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From the time of birth, a newborn is continuously exposed and naturally attracted to

human voices, and as he grows, he becomes increasingly responsive to these speech

stimuli, which are strong drivers for his language development and knowledge acquisition

about the world. In contrast, young children with autism spectrum disorder (ASD) are

often insensitive to human voices, failing to orient and respond to them. Failure to attend

to speech in turn results in altered development of language and social-communication

skills. Here, we review the critical role of orienting to speech in ASD, as well as the

neural substrates of human voice processing. Recent functional neuroimaging and

electroencephalography studies demonstrate that aberrant voice processing could be a

promising marker to identify ASD very early on. With the advent of refined brain imaging

methods, coupled with the possibility of screening infants and toddlers, predictive brain

function biomarkers are actively being examined and are starting to emerge. Their timely

identification might not only help to differentiate between phenotypes, but also guide

the clinicians in setting up appropriate therapies, and better predicting or quantifying

long-term outcome.
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INTRODUCTION

Autism, a term initially introduced by Kanner (1943) and almost at the same period by Asperger
(1944), is a pervasive disorder of neurodevelopment with an early onset. According to the most
recent census, autism affects up to 1 in 68 children (1.5%) in the United States (Baio, 2014).
ASD is characterized by impairments in core areas of cognitive and adaptive function, social
interactions, and communication (American Psychiatric Association and American Psychiatric
Association. Dsm-5 Task Force, 2013). Individuals with ASD show a reduced interest in socially
relevant stimuli (McPartland et al., 2011; Pelphrey et al., 2011; Chevallier et al., 2012; Kohls et al.,
2012), tend to avoid eye-contact with their immediate surrounding (Senju and Johnson, 2009;
Elsabbagh et al., 2012; Jones and Klin, 2013), and show repetitive behaviors and restricted interests
(Turner, 1999; Watt et al., 2008; Arnott et al., 2010). Moreover, affected children often present
language delay, with deficits in expressive and receptive language skills (Hudry et al., 2010; Eigsti
et al., 2011; Mody et al., 2013; Simms and Jin, 2015). Multiple causes are implicated in autism

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00393
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00393&domain=pdf&date_stamp=2016-08-25
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:holger.sperdin@unige.ch
http://dx.doi.org/10.3389/fnins.2016.00393
http://journal.frontiersin.org/article/10.3389/fnins.2016.00393/abstract
http://loop.frontiersin.org/people/3430/overview
http://loop.frontiersin.org/people/76376/overview


Sperdin and Schaer Aberrant Voice Processing in Autism

and recent accounts indicate the presence of abnormal
development occurring at the cellular and molecular levels
during prenatal life (Stoner et al., 2014; Baron-Cohen et al., 2015),
with a clear impact of genetic, neurobiological, environmental
factors, and combinations thereof (Geschwind and Levitt, 2007;
Abrahams and Geschwind, 2010; Betancur, 2011; Zhubi et al.,
2014; Robinson et al., 2015). One of the core domains that is
particularly impaired and that constitutes a hallmark feature in
autism is language. Behaviorally, children with autism do not
orient naturally to vocal stimuli as typically developing (TD)
children do (Dawson et al., 2004; Kuhl et al., 2005). They often
show a reduced sensitivity to human voices, but are responsive
to other non-vocal stimuli (Klin, 1991, 1992). This would suggest
that the neural mechanisms underlying the orientation to voices
and their processing might not develop in the same way as in TD
individuals. Currently, the exact time when the developmental
trajectory of the brain systems implicated in human voice
processing starts to deviate from a normal path is unknown,
but recent neuroimaging results that we discuss below suggest
the presence of differences already from the age of 2 years (e.g.,
Lombardo et al., 2015).

Neuroimaging provides an excellent window to better
understand the neural bases of speech and language
abnormalities in young children with ASD. Differences in
brain anatomy have been investigated using structural magnetic
resonance imaging (MRI); patterns of changes to structural
connectivity have been examined using diffusion tensor imaging
(DTI); changes in cortical activity measured using functional
MRI (fMRI); and altered spatio-temporal brain dynamics
quantified using high-density electroencephalography (EEG).
Despite the fact that all these techniques are non-invasive, their
use in children involves numerous challenges (de Bie et al.,
2010; Raschle et al., 2012). Perhaps the most noteworthy of
these challenges is the requirement for the child to remain still
for extended periods of time, otherwise creating difficulties
for placing the electrode caps on a young child’s head in
EEG experiments, or leading to movement artifacts in MRI
acquisitions. Nonetheless, recent years have seen practical and
methodological advancements, which tremendously improved
the feasibility of neuroimaging research studies in young
children (in particular in the MRI field). For example, mock MRI
scanning facilities are increasingly used to prepare preschoolers
and school-aged children for a successful real MRI acquisition
(Cantlon et al., 2006; Epstein et al., 2007; de Bie et al., 2010;
Nordahl et al., 2016). Although initial studies of infants and
toddlers used anesthesia or mild sedation (e.g., Boddaert et al.,
2004a; Fransson et al., 2007), protocols for obtaining MRI
acquisitions during natural sleep have been proposed for young
children with ASD (e.g., Nordahl et al., 2008; Ortiz-Mantilla
et al., 2010; Eyler et al., 2012; Shen et al., 2013; Lombardo
et al., 2015). Scanning during natural sleep allows to study
at the functional and structural levels how the brain systems
implicated in human speech and language processing are
developing in very young infants and toddlers and to detect
early biomarkers for ASD. We will discuss how these recent
neuroimaging studies performed in very young children with
ASD or at risk have begun to reveal impairments at multiple

levels in the brain systems implicated in speech and language
processing.

