.
They mimic the human visual system by locally adapting
the dynamic range. They may map two identical input
values to different gray-levels, depending on their neighboring
input values. These operators are generally more subject to
producing artifacts such as halos. Local operators typically
require complex computations to obtain a first tone mapped
image and possibly even more to remove artifacts. It is thus
easier for global operators to satisfy realtime requirements.
However, local operators are better adapted to an event-based
formulation. Instead of successively processing each subregion
of a frame, for each incoming event we process its local
neighborhood.

A psychophysical study by Yoshida et al. (2005) compared
four global operators (linear scaling and methods by Ward
Larson et al, 1997; Pattanaik et al, 2000; Drago et al,
2003) and three local operators (fast bilateral filtering Durand
and Dorsey, 2002, as well as methods by Ashikhmin, 2002;
Reinhard et al.,, 2002). They found that global operators are
perceived as brighter than local operators and as slightly more

contrasted. However, more details are perceived in the bright
regions when local operators are used compared to global
operators.

We address the case of gray-level tone mapping since this
is the type of signal provided by the ATIS, though the great
majority of tone mapping operators are developed for color
images. The simplest tone mapping operator is the linear scaling
of the input values to the output range. The problem with
this operator is that it does not adapt to the input signal
distribution. It preserves the original contrast but visibility
is lost where the input histogram is dense. To limit the
influence of noisy extremum pixels, we generally scale without
accounting for the top and bottom percentiles by saturating
these values to the maximum and minimum output dynamic
range values. Many image tone mapping algorithms rely on
the use of the maximum scene luminance for scaling. This
is generally a problem when adapting these algorithms for
the tone mapping of HDR video, since it produces important
changes in the overall gray-levels during camera panning. It
can be tedious to adjust the percent of data to ignore at
the top and bottom of the histogram since this must be
done individually for each image. In the case of a video, the
ideal values may vary over time. Furthermore, even after fine
tuning these parameters, the resulting tone mapped image may
be simultaneously overexposed in certain regions and under-
exposed in others.

For example, Figure 3 shows a 140dB frame linearly tone
mapped into a 48dB signal after setting a fixed percentage
(left 5%, right 1%) of the top and bottom dynamic range to
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different effect of the tone mapping is particularly visible in the sky area.

FIGURE 3 | Linear tone mapping with increasing percentage of high and low values excluded from scaling. (A) 1%. (B) 5%. Insets: Image histogram. The

FIGURE 4 | Logarithmic tone mapping with increasing percentage of high and low values excluded from scaling. (A) 1%. (B) 5%. Insets: Image histogam.
In addition to an improved contrast in the left image, the difference between the two images is most notable in the representation of the sky and clouds.

0 and 255. Both images are dark and few details are visible,
though in the right image 5% of the brightest pixels are
saturated to 255 and 5% of the darkest to 0. We present
examples with the same percentage of top and bottom percentage
removed, but it is generally best to adjust these parameters
independently, even though this results in two parameters
to set.

Instead of tone mapping the input with a linear function,
it is also possible to use a logarithm to map the input values
into the output range, possibly removing a percentage of the
top and bottom dynamic range. The logarithmic function is
well adapted to the display of the data provided by the sensor
used in this work, which is sensitive to changes in log intensity.
The need to manually select which portion of the histogram
to ignore remains. However, this parameter is much easier to

adjust for the logarithmic function than for the linear function.
Previously, in the case of the linear tone mapping, excluding the
top and bottom 5% of the dynamic range resulted in an image
that was both saturated and dark. In the case of the logarithmic
function, illustrated Figure 4, both images provide a satisfactory
tone mapping, though in one case the top and bottom 1% of
the histogram is respectively tone mapped to 0 and 255, while
in the second case 5% of the top and bottom of the histogram
is tone mapped to 0 and 255. A tone mapping operator which
uses different log-bases was defined by Drago et al. (2003) for the
tone mapping of images, though there is a parameter to adjust for
optimal results.

