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We examined how penalized linear discriminant analysis with resampling, which is

a supervised, multivariate, whole-brain reduction technique, can help schizophrenia

diagnostics and research. In an experiment with magnetic resonance brain images of 52

first-episode schizophrenia patients and 52 healthy controls, this method allowed us to

select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior

cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless,

the classification performance based on such reduced data was not significantly better

than the classification of data reduced by mass univariate selection using a t-test or

unsupervised multivariate reduction using principal component analysis. Moreover, we

found no important influence of the type of imaging features, namely local deformations

or gray matter volumes, and the classification method, specifically linear discriminant

analysis or linear support vector machines, on the classification results. However, we

ascertained significant effect of a cross-validation setting on classification performance

as classification results were overestimated even though the resampling was performed

during the selection of brain imaging features. Therefore, it is critically important to

perform cross-validation in all steps of the analysis (not only during classification) in case

there is no external validation set to avoid optimistically biasing the results of classification

studies.

Keywords: computational neuroanatomy, pattern recognition, classification, penalized linear discriminant

analysis, support vector machines, cross-validation, magnetic resonance imaging, schizophrenia

INTRODUCTION

Schizophrenia is a disabling chronic psychiatric disease characterized by symptoms such as
hallucinations, delusions, thought disturbances, or poverty of speech (Liddle, 1987). It affects young
people in their productive years (i.e., typically in their late teens or early twenties; Andreasen, 1995);
the lifetime prevalence of schizophrenia is ∼0.48% (Simeone et al., 2015). Thus, schizophrenia is
one of the leading contributors to the global disease burden. Despite decades of schizophrenia
etiology and manifestation research, its diagnostics is still based on clinical interviews that are
subjective and sometimes inaccurate. There are accordingly endeavors to employ computer-assisted
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methods based on brain imaging data for schizophrenia
diagnostics in order to reduce subjectivity and also increase the
speed of diagnostic assessments (Klöppel et al., 2012; Wolfers
et al., 2015).

Modern neuroimaging techniques have enabled the
identification of brain regions in which schizophrenia patients
show significant group differences compared with healthy
subjects (Wright et al., 2000; Shenton et al., 2001; Niznikiewicz
et al., 2003; Honea et al., 2005; Haijma et al., 2013). On individual
levels, however, brain-imaging measurements in schizophrenics
exhibit a wide overlap with the normal range (Sun et al., 2009),
which makes the diagnosis of schizophrenia based on individual
brain-image data quite demanding. The first studies that sought
to distinguish schizophrenia patients from healthy controls
(HC) based on magnetic resonance imaging (MRI) data were
based on brain anatomical measures of a few selected regions
of interest (Leonard et al., 1999; Nakamura et al., 2004). Later
studies attempted to use whole-brain data for schizophrenia
classification since the neural mechanisms of schizophrenia are
not restricted to a certain region of the brain but are instead
distributed (Michael et al., 2008; Melonakos et al., 2011). For
example, some studies utilized voxel-based morphometry
or other univariate whole-brain methods to select imaging
features discriminating strongly between schizophrenia subjects
and HC and use them for classification (Kovalev et al., 2003;
Diaz et al., 2010). Such feature selection makes it possible to
increase the signal-to-noise ratio and also avoid the so-called
“small sample size problem” (Lemm et al., 2011) when the
number of subjects is considerably smaller than the number of
features, which often causes unstable classification performance
(Demirci et al., 2008). Selecting imaging features based on
feature-by-feature tests does not allow utilizing information
about feature correlation, however. As a result, multivariate,
whole-brain data reduction techniques are preferred. The
most commonly used multivariate method in schizophrenia
research is principal component analysis (PCA; Yoon et al.,
2007; Karageorgiou et al., 2011). Nevertheless, PCA also has
a few disadvantages: It is sometimes ineffective at capturing
complex relationships in high-dimensional spaces since it is
a linear method (Fan et al., 2005), and it is not guaranteed
that the selected principal components corresponding to the
largest eigenvalues are those discriminating the best between
patients and HC since PCA does not take in account information
about the patient and control group labels (Bunea et al., 2011;
Janousova et al., 2015). To overcome these shortcomings, recent
studies have used deep learning methods (Plis et al., 2014),
normative modeling (Marquand et al., 2016), or supervised,
multivariate, whole-brain reduction techniques that utilize
group labels during data reduction, such as sparse multinomial
logistic regression, a ν-multiple kernel learning approach and
sparse network-based models used for MRI or functional MRI
classification in schizophrenia research (Sun et al., 2009; Castro
et al., 2014; Rosa et al., 2015). In other fields of study, supervised,
multivariate, whole-brain reduction methods such as penalized
least squares regression or sparse logistic regression have been
used to classify HIV-infected individuals and music vs. speech
stimuli in healthy subjects, respectively (Ryali et al., 2010; Bunea

et al., 2011). In our previous imaging-genetics study of patients
with Alzheimer’s disease, we successfully used penalized linear
discriminant analysis (pLDA) with resampling to pre-select
image phenotypes (Vounou et al., 2012).