In EEG, the experiments are generally performed during
wakefulness (see Figure 1; e.g., Boersma et al., 2013; Kuhl et al.,
2013; Seery et al., 2013, 2014). The EEG field has also seen
recent methodological advancement. Modern electrical source
estimations of high density EEG now reach an approximation in
the whole brain of the 3-D distribution of the neuronal activity
at each moment in time (Michel et al., 2004; Brunet et al., 2011;
Michel and Murray, 2012; Custo et al., 2014) and have been
shown to represent stable and reliable estimates when compared
with intracranial recordings, lesions and animal studies and other
neuroimaging methods (Pittau et al., 2014 for review). For this
reason, EEG studies of infants at risk and toddlers with ASD
should provide source estimations when possible as they may
add valuable information regarding how they differ in their
early brain development compared to their TD peers. Improving
the precision of source localization by using individual MRI
scans of infants/toddlers or age-appropriate template MRIs is
also possible. Their estimation in normally and abnormally
developing infants/toddlers (or those at risk) can subsequently
be compared with results from available fMRI experiments. This
is important as most fMRI experiments are currently being
performed in a sleep state while EEG experiments are mostly
being conducted in awake participants. Finally, compared to the
EEG experiments using a traditional voltage waveform analysis
approach and that will be reviewed here, electrical neuroimaging
methods are reference-independent and take into account the
additional information of multichannel electrodes recordings.
As such, they avoid the traditional statistical pitfalls inherent
to traditional voltage waveform analysis (see Murray et al.,
2008 for discussion). So-called “microstate” analyses are also
available, allowing to identify dominant state topographies in
spontaneous EEG recordings acquired in young infants and
toddlers with ASD (Koenig et al., 2002; Lehmann and Michel,
2011). These methods have been successfully applied on EEG

FIGURE 1 | Example of an EEG set-up with a young child. A video is

displayed on a standard screen, and the child is wearing a 129 electrodes cap.

Sounds are displayed via external speakers.
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data acquired in clinical population of children and young
adolescents (Rihs et al., 2013; Berchio et al., 2014; Tomescu
et al., 2014) and could be used to examine the developmental
trajectories of infants/toddlers with ASD and infants at risk for
autism.

While other reviews of auditory and speech processing
impairments have been published focusing on older children and
adults (e.g., Haesen et al., 2011; Kujala et al., 2013), here, we
provide an overview of some of the most recent neuroimaging
experiments (primarily fMRI and EEG) of very young children
(before 4 years of age) with ASD investigating impairments
in the brain systems implicated in human vocalizations and
henceforth speech and language processing (e.g., Kuhl et al.,
2013; Lombardo et al., 2015) and in at-risk populations (before
the age of 2) to identify early endophenotypes (Seery et al.,
2013, 2014; Blasi et al., 2015). We will principally review recent
experiments that have used voice related auditory stimuli (e.g.,
sentences, words, syllables). After a brief description of the
language development in the typically developing individual
during the first year, we will summarize part of the clinical
body of evidence pointing to altered speech and language
development in very young children with ASD and in infants at
high-risk for ASD. Afterwards, we describe the neural systems
within the superior temporal cortical regions implicated in
human voice processing and their development in the TD
brain and present functional evidence in adults and young
adolescents indicating the presence of an aberrant form of voice
processing. Next we focus on the cross-sectional studies using
fMRI and EEG which were conducted at specific time points
during infancy/toddlerhood. They address group differences
in early speech and language-related processing within these
voice areas within superior temporal cortical regions along
other language related brain neural systems. The results thereof
indicate the presence of structural, functional, and connectivity
group differences being already present in infancy and/or
toddlerhood. We finally highlight recent results from the few
existing prospective fMRI and EEG studies which employed a
longitudinal design and demonstrated by using voice related
auditory stimuli that aberrant voice processing is not only a
feature present in older children and adults with ASD but also
a promising candidate to identify ASD very early on during the
development.