Histogram equalization is another simple tone mapping
operator. However, the resulting image is unrelated to the
physical brightness and contrast. In particular, this operator
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can greatly exaggerate contrast. The histogram-based method
developed by Ward Larson et al. (1997) prevents display
contrast from exceeding scene contrast but does not prevent
the display from having too low contrast. Qiu and Duan
(2005) and Duan and Qiu (2004) developed a tone mapping
operator that slides between linear scaling and histogram
equalization, depending on the input parameter. They also
define a local operator (Duan et al., 2010) based on this
global operator. Mantiuk et al. (2006) also developed a method
based on histogram equalization. In this type of approach,
computation time increases as the output dynamic range
increases.

1.4. Event-Based Tone Mapping

Reinhard developed an image tone mapping operator inspired
by common photographic practice. The global “initial luminance
mapping” is refined by an automatic dodging and burning.
Based on a psychophysical study (Ledda et al, 2005), this
tone mapping operator performs well on a variety of scenes
and particularly for gray-level images, as is our case. We
present an adaptation of Reinhard’s “initial luminance mapping”
(Reinhard et al., 2002) for the tone mapping of event-based
acquisitions. Reinhard also defined a method to automatically
fix the two parameters for the initial global tone mapping
and to determine whether the local dodging and burning is
necessary (Reinhard, 2002). Kiser and Reinhard (2012) define a
frame-based video tone mapping operator based on the global
initial tone mapping using the automatic parameter settings
and a leaky integrator to avoid video flickering. Compared
to Reinhard’s “Initial luminance mapping,” the tone mapping
operators presented here set the “key value” to a = 1 and define
the maximum scene luminance as infinity. This tone mapping
operator is suitable for an asynchronous i.e., an event-based
formulation.

2. MATERIALS AND METHODS

2.1. A Global Operator for Event-Based
Tone Mapping

Of the two asynchronous event streams, we only process the
brightness events. Let E(x, y, t) = [x, y, t, At]T be a quadruplet
giving the pixel position [x, y]”, the time ¢ of the event, and the
time difference At, inversely proportional to the pixel luminosity
(see Figure 1). The output display values D(x, y) are calculated
directly from the time stamp differences At(x, y), as explained by
algorithm 1.

These time stamp differences are stored in matrix T(x, y).
Whenever the minimum At in the image changes—that is, every
time the maximum scene luminance changes—we calculate the
geometric mean (or log-average) G of the last time differences for
every pixel of the signal:

1

G(T) = *7 HT(x, y) = exp Xy

X,y

XY
> log (TCx.) | (1)
x.y

Algorithm 1 Global event-based tone mapping

Atmin = 10%, an arbitrarily large value
for all E(x, y, t) do
T(x, y) < At
if At < Atpmin then
Atmin < At
Xmin < X
Ymin <)
calculate G using equation 1
update D using equation 3
else if x = x,,;, and y = y;, then
Atmin < min(T)
(%mins )’min) <—arg min(T)
calculate G using equation 1
update D using equation 3
else
D(x, y) <

end if
end for

1
1+ T(gy)

where X and Y are respectively the width and height of the
image. In practice G is calculated for non-null values of At. This
simultaneously protects from a division by zero in the next step
and enables us to only take into account pixels where a pair of
events has been detected. G gives us an estimate of the brightness
of the scene. We use G to scale the input time differences:

T(x,
Sx,y) = ("Gy ). @)

Incoming events are converted to their display value D using:

1 1

1+S(ty) 1 + I )

D(x, y) = (3)

This function maps positive values to [0, 1]. The result can then
be linearly scaled to the full display range, in our case [0, 255],
simply by multiplying the output display values by the maximum
output value and rounding the result. This tone reproduction
curve is S-shaped and D(x, y) is set to D(x, y) = 0.5 if At =
G. Bright events, those for which At < G, are mapped to
[0.5, 1]. Since the geometric mean is lower than the arithmetic
mean, very bright events are compressed to a reduced range. On
the other hand “medium-luminance” events are logarithmically
tone-mapped. When we recalculate G, we also update all display
values using (Equation 3). The 140 dB reference frame is shown
tone-mapped using this global operator in Figure 5. The position
of the curve on the abscissa depends on the current value of G.