Here, we use pLDA with resampling to select the most
discriminative features from MRI data to differentiate first-
episode schizophrenia (FES) patients from HC. We investigate
if this supervised, multivariate, whole-brain reduction method
is capable of efficient data reduction that results in significantly
better classification performance than mass univariate selection
of features using a t-test or unsupervised, multivariate reduction
using PCA. Moreover, we also examine the influence of the type
of features extracted from the MRI data, namely gray matter
(GM) volumes and local deformations, and the type of classifier
on the classification performance. To enable comparison with
other studies, we use two of the most commonly applied
classifiers in schizophrenia research: linear discriminant analysis
(Leonard et al., 1999; Nakamura et al., 2004; Takayanagi et al.,
2010; Karageorgiou et al., 2011; Ota et al., 2012) and linear
support vector machines (SVM; Yoon et al., 2007; Pohl and
Sabuncu, 2009; Mourao-Miranda et al., 2012; Nieuwenhuis et al.,
2012; Dluhos et al., 2014). Furthermore, we explore the effect
of leave-one-out cross-validation (LOOCV) performed during
classification solely or during data reduction and classification.
The algorithm employs resampling during data reduction and
therefore the brain imaging features are not selected from all of
the input imaging data but rather from a number of random data
subsets. Such an approach might enable to avoid optimistically
biased classification results that occur in cases in which cross-
validation is executed only during data classification.

The remainder of the paper is organized as follows. In Section
Materials andMethods, we describe a data set of FES patients and
HCused in our study, the preprocessing of theirMRI data leading
to the extraction of two sets of imaging features, the reduction of
the feature sets using pLDA with resampling, and the subsequent
classification using two classifiers including cross-validation.
Section Results is dedicated to a summary of our classification
results. Section Discussion discusses our results, compares them
with classification performance based on commonly used data
reduction techniques, and concludes the paper.

MATERIALS AND METHODS

Subjects
Our patient group included 52 males (median age: 23 years,
range: 17–40 years) hospitalized in the all-male unit of the
Department of Psychiatry, Masaryk University in Brno,
Czech Republic; this cohort constituted the FES group. The
diagnosis was established during a clinical interview performed
by a trained psychiatrist. The interview was conducted in
compliance with the International Statistical Classification
of Disease and Related Health Problems (ICD-10) research
criteria and was focused on information about family and
personal history, somatic conditions, pharmacological history
and current treatment, substance abuse, previous psychiatric
conditions, the current clinical manifestation, symptoms
and their duration, and functional impact. Where possible,
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information from relatives was collected as well. After the
interview, the patients were physically examined, inclusive
of a urine analysis (biochemistry, toxicology) and laboratory
blood tests (hematology, biochemistry). Abnormal findings
were subjected to additional tests and examinations. A fully
trained senior psychiatrist reviewed all information, established
the diagnosis and suggested the case for inclusion in the
study. The exclusion criteria included substance dependence
(detected via urine toxicology tests and clinical evaluation),
neurological, or systemic disease with known relationships to
brain alteration (detected by clinical evaluation, neurological
and physical examinations, serum and urine chemistry, and
blood count, serological examination for neurotropic agents and
clinical evaluation of MRI scans), and contraindications for MRI
examination.

The control group consisted of 52 HC matched for age
(median age: 23 years, range: 18–38 years) and sex (all males)
who were recruited from the community, medical staff, and
students. Exclusion criteria included substance dependence, a
personal or family history of mental illness, somatic conditions
affecting the function or structure of the brain as assessed
during clinical interviews performed by a trained psychiatrist,
and contraindications for MRI.

The study was approved by the local ethics committee, and
all subjects signed an informed consent form prior to their
participation in the study.