LANGUAGE DEVELOPMENT IN TYPICALLY
DEVELOPING INDIVIDUALS

The different steps involved in early speech perception and
production have been extensively examined (see Figure 2; Kuhl,
2004, 2010 for reviews). TD newborns are rapidly attracted by
human voices within the first days of life (Cheng et al., 2012).
At 1 month of age, they are already responsive to speech sounds
(Eimas et al., 1971). Language-related brain areas are activated
in response to human speech sounds to some extent in 3 month
old infants, well before the onset of speech production (Dehaene-
Lambertz et al., 2002, 2006), while cerebral specialization for the
human voice over other sounds emerges over the first 6 months

of life (Minagawa-Kawai et al., 2011; Lloyd-Fox et al., 2012). By
4 months, infants know that speech conveys information that
relate words to physical objects (Marno et al., 2015). Around
5 months, they can recognize the sound patterns of their own
name, and between 6 and 9 months they are capable of correctly
directing their gaze to named pictures suggesting the presence
of some form of word comprehension (Mandel et al., 1995;
Tincoff and Jusczyk, 1999, 2012; Bergelson and Swingley, 2012).
With respect to pre-linguistic production skills, between 0 and
2 months, newborns first produce vegetative vocalizations (non-
speech sounds such as burps, coughs, and cries). At 3 months,
infants start to produce vowel-like sounds followed by the onset
around 6 months of a babbling phase that becomes robust by
10 months of age. Canonical babbling is a precursor to the
emergence of the first words production, which are generally
produced by the end of the first year. During the first year of the
infant’s development and the following years into toddlerhood,
the human voice is a natural driver for the infant’s language skills
development.

LANGUAGE DEVELOPMENT IN TODDLERS
WITH ASD AND INFANTS AT RISK

In individuals with autism, the degree of impairment and
delay in language greatly varies from one person to another,
with a tremendous heterogeneity in early language development
and later clinical outcomes (Mitchell et al., 2006; Geurts and
Embrechts, 2008; Luyster et al., 2008; Tager-Flusberg et al.,
2009; Lenroot and Yeung, 2013; Lord et al., 2015). Some
toddlers present substantial delay or deficits while others have
a typical early language development or mild delay and catch
up. The former are children that often show the most severe
and pertaining symptoms in the long term, compared to those
with relatively preserved language abilities (Fein et al., 2013;
Kasari et al., 2013; Tager-Flusberg and Kasari, 2013). Converging
clinical estimates indicate that more than half of the children
with ASD will have persisting language impairments throughout
their lifespan (e.g., Anderson et al., 2007; Pickles et al., 2014).
So far, the heterogeneity of early language development and the
neurodevelopmental basis for this variability in clinical outcomes
are not fully understood. In this review, we also discuss how
neuroimaging studies examining the neural bases of early human
speech and language impairments in autism have started to be
used to predict outcome in affected children.

In toddlers with ASD, language difficulties are often present
both when they are spoken to (i.e., receptive language) and
when they express themselves (i.e., expressive language; Hudry
et al., 2010; Simms and Jin, 2015). Indeed, parents of children
diagnosed with ASD often sought medical advice because of
strong concerns related to language development (Dahlgren and
Gillberg, 1989; De Giacomo and Fombonne, 1998; Wetherby
et al., 2004; Herlihy et al., 2015). Retrospective interviews
with the families, analysis of retrospective video birthday tapes
recorded at 12 months of age of children diagnosed with
ASD, as well as prospective accounts of infants at risk often
report an unresponsiveness to name and a general lack of
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FIGURE 2 | Illustration of the changes occurring in speech perception and production in typically developing human infants during their first year of

life (adapted from Kuhl, 2004). Red dashed rectangles indicate early expressive and receptive language delays/impairments (that is, unresponsiveness to name,

delayed canonical babbling, increased non-speech productions, decreased speech-like vocalization, delayed occurrence of the first words) known to be sensitive

indicators of an increased risk for later being diagnosed with ASD

orientation to human voices (Osterling and Dawson, 1994;
Baranek, 1999; Yirmiya et al., 2006; Nadig et al., 2007; Oner
et al., 2014; Stenberg et al., 2014). In sum, a large body of
clinical studies to date point to expressive and receptive language
deficits already in the first year of life for young children
who will subsequently develop ASD during toddlerhood,
suggesting that the neural systems responsible for orienting
to and processing human vocalizations are altered very early
on.

Infants at risk for autism are increasingly studied
prospectively, to measure whether the abilities to understand
language described above are already altered in infants who
will develop autism later on. Siblings of a child with ASD
have a very high risk to develop ASD, ∼20 times higher
compared to infants with no family history of ASD (Rogers,
2009; Ozonoff et al., 2011). In a context where early intensive
non-pharmacological interventions are critical to improve the
long term outcome of affected individuals (Dawson, 2008;
Dawson et al., 2010; Klintwall et al., 2013), it is instrumental
to detect ASD as early as possible, (see also Schaer et al.,
2014 for a review). As such, studies of high-risk infants allow
to map the early developmental trajectories of infants who
will develop ASD, and to highlight endophenotypes of ASD