Every change in the minimum At thus results in calculating
a geometric mean over the full image, which becomes
ever more computationally expensive as the size of the
sensor increases. Furthermore, this update is sometimes done
“uselessly” as a change in the minimum At can have a
very small impact on the geometric mean and output pixel
values.
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2.2. A Local Operator for Event-Based Tone
Mapping

Based on this global operator, we define a local operator described
by algorithm 2. Every incoming event is tone-mapped depending
on the values of its neighbors. As previously we store the the
time-stamped differences in T(x, y). For every incoming event we
compute G, the geometric mean of the last values of At for all
pixels within a radius of R using the Chebyshev distance:

1 xi+R yi+R
Gr(xi, yi) = exp s Z Z log (T(x, y))
2R+1)
x=xi—Ry=y;i—R
)
The display value is calculated, as previously, after normalizing
the input values by Gg.

Figures 6, 7 show a frame tone mapped using two different
radii R. Compared to the global tone mapping operator, the local
operator introduces a speckle-like noise, especially for low values
of R. This noise is due to the enhanced local contrast which
makes the acquisition sensor noise more visible. In particular
the asynchronous pixel update can cause certain pixels that have
been tone-mapped earlier on to neighbor more-recently updated
pixels. The smaller R, the closer At; is to Gg, and thus D(x;, y;)
tends toward 0.5. With a small radius, the histogram is thus

Algorithm 2 Local event-based tone mapping operators
for all E(x, y, t) do
T(x, y) < At
calculate Gg using equation 4
D(x, y) < N 1

At
Jrq

end for

strongly centered around 128. As R increases, we increase the
contrast in the tone-mapped image.

The local tone mapping introduces a halo effect, mostly visible
on the edges of the buildings in our examples. Near the border
of the buildings, there is an equal contribution of the light sky
and the dark buildings to the geometric mean which increases
their relative contrast. For pixels further away from the border,
the geometric mean is an average of the luminance of pixels of
the same object. This effect is thus more subtle as R increases.
This is a common artifact of local tone mapping operators,
though Durand and Dorsey (2002) designed a local tone mapping
operator to avoid such artifacts via an edge-preserving filter.

We clearly see that a given At is mapped to different gray
levels, depending on its neighboring values. The tone mapping
plot is a superposition of curves such as that presented in
Figure 5B shifted on the abscissa. As R increases, the tone
mapping operator becomes more compact: a given value of At
is mapped to a smaller range of output values. On the other
hand, as R increases, we tend toward a global operator and the
tone mapping operator tends toward a tone mapping function.
Increasing the radius size also increases the processing time, since
the geometric mean must be computed over a greater number
of values. The black background points on the left of the tone
mapping plot of Figure 6B represent the car dashboard, which
was tone mapped at the beginning of the video and never updated
since. An effect of the local tone mapping can be seen in the
improved contrast on this dashboard, especially for a small radius
such as R = 10.

3. RESULTS
3.1. Test Videos

The two algorithms have been tested on several videos.
We present in greater detail results from two event-based

FIGURE 5 | (A) Global tone mapping of a 140 dB input to 256 gray-levels. Inset: Image histogram. (B) Corresponding tone mapping function. The input time
differences are plotted on an inverse logarithmic scale while the output gray-levels are plotted linearly.
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FIGURE 6 | (A) Local tone mapping with R = 10. Inset: Image histogram. (B) Display values as a function of the input time differences. The input time differences are
plotted on an inverse logarithmic scale while the output gray-levels are plotted linearly. The 10% most recent events are colored with a gray-level.

10° 10* 10° 10* 10’

At (us)

10°

FIGURE 7 | (A) Local tone mapping with R = 30. Inset: Image histogram. (B) Display values as a function of the input time differences. The input time differences are
plotted on an inverse logarithmic scale while the output gray-levels are plotted linearly. The 10% most recent events are colored with a gray-level.

acquisitions taken from a car: “city” and “tunnel.” The evolution
of the dynamic range of these outdoor scenes is illustrated
in Figure8. This figure shows the evolution of minimum,
median and maximum luminance of the videos over time. The
dynamic range is represented by the area between the top
and bottom curves. It is calculated after each incoming event
using:

T
DNR(f) = 20log,, % (5)