MRI Data Acquisition and Preprocessing
All 104 subjects were scanned with a 1.5T Siemens Symphony
machine. We acquired whole-head T1-weighted images using
three-dimensional acquisition with IR/GR sequence, TR 1700ms,
TE 3.93ms, TI 1100ms, flip angle 15◦. The sagittal tomographic
plane thickness was 1.17mm, the in-plane resolution was 0.48 ×
0.48mm, the 3-D field of view contained 160× 512× 512 voxels.
We performed the MRI examination during the first episode,
which means that the duration of treatment with antipsychotics
was only from 3 to 14 weeks at the time of the MRI.

Prior to the analysis, we checked all of the images for
morphological abnormalities. Since no abnormalities were
found, we preprocessed all 104 images using Statistical
Parametric Mapping 8 (SPM8: http://www.fil.ion.ucl.ac.uk/
spm/). Specifically, the images were corrected for bias-field
inhomogeneity, spatially normalized (i.e., transformed into
stereotactic space), resampled to 1.5 × 1.5 × 1.5mm, and
segmented into GM, white matter and cerebrospinal fluid. The
spatially normalized images were oriented axially and consisted
of 170 × 256 × 256 voxels at 1.5mm isotropic resolution.
We modulated the GM tissue segment with the determinant of
Jacobianmatrices of the deformations to account for registration-
related changes in local volumes, and we smoothed the data using
an 8-mm full width at half maximum Gaussian kernel according
to the optimized voxel-based morphometry (oVBM) procedure
(Good et al., 2001). The GM volumes that we obtained were then
used as the first type of features in the analysis.

The second type of features included local deformations
that revealed how the brain anatomy of a diagnosed subject
differs from the normal template anatomy in terms of

local volume expansions and contractions. These data were
acquired using deformation-based morphometry (DBM). The
spatial normalization steps for DBM included the same affine
registration algorithm as for oVBM apart from the resolution
(1 × 1 × 1mm). After transforming all bias-corrected
images into stereotactic space, we used our original high-
dimensional nonlinear registration technique (Schwarz et al.,
2007) to compute vector displacement fields that maximized
the normalized mutual information between the images and
the high-resolution digital brain atlas. The resulting three-
dimensional displacement vector fields were converted into
scalar fields (referred to as “local deformations”) by computing
the logarithms of their respective determinants of Jacobian
matrices at each voxel in stereotactic space.

The final preprocessing step removed features corresponding
to non-brain tissues and image background from the two feature
sets. Each feature set from every subject was then transformed
into one-dimensional vectors and arranged in an (n × p) matrix
X, where n is the number of individuals in a data set and p is the
number of features. The feature matrix of the GM volumes had a
size of (104 × 748, 931); the dimensions of the feature matrix of
the local deformations were (104× 1, 924, 670).

Imaging Feature Selection Using pLDA
with Resampling
Since the number of features in the data set was very high even
after the removal of non-brain and background features, both
feature sets were reduced prior to classification to avoid the
so-called “small sample size problem,” to increase the signal-
to-noise ratio and possibly prevent for unstable classification
results with poor generalizability (Demirci et al., 2008; Lemm
et al., 2011). We used pLDA with resampling to identify the
most discriminative features. The pLDA is described in detail
elsewhere (Vounou et al., 2012) and is briefly summarized below.

In pLDA, a lasso penalty is imposed on the l1 norm of
the direction vector v (Witten and Tibshirani, 2011) that best
discriminates two classes within a data sample by maximizing
the between-class variance and simultaneously minimizing the
within-class variance. The direction vector v is a solution of
the following optimization problem in the case of the common
Fisher’s LDA:

maxv

{

vTSBv
}

subject to vTSWv = 1, (1)

where SB and SW are the between-class scatter matrix and the
within-class scatter matrix, respectively, which can be calculated
as:

SB = (mH −mD)T (mH −mD) , (2)

SW =
∑nH

i = 1
(xi. −mH)T (xi. −mH)

+
∑nD

i = 1
(xi. −mD)T (xi. −mD) ,

where mH = 1/nH ·
∑nH

i = 1 xi. is the mean vector of class H
(healthy controls), mD = 1/nD ·

∑nD
i = 1 xi. is the mean vector

of class D (diseased individuals), nH and nD are the numbers of
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subjects in classesH andD, respectively, and xi., i = 1, . . . , n, are
the rows of the feature matrix X .