(Viding and Blakemore, 2007). Numerous studies of high-risk
infants focused on early language development as delays in
communication and language development become apparent
early in life, even before the first year or shortly thereafter.
Differences in vocal production (such as consonant inventory,
presence of canonical syllables, and non-speech vocalizations),
between low-risk and high-risk infants between 9 and 12
months has been associated with later outcomes at 24 months
(Paul et al., 2011; Jones et al., 2014 for review). Another
prospective study of infants at risk tested at target ages 6, 14,
and 24 months and who were followed up and diagnosed with
ASD at 24 months indicates that language delays or deficits
are already observable at around 14 months of age (Landa
and Garrett-Mayer, 2006). A recent retrospective study of
toddlers with ASD reported low rates of canonical babbling and
vocalization frequency between 9 and 12 months and 15–18
month compared to age-matched TD peers, several months
before a diagnosis of ASD was made (Patten et al., 2014). As
a result, a delay or deficit in language development very early
on has become integral part of the red flags indicating a greater
susceptibility for developing autism (Barbaro and Dissanayake,
2009; Zwaigenbaum et al., 2013; see Figure 2, red dashed
rectangles).
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THE VOICE AS A UNIQUE AUDITORY
STIMULUS IN THE TYPICALLY
DEVELOPING BRAIN

The human voice is clearly one of the most salient and important
auditory stimuli in our acoustic environment. It conveys both
linguistic and extra-linguistic information. It delivers speech
information permitting us as individuals to recognize the others
and to attribute emotional states to them (Belin et al., 2000;
Ethofer et al., 2009). While language is generally thought to
be processed in specialized brain areas such as the inferior
frontal gyrus (IFG; also known as Broca’s area), the superior and
middle temporal gyruses (STG, MTG, also termed Wernicke’s
area) and angular gyrus, voice selective areas have been located
bilaterally in the upper bank of the middle superior temporal
sulcus (STS) over the temporal poles (see Figure 3A). Their
existence has particularly been highlighted by fMRI experiments
in the adult brain by comparing the cortical activation patterns
induced by vocal vs. non-vocal sounds (Belin et al., 2000,
2004; Kriegstein and Giraud, 2004; Belin, 2006, for review;
Latinus and Belin, 2011; Deen et al., 2015; Pernet et al., 2015).
When a voice is perceived, the brain begins by a low-level
analysis of the acoustic features involving sub-cortical nuclei
and primary auditory cortical regions. Subsequently, the voice
is processed during a voice-specific stage where its structure is
encoded. Three types of vocal information are then extracted
and further processed in partially separable but functionally
interacting pathways: the speech content, the affective content
and the vocal identity (see Figure 3B). Early studies of very
young infants have shown that voice sensitive cortices within
the temporal areas develop as a voice selective brain system
between 4 and 7 months of age in the typically developing
brain and to become responsive to the quality of the voice
during speech (emotional voice prosody) by the age of 7 months
with a right hemispheric dominance (Belin and Grosbras, 2010;
Grossmann et al., 2010; Blasi et al., 2011; Lloyd-Fox et al., 2012).
A recent study of typically developing preschoolers (mean age
= 5.8 years) compared voice-specific vs. speech-sound specific
functional brain activity and demonstrated that the right STS
already works as a specialized temporal voice system (Raschle
et al., 2014), similarly to what has been reported in the adult brain
(Belin et al., 2002; Belin and Zatorre, 2003; von Kriegstein et al.,
2003).

ABERRANT VOICE PROCESSING IN
OLDER CHILDREN AND ADULTS WITH
ASD

Difficulties to speak and to interact socially in an appropriate
manner are central traits of autism and have been linked to
abnormal processing of social information in both the visual
and auditory modalities (e.g., Dawson et al., 1998, 2004; Klin
et al., 2009; Chevallier et al., 2012 for review). Children and
adults with ASD often tend to ignore human vocalizations
in their surrounding but are responsive to other non-vocal
stimuli indicating a detachment from their social environment

FIGURE 3 | (A) Temporal voice areas (TVA). The TVA (represented here by the

red dots) are mostly located along the middle and anterior parts of the superior

temporal sulcus (STS) bilaterally over the temporal plan (represented here in

green). (B) A model of voice perception. After a stage of voice structural

encoding constrained to vocal sounds, three partially dissociable functional

pathways process the three main types of vocal information: speech, identity,

and affect (adapted from Belin et al., 2004).