The median dynamic range is 82dB for the “city” video and
86dB for the “tunnel” video, while the maximum dynamic
range of these videos is respectively 140 and 119dB. In both
cases the dynamic range is more influenced by the shorter time
differences (high luminance) than the longest time differences
(low luminance), which varies more smoothly over time.
The median value also varies quite smoothly over time. The
maximum luminance in these videos seems to be exclusively due
to artificial lights (car lights, traffic lights, tunnel lights) and not
from the luminosity of the sky. There is thus a greater dynamic
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FIGURE 8 | Evolution of dynamic range of the “city” (top) and “tunnel” (bottom) videos over time. Maximum, median and minimum time differences are
plotted in over time on a semilog axis. Snapshots are shown with logarithmic tone mapping. A spatial median filter is applied to the input data prior to recording the
maximum, median and minimum values to remove noise due to unresponsive or over-sensitive pixels (single black and white pixels in examples). The strong
discontinuity in the maximum time difference for the “city” video between approx. 45 and 52 s is due to noise that is still present after median filtering on pixels that are
infrequently updated. These values are not necessarily distinguishable in the videos since they represent few pixels that may be saturated (in the case of the linear and

logarithmic tone mapping) on an equally dark background.

range in the tunnel than outside, because of the bright ceiling
lights.

3.2. Overview
As noted by Yoshida et al. (2005), the global operator is
brighter and more contrasted than the local operator. However,
some details such as the license plate of the car are perceived
more easily in the locally tone mapped images. We presented
a few examples of tone-mapped images using the global and
local operator. However, since these are video tone mapping
algorithms, it is important to see how they fare over time. Three
videos are provided as supplementary material. They compare
the logarithmic tone mapping, the global operator and the local
operator with both R = 10 and R = 30 on the “tunnel” data, the
“city” data and an additional night scene.

The advantage of updating G only when the maximum
luminance in the scene changes is that it limits the frequency
of calculating the geometric mean, which is computationally

intensive. As such, less than 1% of the events produce a global
update: 0.014 % for the “city” video, 0.12 % for the “tunnel” video.
This corresponds to a global update at 71 and 420 Hz respectively,
which is still quite high and could be reduced, depending on the
display rate.

Updating G only when the maximum luminance changes also
permits a smooth adaptation to changes in illumination. If a
bright object enters the scene, G will be updated several times,
as the object appears. The tone mapping function will then be
fixed, until the maximum luminosity changes again. Figure 9
shows the evolution of the median of the gray-levels for linear
and logarithmic tone mapping compared to the global and local
operators presented here for a selected portion of the “city” video.
These curves give an idea of the evolution of the luminosity of the
tone mapped videos over time. The effect can be observed at 1:00
of supplementary video “city.”

This portion of the video shows the view from the turning car.
For a short time (~1 s) the sky is no longer visible in the frame. In
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FIGURE 9 | Median of the gray-levels of for a portion of the “city” video for different tone mapping algorithms. The linear and logarithmic tone mapping are
run with 5% of the top and bottom of the input dynamic range clamped to extremum display values.

the case of the logarithmic or linear tone mapping, the buildings We use the default parameters from the implementation of
are tone mapped to a lighter value, causing a sudden change in  the tone mapping toolbox for Matlab provided by Banterle et al.
global luminosity. Global and local tone mapping both reduce  (2011). The function is simply modified to accept single channel

flicker and the transitions are smoother. gray-level images, instead of processing the luminance of RGB
. . images.
3.3. Quality Metrics Table 1 shows the median of the quality index Q, of S and

Yeganeh and Wang (2013) defined a metric to evaluate and  of N for the “city” video tone mapped by several operators
compare the quality of image tone mapping operators. The  every 10 ms. The quality is better using the global tone mapping
quality index Q is based on the combination of a structural  than the linear and logarithmic mapping. However, the local
fidelity index, S and a statistical naturalness index N. S is based ~ tone mapping provides a quality index that is lower than the
on the widely accepted (Aydin et al., 2008; Mantiuk et al., 2011)  logarithmic quality index, though the quality index of the local
Structural Similarity Index Measure (SSIM Wang et al.,, 2004), a  tone mapping increases as R increases. If we look into the two
quality metric used to measure the similarity between two images ~ components of the quality index, we notice that the structural
and considered to be correlated with the quality perception of the  fidelity index is better for the linear, logarithmic and global tone
human visual system. N is based on intensity statistics of natural ~ mapping operators than for the local tone mapping, especially as
images, it is calculate only on the input LDR image. R decreases. It is not surprising that S is worse for the local tone
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TABLE 1 | Median quality metrics for the “city” video.