In pLDA, imposing the lasso penalty leads to setting the
coefficients vj, j = 1, . . . , p, of the least discriminative features
to zero. Therefore, the optimization problem, which is solved by
the minorization-maximization algorithm, changes to:

maxv

{

vTSBv− λ
∑p

j = 1
sj

∣

∣vj
∣

∣

}

subject to vTS∗Wv = 1, (3)

where S∗W is the diagonal estimate of SW ,

diag
(

S∗W
)

=

(

s21, . . . , s
2
p

)

, to avoid problems with possible

singularity of SW , and λ is a regularization parameter that
controls the degree of sparsity in the model. Specifically, when λ

is exactly zero, no penalty is imposed and all p features contribute
in the direction vector v. As λ increases above zero, fewer features
contribute in v. At its maximum value, all coefficients of v are set
to zero.

For the particular data, the optimal value of λ is not known
a priori. Tuning λ commonly involves cross-validating the
prediction error for a grid of values of λ and selecting the
value of λ that leads to the smallest cross-validated error.
However, this approach may be prone to sampling errors.
Therefore, we combined the pLDA with a resampling method
proposed in Meinshausen and Bühlmann (2010) for sparse
predictive modeling. This procedure aims to calculate the
selection probabilities Pj (λ) for each feature by repeatedly
fitting the pLDA model on random subsets of the data
set while keeping track of the features associated with the
non-zero coefficients of v. Specifically, an indicator variable

c(k) (λ) =

(

c
(k)
1 (λ) , . . . , c

(k)
p (λ)

)

is calculated in each iteration

k = 1, . . . ,K, where c
(k)
j (λ), j = 1, . . . , p, is equal to 1 if the

jth feature is selected (i.e., its respective coefficient vj is non-
zero) and 0 otherwise. Using all K random subsets, the selection
probability for each feature can then be calculated as:

Pj (λ) =
1

K

∑K

k = 1
c
(k)
j (λ) , j = 1, . . . , p. (4)

The final set of the most discriminative features consists of
those features with selection probabilities above a predefined
threshold, e.g., 0.99.

To compare the results with common data reduction
techniques, we also performed feature extraction using PCA
(all n − 1 principal components corresponding to non-zero
eigenvalues were used for classification) and feature selection
using the Student’s t-test with three different thresholds (p< 0.01,
p < 0.005, and p < 0.001).

Imaging Feature Classification
The final set of features selected using pLDAwith resampling was
then used for classifying individuals into the D or H class using
two most commonly employed classifiers (i.e., LDA and linear
SVM).

Since there was no external testing data set available, we used
the LOOCV procedure to avoid overestimating the classification

results. This procedure contains a loop in which one subject
is chosen as a testing one and the remaining n − 1 subjects
are employed for training the classifier. The testing subject is
then classified as belonging to the patient or HC class, and the
resulting class label is compared with the true classification label.
This procedure is repeated n times using all subjects as the
testing subject sequentially. Afterwards, the overall classification
performance measures of accuracy, sensitivity, and specificity are
calculated, which are defined as:

accuracy =
TP + TN

TP + TN + FP + FN
, (5)

sensitivity =
TP

TP + FN
, (6)

specificity =
TN

TN + FP
, (7)

where TP and TN refer to numbers of true positive and true
negative results, respectively, and FP and FN denote the numbers
of false positive and false negative results, respectively.

It is well-known that data classification as well as data
reduction should not use all of the input data simultaneously
to avoid overoptimistic classification performance (Guyon and
Elisseeff, 2003). Since resampling is performed during data
reduction here, and therefore the brain imaging features are
selected based on random data subsets, it appears sufficient
to perform LOOCV only for feature classification [denoted by
LOOCV(c)]. To verify this hypothesis, we also performed analysis
when we repeatedly split the data into training and testing sets
prior to data reduction [marked as LOOCV(rc) and illustrated
in Figure 1]. In that case, only the data of n − 1 subjects
were input into the pLDA with resampling in each LOOCV(rc)

iteration, and the data of the testing subject were only used during
classification.

All algorithms described in theMaterials andMethods Section
were implemented in “Penalised Reduction & Classification
Toolbox” for MATLAB (the toolbox and documentation are
freely available at http://www.iba.muni.cz/index-en.php?pg=
research--data-analysis-tools--plda).