(Klin, 1991, 1992; Kuhl et al., 2005). Early acquisition of
language capacities is closely intertwined to social function in
typically developing children and children on the spectrum (e.g.,
Goldstein et al., 2003; Kuhl et al., 2003; Norbury et al., 2010).
Although, it is still not established why many individuals with
ASD are often insensitive to human vocalizations, anomalies
within voice selective areas have been highlighted in older
children and adults with ASD. Using fMRI, Gervais and
colleagues showed in a seminal study that adults on the
spectrum (mean age = 25 years) failed to activate voice selective
regions of the STS but showed similar activation patterns
to the comparison group in response to non-vocal sounds
(Gervais et al., 2004). This finding suggested an aberrant form
of processing with respect to auditory information having
a social content such as a voice does. This would suggest
that a sound with a social content might not be adequately
processed, most likely due to the abnormal development
of cerebral regions implicated in the analysis of the social
content of auditory stimuli (Gervais et al., 2004). Decreased
gray matter volume in the bilateral voice specific STS have
been observed in 10 year old children with ASD (Boddaert
et al., 2004b). Abrams and colleagues hypothesized that this
may be the consequence of individuals with ASD having
impaired function of emotional and reward systems which in
turn prevents them from engaging with acoustic information
with a high social content such as speech stimuli (Abrams
et al., 2013). In order to test their hypothesis, Abrams and
colleagues scanned and compared 20 young children with
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ASD to age- and intelligence quotient-matched TD controls
(mean age = 9.8 years) using a resting-state fMRI protocol.
By looking at the intrinsic functional connectivity in the
voice-selective posterior STS (pSTS) bilaterally, they found
the presence of underconnectivity between the left-hemisphere
pSTS and the bilateral ventral tegmental areas in children
with ASD. This was also the case for other regions such as
the nucleus accumbens, left-hemisphere insula, orbitofrontal,
and ventromedial prefrontal cortices. Moreover, diminished
connectivity was evident between right-hemisphere pSTS and the
orbitofrontal cortex and amygdala.

An important aspect of the study by Abrams and colleagues
was that the degree of underconnectivity between voice-selective
cortex and reward pathways predicted symptom severity for
communication deficits in children with ASD, thus providing
a connectivity biomarker for this specific group of patients.
The study of the connectivity profile using a resting-state
fMRI protocol during infancy and toddlerhood is now needed
to further our understanding regarding how the functional
connectivity between reward pathways and voice- and speech-
related brain areas develops. Several neuroimaging studies
performed in high-functioning older children and adults with
ASD point to the presence of impairments in the neural
basis of language processing in general (e.g., Gaffrey et al.,
2007; Knaus et al., 2008; Herringshaw et al., 2016 for recent
review). These experiments often including an overt task have
revealed the existence of abnormal frontal and/or temporal
responses during language processing tasks compared to TD
individuals and reversed or reduced laterality within fronto-
temporal language regions (e.g., Boddaert et al., 2003; Flagg
et al., 2005; Kleinhans et al., 2008; Knaus et al., 2010;
Lindell and Hudry, 2013; Herringshaw et al., 2016). In sum,
experiments that used language tasks or rest scanning in
the awake state indicate the presence of aberrant processing
of human vocalizations in older children and adults with
ASD.

In the following sections, we summarize the experiments
investigating the neuronal underpinnings of human speech and
language abnormalities during early periods of development:
infancy and toddlerhood. These recent experiments have mostly
used auditory speech stimuli which implicitly require analysis
of the human voice. Importantly, several studies have included
low-functioning toddlers with ASD or studied infants at high-
risk for ASD. In contrast to experiments performed with
older high-functioning children and adults with ASD and that
include a task, scanning of very young infants is performed
during natural sleep, at rest in the absence of an overt
task or by passively presenting speech-stimuli (e.g., sentences,
words, syllables). Overall, findings from these studies indicate
that the brain systems implicated in human speech and
language processing follow a different developmental pathway
in individuals with ASD when compared to TD individuals
very early on in the development already. We begin by a
summary of the structural and functional differences that
have been found in young toddlers with ASD and infants at
risk.

STRUCTURAL DIFFERENCES IN
TODDLERS WITH ASD AND INFANTS AT
RISK

Several studies suggested brain overgrowth during the first year
of life in toddlers with ASD (e.g., Courchesne et al., 2001,
2003, 2011; Redcay and Courchesne, 2005; Hazlett et al., 2011;
Nordahl et al., 2011; Shen et al., 2013). For example, Sparks and
colleagues measured an increased brain volume in toddlers with
ASD (aged 3–4 years) compared to aged-matched TD controls
and developmentally delayed (DD) children (Sparks et al., 2002).
Longitudinal measurements indicate the presence of gray and
white matter cerebral overgrowth in toddlers at 2 years (Hazlett
et al., 2005). In a longitudinal study, Schumann and colleagues
followed up toddlers and school aged children with ASD (1.5
years up to 5 years of age). They found both gray and white
matter enlargements by 2.5 years of age in fronto-temporal
regions along with cingulate cortices, regions related but not
limited to language development (Schumann et al., 2010). A
global increase in gray matter volumes in toddlers with ASD aged
between 2 and 3 years compared to DD toddlers has recently
been reported (Xiao et al., 2014). The locus of this difference
manifested regionally in the right STG, a cortical region known
to be involved in spoken language comprehension (Lattner et al.,
2005). In older children with ASD, this locus has been shown
to be enlarged to aged match controls (mean age = 13.5 years;
Jou et al., 2010) and to exhibit a different pattern of activation
during speech processing compared to TD adolescents (mean age
= 12 years; Lai et al., 2011). Other studies indicate the presence of
structural anomalies within language-related brain areas in older
children and adults (e.g., Prigge et al., 2013; Itahashi et al., 2015;
Lai et al., 2015). It is hypothesized that this early brain overgrowth
during infancy and toddlerhood in ASD is followed by a period
of decline in brain size from childhood to adulthood (Courchesne
et al., 2011; Lange et al., 2015).