Q S N
Linear 0.83 0.95 0.14
Logarithmic 0.93 0.92 0.75
Global 0.96 0.92 0.91
Local (R = 10) 0.86 0.61 0.88
Local (R = 20) 0.89 0.69 0.83
Local (R = 30) 0.89 0.73 0.79

All the indices are normalized to 1 and increase with the quality.

mapping operator, since it locally modifies the contrast. On the
other hand, the statistical naturalness index is much better for
the global and local tone mapping operators than for the linear
and logarithmic tone mapping operators.

3.4. Computational Time

Processing time of the local and global tone mapping is compared
in Figure 10. A series of ten indoor and outdoor scenes were
divided into 10s segments and tone mapped. The processing
times are given for a C++ implementation on a computer with
a 3.1 GHz Intel Core i7 processor. They solely include the event-
based tone mapping process and no display procedure.

Scenes acquired with a moving camera, such as the “city” and
“tunnel” videos have a higher event rate than those acquired with
a static camera. The global algorithm and the local algorithm with
R = 10 can process an incoming stream of events in real time.

The global tone mapping is not linear as a function of the
event rate, since the value of the events directly influences the
number of operations to be performed: if the maximum scene
luminosity changes, many operations are necessary. The tunnel
video is thus the longest to process for a given event rate. This
is due to the ceiling lights in the tunnel that successively appear
and disappear, changing the maximum luminance of the scene
with great frequency and thus causing repeated updates of all
pixel values. The maximum value is updated on average every
1 x 10° events for the “tunnel” video, and every 2 x 10° events
for the “city” video (median filtered videos). This can be observed
on, Figure 8 where the minimum At (that is, the maximum
luminosity) changes much more frequently in the “tunnel” video
than in the “city” video.

For the local algorithm, the processing time linearly increases
as the event rate increases. This is not surprising, since a fix set
of operations are performed for every incoming event. Though
the algorithm can only run in real time for small values of R
(approximately R 10) in its current implementation, this
formulation is adapted for parallel computing. This may enable
us to reach real time computing for high speed display for larger
values of R.

4. DISCUSSION

We have presented two algorithms to display event-based HDR
acquisitions. Compared to the tone mapping requirements listed
Section 1.3, both operators preserve details in the dark and bright
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FIGURE 10 | Processing time as a function of the event rate. The area
below the horizontal line represents real time processing. Squares represent
segments of the “city” video, circles represent segments of the “tunnel” video,
dots represent other indoor and outdoor scenes. Filled blue circles and
squares represent global tone mapping, empty circles and squares represent
the local tone mapping for different radius values.

regions. Results are consistent for a variety of indoor and outdoor
scenes. The contrast impression is better preserved by the global
operator than the local operator, which introduces some artifacts,
in particular halos. Processing time is independent of the final
number of mapping bins. The global algorithm runs in real
time, as does the local algorithm for small radii (of the order of
R = 10). The processing time of the local algorithm is directly
proportional to the event rate.

Furthermore, the global algorithm is parameterless while the
local algorithm depends on a single parameter, R, the radius of
the local neighborhood. This parameter trades output quality for
processing time and can be set independently from the video
content. Finally, it must be outlined that both algorithms provide
temporal adaptation and coherence to the tone mapping of
event-based videos.

These algorithms can currently only be used with the ATIS,
the only existing event-based grayscale camera. However, these
algorithms are built on the AER protocol, which is widely used by
existing neuromorphic vision sensors (in particular Lichtsteiner
et al., 2008, see Delbriick et al., 2010 for a review); any future
camera based on this protocol can benefit from our algorithms.

These results are the first of their kind since displaying
asynchronous event-based vision sensors on conventional
display devices (LCD screen, video-projector, printer, etc.) is a
non explored problem till now. As long as no complete event-
based and HDR imaging chain from the acquisition to display is
available, there is a mandatory need to develop an event-based
tone mapping algorithms to display as relevantly as possible
such data on conventional systems for monitoring purposes,
human-machine interaction, etc. Up to now, works on event-
based visual data have mainly focused on processing the signal
while displaying problems were not primary concerns. However,
with maturing technology and techniques, event-based signal
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visualization may become increasingly interesting. This work is
a first step to address this problem.
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