RESULTS

The classification results based on local deformations and GM
volumes reduced using pLDA with resampling based on 100
random data subsets and various values of λ, PCA, t-test with
three thresholds, and the imaging data without reduction are
given in Tables 1, 2. In the case of local deformations and GM
volumes, the parameter λ ranged from 0.6 to 2.0 and from 0.2 to
1.2, respectively. The pLDA algorithm did not converge for λ >

2 and λ > 1.2, respectively; whereas for λ < 0.6 and λ < 0.2,
respectively, it did not reduce the data to less than hundreds of
thousands of features. In the case of t-test, three thresholds p <

0.01, p < 0.005, and p < 0.001 were used. When we applied a
false discovery rate correction, no local deformations remained
statistically significant, and only 2000 GM volumes remained
significant. On the other hand, a threshold of p < 0.05 resulted
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FIGURE 1 | Illustrative scheme of recognition of patients from controls comprising LOOCV during data reduction and classification—LOOCV(rc). Brain

images (e.g., GM volume images), from which the background and non-brain areas are removed using a binary mask, are split into training and testing sets. The

training data are used to calculate the selection probabilities of features using pLDA based on random subsets. The training and testing data are then reduced by

selecting only the features with selection probabilities ≥0.99. Next, the reduced training data are used to train the classifier, which makes it possible to classify the

testing data into a group of schizophrenia patients or HC. The entire process is repeated n times as each image is sequentially chosen as the testing image.
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in too many features (more than 200,000 local deformations and
110,000 GM volumes).

The Tables 1, 2 show that increasing λ led to a decreased
number of selected discriminating features and an increased
number of iterations of the minorization-maximization
algorithm within pLDA. The classification performance differed
considerably according to type of LOOCV that we performed.
The median accuracy of the classification of local deformations
using LDA was 83.7% (range: 81.7–85.6%) in the case of
LOOCV(c) compared with 65.4% (range: 62.5–68.3%) in the
case of LOOCV(rc). The linear SVM classification of local
deformations led to similar median accuracies of 84.6% (range:
80.8–86.5%) and 66.3% (range: 55.8–70.2%), respectively. The
classification of GM volumes based on LOOCV(c) led to slightly
less overestimated results compared with local deformations; the
median accuracy of classification was 76.9% (range: 74.0–83.7%)
and 77.9% (range: 75.0–80.8%) using LDA and linear SVM,
respectively, compared with LOOCV(rc) with median accuracies
of 66.3% (range: 65.4–68.3%) and 64.4% (range: 58.7–67.3%),
respectively. For better illustration, classification accuracy
achieved in the experiments vs. the values of the parameter λ was
visualized (Figure 2).

Comparison of the reduction methods showed that the
maximum accuracy achieved in the classification of data reduced
using pLDA with resampling was higher than the accuracy
of the classification of data reduced by PCA or a t-test in
six out of eight of the classification experiments (Tables 1, 2,
Figure 3). However, the difference in accuracy was quite small
and statistically insignificant (based on McNemar’s test) apart
from the cases of reduction using PCA in the case of LOOCV(c),
classification of GM volumes reduced by a t-test with p < 0.01
and p < 0.005 using LDA with LOOCV(c); and t-test with p
< 0.001 for the second, third, fourth, and seventh experiment
(the order corresponds to the Figure 3) showing that too strict
threshold of t-test leading to low number of selected voxels
results in low classification performance. In the case of linear
SVM with LOOCV(rc), the classification of data reduced by
pLDA yielded a lower accuracy than the classification of GM
volumes reduced with a t-test with p < 0.005 and same accuracy
as the classification of local deformations reduced with t-test
with p < 0.01. When comparison with unreduced data was
performed, the maximum accuracy achieved in the classification
of data reduced using pLDA with resampling was higher than
the accuracy obtained in the classification of unreduced data in
all eight experiments. However, the differences were statistically
significant only in the case of LOOCV(c). Finally, comparison of
the achieved classification accuracies with classification by chance
was also performed (using one-sample binomial test), showing
that classification results obtained by PCA, t-test and maximum
classification performance achieved by pLDA was statistically
significantly better than chance in all experiments except for PCA
on GM volumes with LOOCV(c) and t-test with p< 0.001 on GM
volumes with LOOCV(rc).

The aim of the pLDA algorithm is to identify the features
that best discriminate between schizophrenia patients and
HC. Figure 4 shows a visualization of the selected strongly
discriminating local deformations and GM volume features. It
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FIGURE 2 | Classification accuracy versus the parameter λ of pLDA with resampling in experiments with two types of imaging features: (A) local

deformations, (B) GM volumes. The black solid line represents LDA classifier with LOOCV(rc), the gray solid line stands for linear SVM classifier with LOOCV(rc), the

black dashed line depicts LDA with LOOCV(c), and the gray dashed line denotes linear SVM with LOOCV(c).