Diffusion imaging studies have also revealed the presence
of widespread disruption of white matter integrity in long-
range and short-range connections in toddlers, older children
and adults with ASD (see Hoppenbrouwers et al., 2014; Conti
et al., 2015 for reviews). For example, accelerated white matter
maturation has been reported in a small sample of seven
participants aged between 1.8 and 3.3 years (Ben Bashat et al.,
2007). Altered white matter integrity has also been found in
toddlers with ASD (mean age= 3.2 years; Weinstein et al., 2011).
Xiao et al. (2014) showed altered structural brain connectivity
in multiple regions that have been related but not limited
to language functions such as the posterior cingulate cortex,
subregions of the limbic lobes as well as the corpus callosum
in toddlers with ASD aged between 2 and 3 years (Xiao et al.,
2014). It even appears that white matter anomalies might develop
before the first year in infants who are later diagnosed with ASD.
Wolff and collegues observed abnormalities in white matter fiber
tracts in infants at risk (at 6 months) and who were diagnosed
at 24 months (Wolff et al., 2012). In a recent study of infants
at high-risk for ASD and diagnosed at 24 months, white matter
connectivity abnormalities were present specifically over Broca’s
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area in the frontal lobes, and more generally in the temporal,
parietal, occipital lobes as compared to both low-and high-risk
infants not classified as ASD (Lewis et al., 2014).

Anatomical data indicate a period of early brain overgrowth
(between 1 and 5 years) followed by normalization during
adolescence. Structural connectivity experiments also report a
developmental shift from greater structural connectivity in very
young children with ASD to lower connectivity in older children
(see Hoppenbrouwers et al., 2014; Conti et al., 2015 for recent
discussions). These alterations impinge on acquiring normal
language functions and lead to other higher-order cognitive,
social, and communicative functions deficits. However, it is still
unclear how those differences relate and can yet reflect the early
language development heterogeneity inherent to autism. The
field is also currently hampered by the widespread methodology
differences in terms of subject inclusion criteria (high vs.
low functioning autism), control groups, size of cohorts, age
range, neuroimaging methods and parameters. Future cross-
sectional and longitudinal experiments spanning early childhood
to adulthood are necessary including larger sample size. Only
then it will be possible to get a clearer picture within this complex
and increasingly expanding field of research.

FUNCTIONAL STUDIES IN TODDLERS
WITH ASD USING VOICE-RELATED
AUDITORY STIMULI

Brain abnormalities underlying human voice processing during
toddlerhood have also been found. A seminal EEG experiment
performed by Kuhl et al. (2005) indicated the presence of
different event-related potential (ERP) response pattern to speech
stimuli in toddlers with ASD compared to TD (mean age =

3.5 years). In this experiment, toddlers were passively presented
with standard and deviant phonemes. In individuals with typical
development, contrasting the brain responses that are produced
by the deviant sound with the ones produced by the standard
sound causes a mismatch negativity (MMN). The MMN is
a robust index of automatic sound discrimination (MMN,
Näätänen, 1995, 2003 for reviews). In toddlers with ASD, there
was no evidence for an MMN, whereas in TD the MMN
was present. Using an auditory preference test, the group of
toddlers with ASD was subdivided between those who preferred
human vocalization (i.e., motherese speech sounds) and those
who preferred non-speech analogs. An MMN appeared in the
group that preferred motherese sounds similarly to what was
found in TD toddlers while toddlers with ASD who preferred
the non-speech sounds still did not exhibit an MMN. These
findings are important as they reveal a link between early social
preferences and early language processing skills in toddlers
with ASD.

A functional study by Redcay and Courchesne (2008) found
that the brain systems of speech perception were responding
differently to speech stimuli in toddlers with ASD compared
to TD toddlers. In a cross-sectional experiment with a small
sample size, the authors scanned toddlers aged between 2
and 3 years using a natural sleep fMRI experimental design.