FIGURE 3 | Comparison of classification accuracy achieved in experiments with two types of imaging features: (A) local deformations, (B) GM

volumes. The features were reduced using pLDA with resampling (the boxplots show the range of accuracy for different values of λ), using PCA (stars), and using a

t-test with a threshold of either p < 0.01 (empty circles), p < 0.005 (filled black circles), or p < 0.001 (filled gray circles). After reduction, the features were then

classified using LDA or linear SVM while performing LOOCV during data classification [LOOCV(c)] or during data reduction and classification [LOOCV(rc)]. Classification

accuracies obtained with original unreduced data are represented by dashed lines.

must be noted that in the case of LOOCV(rc), slightly different
sets of selected features were obtained in each LOOCV iteration.
Thus, the color coding in Figure 4 corresponds to the number
of LOOCV iterations in which the feature was among the
most discriminative features. In the case of local deformations,
the discriminative features form connected regions in the left
prefrontal cortex, the right anterior insula, the medial parts
of the thalamus, and the cerebellar cortex. The discriminative
GM volume features lie also in these brain regions as well

as in the inferior frontal gyrus, the anterior cingulum, the
hippocampus, and parahippocampal gyrus, the caudate nucleus,
and the superior and middle temporal gyrus. Similar brain
areas were identified as the most discriminative ones also
using t-test. In the case of PCA, the features whose loadings
contributed most to the first principal component (based on a
threshold at 30% of maximum absolute value of the loadings)
covered almost entire brain or gray matter areas, respectively. To
further investigate discriminative capability of features selected

Frontiers in Neuroscience | www.frontiersin.org 9 August 2016 | Volume 10 | Article 392

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Janousova et al. Multivariate Reduction in Schizophrenia Research

FIGURE 4 | Coronal, sagittal, and transversal slices showing the automatically detected strongly discriminative features in local deformations (DEF)

and gray matter volumes (GM) using: (A) pLDA with resampling (for λ = 1.6 and λ = 0.9, respectively), (B) t-test with p < 0.01, (C) t-test with p < 0.005,

(D) t-test with p < 0.001, (E) PCA. The color coding corresponds to how many times each feature was selected as one of the discriminative features in the case of

pLDA with resampling and t-test or contributed most to the first principal component in the case of PCA within all 104 LOOCV(rc) iterations.
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by pLDA with resampling in all as well as in more than half
of LOOCV(rc) folds, mean discriminative weights (specifically,
mean of non-zero weights over 100 resampling iterations
and 104 LOOCV(rc) folds) were calculated and visualized
(Figure 5).

DISCUSSION

In our experiment with T1-weighted MRI data of 52 FES patients
and 52 HC, we found that pLDA with resampling, which is
a supervised, multivariate, whole-brain reduction technique,
did not yield a significantly better classification performance
than unsupervised, multivariate reduction using PCA or mass
univariate selection using a t-test as well as unreduced data in
the case of LOOCV(rc). If LOOCV was performed only during
classification, pLDA yielded significantly better classification
accuracy than PCA because the pLDA results were considerably
optimistically biased even though we performed resampling
within the pLDA algorithm. Our results also showed that PCA
was less prone to overtraining in the case of LOOCV(c) because
PCA does not use labels during data reduction compared with
pLDA and a t-test. So, the results indicate that LOOCV(c) is
incorrect and lead to biased classification results (especially in the
case of supervised data reduction methods despite of performed
resampling within the reduction methods) and LOOCV(rc) must
be used instead.

In our experiment, we also investigated how data
preprocessing influenced our classification results. We used
two types of features obtained by different preprocessing of
the MRI data, namely local deformations and GM volumes.
We decided not to use the MRI intensities since they yielded
considerably poorer classification results compared with the
two other types of features in our previous study (Janousova
et al., 2015). Here, we achieved similar performances using
LOOCV(rc) classification based on local deformations and GM
volumes reduced using pLDA. The same was true for data
reduced using a t-test. In the case of reduction using PCA, local
deformations enabled a more accurate classification than was
possible using GM volumes. When we performed LOOCV(c),
the GM volumes reduced by pLDA as well as a t-test led to
slightly less overestimated results than in local deformations.
The most discriminating local deformation features that were
automatically detected by pLDA with resampling were located
in the left prefrontal cortex, the cerebellar cortex, the medial
parts of the thalamus and the right anterior insula. Furthermore,
the most discriminating GM volume features also formed
clusters in the inferior frontal gyrus, the anterior cingulum, the
hippocampus and parahippocampal gyrus, and the superior
and middle temporal gyrus. All of these results are consistent
with the findings published in previous studies (Wright et al.,
2000; Shenton et al., 2001; Niznikiewicz et al., 2003; Honea et al.,
2005; Ellison-Wright et al., 2008). Moreover, it is known that
these brain areas are involved in higher cognitive, integrative
and regulatory functions that are impaired in schizophrenia
(Niznikiewicz et al., 2003; Antonova et al., 2004). For example,
prefrontal anomalies have been involved in negative symptoms