They recorded brain activity when toddlers were asleep and
listened to normal speech of a human voice (forward and
backward speech stimuli), and the ones from toddlers with
ASD. Results indicated the recruitment of different regions and
with a different laterality dominance. Specifically, toddlers with
ASD exhibited hypoactivation of many regions traditionally
recruited during early language acquisition in comparison to
those with TD, suggesting that at that age toddlers with ASD
are already on a deviant developmental trajectory characterized
by a greater recruitment of right hemispheric regions during
speech perception (Redcay and Courchesne, 2008). The same
research group then performed an fMRI experiment where they
increased their sample size and included even younger children
(aged between 12 and 48 months; Eyler et al., 2012). Using a
prospective, cross-sectional design this time, 80 toddlers listened
to a bedtime story during their sleep (speech sound stimuli
from a human voice). Toddlers were also followed up to get
record of their evolution and to ensure confirmation of later
ASD diagnosis. A different brain pattern of brain activation was
found between toddlers who were at risk and who were later
diagnosed with ASD and the toddlers who followed a normal
development path. Specifically, toddlers with ASD had deficient
left hemisphere responses to speech sounds with an abnormal
right-lateralized temporal cortical response to language; this
deficit worsened during growth to become most severe by the
age of four. Contrarily, TD toddlers had a reversed pattern
of brain activity and lateralization with the presence of more
temporal cortical responses and a left lateralized pattern of
brain activation that became stronger with development. Two
important observations can be made. Firstly, lateralization in
response to auditory speech sounds differs between groups.
Abnormal lateralization in response to language has also been
reported in experiments performed in older children and adults
with ASD (e.g., Kleinhans et al., 2008; Minagawa-Kawai et al.,
2009). Secondly, weaker brain responses to speech sounds over
the temporal pole were present in the ASD group, suggesting the
presence of an early specific and abnormal brain response pattern
to speech sounds in toddlers with ASD (Eyler et al., 2012).

FUNCTIONAL STUDIES IN INFANTS AT
RISK USING VOICE-RELATED AUDITORY
STIMULI

In a recent study, Seery et al. (2013) suggested that this atypical
lateralization is an ASD endophenotype already observable
during the first year of life. Comparing infants at risk for ASD
with low-risk infants aged between 6 and 12 months, the authors
reported significant group differences in the development of
lateralized ERP responses to speech (using consonant-vowel
auditory stimuli). More specifically, the low-risk group displayed
a lateralized response to the speech sounds whereas the high-
risk group did not (Seery et al., 2013). In a subsequent study,
the same research group found atypical ERPs to repeated
speech sounds in 9 month old infants at risk (Seery et al.,
2014). Atypical lateralization of the ERP to words at 2 years
of age has also been observed in ASD toddlers with poor
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social skills (Kuhl et al., 2013). In a very recent sleep fMRI
study that also included behavioral assessment of parent-infant
interactions, Blasi et al. (2015) compared cortical responses
between emotional voices and environmental sound stimuli.
They found that high-risk infants for ASD (aged between 4
and 7 months) did not show this early specialization suggesting
the presence very early on of atypical neural responses to
human voice with and without emotional valence in at-
risk populations, at least (Blasi et al., 2015). Taken together,
these results indicate that during early development, speech,
and language-critical areas over the temporal poles do not
show the same brain responses to voice related stimuli as
observed in TD young individuals. An absence or atypical
lateralization of brain responses and functional hypoactivation
in response to speech related content were already reported in
infants at risk and toddlers with ASD. Moreover, voice-selective
cortices in populations show lesser degree of specialization
already in infants at risk. In sum, similarly to the experiments
performed in high-functioning older children and despite
the use of different experimental conditions, abnormalities in
lateralization and aberrant functional activation during voice
processing are already found very early on, during infancy and
toddlerhood.

DYSFUNCTIONAL CONNECTIVITY IN
TODDLERS WITH ASD AND INFANTS AT
RISK USING VOICE-RELATED AUDITORY
STIMULI

Aside from the differences in functional activation described
in the previous section, extant functional connectivity studies
using fMRI or EEG with voice-related stimuli have shown
altered connectivity between brain regions involved in language
processing in young children with autism. Using fMRI, Dinstein
and colleagues demonstrated reduced inter-hemispheric
synchrony across language brain areas in young toddlers
with ASD (Dinstein et al., 2011). They recorded spontaneous
brain activity in three groups of toddlers during natural sleep
(TD, ASD, and language delay). Seventy-two participants
aged between 12 and 46 months (mean age = 29 months
for the toddlers with ASD) were presented with auditory
stimulation containing words, pseudo words, sentences, tones,
or environmental sounds. The aim was to test for differences in
synchronization between various brain regions between the three
groups and explore a possible relation with the development of
early autistic behavioral symptoms within the group of toddlers
with ASD. Stimulus-evoked responses were regressed out so as
to only keep spontaneous fMRI fluctuations in the data. In doing
so, the authors controlled that any differences in synchronization
between the groups were not due to differences in auditory-
evoked responses between participants. Results indicated the
presence of weaker interhemispheric synchronization between
the IFG and the STG, two brain areas mediating speech and
language processing in the ASD toddler group as compared to
the two other groups. Moreover, analyses within the group of
toddlers with ASD revealed that the synchronization strength

was highest in those with overall good verbal capacities and was
weakest in those with impaired verbal capacities. This indicates
that, the functional connectivity between regions implicated in
language processing has a different pattern compared to TD
peers in toddlerhood already (Dinstein et al., 2011).