and cognitive impairments such as deficits in working memory
and executive functions (Goldman-Rakic and Selemon, 1997).
The validity of the selected most discriminative brain regions
was also confirmed by t-test. Unfortunately, a direct comparison
of areas of most discriminating local deformations and GM
volumes is not possible because of different resolution of the
two types of images. Nevertheless, the comparison of brain
areas was not a goal of this study. We aimed at using imaging
data at their highest possible resolution and we wanted to avoid
loss of information in the local deformations by resampling
the deformation images to 1.5 × 1.5 × 1.5mm. Regarding the
features whose loadings contributed most to the first principal
component, they covered almost entire brain or gray matter
areas. Even if the thresholding of the loadings was stricter
leading to smaller brain regions, those regions could not be
considered as the discriminative ones because PCA does not
aim for identification of discriminative features but rather for
efficient data representation while preserving maximum amount
of variance without regard to data labels (Kasparek et al., 2011,
Janousova et al., 2015).

We additionally examined classification performance using
two most common classification methods: LDA and linear
SVM. We used LDA here for classification since we wished
to ensure that our results would be comparable with other
studies despite the fact that results obtained using LDA might
be unstable in cases with a limited number of subjects for
analysis (Thomaz et al., 2007). We also used linear SVM
because of comparability with other studies and because we
wished to avoid overtraining, which can arise when nonlinear
kernels are used (Mourao-Miranda et al., 2012). Performing only
the experiments with LOOCV during classification because a
reduction using pLDA contained resampling that should prevent
overestimating the results, we could state that LDA and linear
SVM yield similar classification results (maximum accuracies of
85.6% (82.7% sens., 88.5% spec.) and 86.5% (88.5% sens., 84.6%
spec.), respectively, for the classification of local deformations;
and maximum accuracies of 83.7% (84.6% sens., 82.7% spec.)
and 80.8% (80.8% sens., 80.8% spec.), respectively, for the
classification of GM volumes). Such classification performance
is superior to previous studies based on LDA that reported
classification accuracies ranging from 70.7 to 82.9% based on
MRI data (Leonard et al., 1999; Nakamura et al., 2004; Takayanagi
et al., 2010; Karageorgiou et al., 2011; Ota et al., 2012) as well
as a meta-analytical sensitivity of 76.4% (95% CI: 71.9–80.4%)
and specificity of 79.0% (95% CI: 74.6–82.8%) based on 20
structural MRI studies (Kambeitz et al., 2015). Nevertheless,
such LOOCV(c) approach is incorrect. Thus, we also performed
experiments with LOOCV used during data reduction and
classification and we achieved poorer results; for the classification
of local deformations using LDA and linear SVM, the maximum
accuracy was 68.3% (63.5% sens., 73.1% spec.) and 70.2% (67.3%
sens., 73.1% spec.), respectively. For the classification of GM
volumes, the maximum accuracy that we achieved was 68.3%
(67.3% sens., 69.2% spec.) and 67.3% (65.4% sens., 69.2% spec.),
respectively. Classification based on data reduced using PCA or a
t-test was even slightly less accurate apart from the classification
of GM volumes reduced with a t-test with p < 0.005 using linear
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FIGURE 5 | Visualization of mean discriminative weights of local deformation (DEF) and gray matter (GM) volume features selected by pLDA with

resampling (for λ = 1.6 and λ = 0.9, respectively) in: (A) all LOOCV(rc) iterations, (B) more than half of LOOCV(rc) iterations. The mean weights were

calculated as an average of non-zero coefficients of v over 100 resampling iterations and 104 LOOCV(rc) folds.

SVM with LOOCV(rc) with an accuracy of 69.2% (65.4% sens.,
73.1% spec.).

The reason why our classification performance with LOOCV
performed during data reduction and classification is so limited
may be due to the fact that schizophrenia is not a single
disease entity but instead a group of phenotypically similar
disorders (although the current knowledge is not sufficient to
isolate these disorders; Silveira et al., 2012). Another possibility
is that our cohort of patients contained subjects with a future
episodic course who could not be distinguished from healthy
individuals (Mourao-Miranda et al., 2012). Such heterogeneity in
data samples causes an overlap in discriminative features between
patients and controls which leads to a drop of classification
accuracy (Schnack and Kahn, 2016). Another reason explaining
the limited classification performance of our results might be that
the findings of other studies were biased because authors used
a mixture of first-episode and chronic schizophrenia patients,
a combination of male and female subjects, a small number
of subjects, and/or incorrect classification. It is already known
that the statistical power of neuroscience studies is often very
low and that the effect size is frequently overestimated (Button
et al., 2013). To avoid optimistically biased results, we used
only patients with a first episode of schizophrenia in our study;

medication affects whole-brain GM volume (Ho et al., 2011),
and therefore brain anatomy abnormalities observed at the first
episode of schizophrenia are likely to be much more subtle
relative to chronic schizophrenia (Ellison-Wright et al., 2008).
Therefore, the classification performance can be overestimated if
the data set contains chronic schizophrenia patients in addition
to FES patients. For example, a previous study recovered an
accuracy of 90.8% for male subjects and 91.8% for female subjects
while discriminating a mixed group of FES and chronic patients
from healthy individuals using the COMPARE algorithm (Fan
et al., 2007); whereas the same algorithm yielded an accuracy
of 73.4% for the classification of only FES and healthy subjects
(Zanetti et al., 2013). Furthermore, to reduce bias in our results,
we used only males in our study because it has been shown that
there are differences in structural brain abnormalities in males
and females (Nasrallah et al., 1990). In terms of the data sets
used in classification experiments, an independent validation set
should be used ideally (Nieuwenhuis et al., 2012; Schnack and
Kahn, 2016). When no external validation set is available (which
is unfortunately frequent in neuroimaging studies), Nieuwenhuis
et al. (2012) recommend using more than 130 subjects as small
number of subjects can lead to unstable classification models.
Even though our study does not include such a large number
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of subjects, our data set containing 104 subjects is still much
larger than the data sets used in many previously published
MRI-based classification studies of schizophrenia (Leonard et al.,
1999; Kawasaki et al., 2007; Sun et al., 2009; Takayanagi et al.,
2010; Karageorgiou et al., 2011; Kasparek et al., 2011; Borgwardt
et al., 2012; Pettersson-Yeo et al., 2013). Concerning the influence
of type of LOOCV, apart from our current study in which
results based on LOOCV performed only during classification
are noticeably overestimated, another example is in study of
Nieuwenhuis et al. (2012) that achieved an accuracy of 86.8%
in their discovery sample while selecting the top 10% of features
ranked based on the absolute values of the elements of the weight
of the SVM vector compared with an accuracy of 69.1% obtained
using an independent validation data set based on the selected
features. When no data reduction was performed, these authors
obtained similar accuracies in their discovery sample (71.4%) and
validation sample (70.4%).

Our current results, as well as a meta-analysis by Kambeitz
et al. (2015), suggest that even though much work has focused
on using neuroimaging data to distinguish schizophrenia
patients from healthy individuals, the classification performance
is still too low to be considered for clinical application.
Therefore, researchers should focus on continuing schizophrenia
research and improving as well as inventing data reduction
and classification methods to attain better classification
performances; early and accurate diagnoses have the ability
to shorten the duration of untreated psychosis and therefore
improve therapeutic outcomes and overall patient prognoses
(Perkins et al., 2005). One way of improving classification
performance may be to use different imaging modalities,
such as diffusion tensor imaging (DTI) or functional MRI.
These modalities are capable of revealing information about
connections inside the brain which could be of help in

classification as schizophrenia is characterized by a deficit of
interconnections (Michael et al., 2008). A promising accuracy
of 96% for the classification of DTI data has already been
reported (Ardekani et al., 2011), but the results may be a bit
too optimistic since the authors used a mixture of FES and
chronic patients and numbers of patients and controls were
low (25 subjects in each group). Resting-state functional MRI
also exhibits promising results since its sensitivity was higher
than that of structural MRI studies (Kambeitz et al., 2015).
However, the resting-state functional MRI studies were based on
quite small samples; while using large samples, the classification
accuracy will probably decrease (Schnack and Kahn, 2016).
To conclude, even though the classification performance of
schizophrenia classification studies is still too low for application
in schizophrenia diagnostics, schizophrenia research should
continue with future studies performed on large samples free
of chronic schizophrenia patients using correctly designed and
performed classification procedures.
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