Using EEG, aberrant reduced functional connectivity has
even been reported before the onset of any ASD symptoms,
in infants at risk for ASD (Righi et al., 2014). They presented
speech sounds (syllables) in the awake state, while EEG was
concomitantly acquired in infants at high-risk and infants at
low-risk for ASD. Acquisitions were performed at 6 and at
12 months of age. The participants were followed up at 36
months in order to identify which ones would develop ASD
or not. By computing the intra-hemispheric linear coherence
in the gamma frequency band, (that is, an estimation of
synchronization across brain regions) between electrodes of
interest located over the frontal and temporo-parietal regions
in the left and right hemispheres, the authors found that at 6
months, linear coherence values were similar across groups. At
12 months however, infants at high-risk and later diagnosed
with ASD showed reduced functional connectivity (that is,
lower linear coherence, and thus less integration) compared to
both infants at low-risk and those at high-risk who were not
later diagnosed with ASD. In addition, significant differences
in functional connectivity between the low-risk and high-risk
infants who did not become autistic were found, with lower
coherence values in the high-risk infant group. In contrast
to what has been previously reported in fMRI with toddlers
(Redcay and Courchesne, 2008; Eyler et al., 2012) or with EEG
in infants at-risk for ASD (Seery et al., 2013), the study did not
reveal any early group differences in hemispheric lateralization.
However, as discussed by the authors, the estimation of the
linear coherence is an approach less sensitive to stimulus-locked
activity whereas fMRI and ERPs are. As such Righi’s approach
might not have captured existing hemispheric differences. Taken
together, published functional connectivity studies examining the
early development of language related brain areas demonstrate
aberrant brain connectivity patterns in both toddlers with ASD
(Dinstein et al., 2011), and in 12 month old infants at risk
who later develop autism (Righi et al., 2014). This suggests that
aberrant wiring of the cerebral regions responsible for language
processing precede the onset of the typical autism phenotype,
and might be responsible for the early signs clinically observed in
infants who will develop ASD, such as unresponsiveness to name,
lack of orientation to human voices and delay in the development
of receptive and expressive language skills.

LANGUAGE HETEROGENEITY IN
TODDLERS WITH ASD: INSIGHTS FROM
EARLY BRAIN BIOMARKERS

Findings reviewed so far indicate early functional differences
in speech-related processing within superior temporal cortical
regions and other language-critical brain areas. The anatomical
and connectivity differences reported above in toddlers with
ASD and infants at risk for ASD mostly correspond to
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group differences. While these results are informative, they
do not permit to fully address the critical question of the
heterogeneity of early language development in ASD and its
relation to later outcome. To successfully tackle the question
of heterogeneity, research groups have started using prospective
and longitudinal designs with larger sample sizes to examine
the hypothesis that different subgroups of individuals with
ASD have different phenotypes and developmental pathways
(Kuhl et al., 2013; Lombardo et al., 2015). These studies open
avenues to better understand predictor of outcomes, as predictive
brain biomarkers that can differentiate between these subtle
phenotypes emerge (Bölte et al., 2013; Lenroot and Yeung, 2013;
Ecker et al., 2015). For instance, in a recent developmental
study, Lombardo et al. (2015) searched for early functional
neuroimaging biomarkers that would reflect the heterogeneity
observed in early language development in ASD. The authors
measured early cortical responses to speech using a prospective
sleep fMRI paradigm (participants aged between 12 and 48
months). The experiment included four different groups with TD
infants, infants with a language/developmental delay (LD/DD),
infants with ASD having a good language outcome at 4 years
of age (“ASD good”) or a bad language development outcome
(“ASD Poor”; that is, they measured developmental trajectories
of language growth over the first 4 years of life). Pre-diagnosis
fMRI brain data in response to three types of speech stimuli
(complex forward speech, simple forward speech, and backward
speech) were acquired in each participants. The aim was to
test whether early functional measures could have a predictive
value when combined with clinical-behavioral information. First,
they found that in response to speech stimuli, “ASD good”
toddlers recruited language-sensitive superior temporal cortices
in a very similar way to the control groups (that is, the non-
ASD language/developmentally delayed individuals). However,
in the “ASD poor” group, language-sensitive superior temporal
cortices were found to be hypoactive in response to the same
speech stimuli. The multivoxel activation pattern was different
to the one observed in the three other control groups indicating
a lack of functional differentiation to these speech stimuli in
the ASD poor group. Another important finding by Lombardo
et al. (2015) was that the brain response patterns to general
auditory processing was preserved in the “ASD poor” group (that
is, similar to the other control groups), whereas the brain activity
specifically related to language and speech was weaker and less
specific. For example no engagement of the left hemisphere
was found as this was the case in the three other groups. This
would suggest on the one hand a general preservation of the
neural systems devoted to general auditory processing during
infancy and on the other, the presence of a dysfunction of the
neural systems at a higher level of processing and implicated
in voice-related content leading to the aberrant processing
of auditory stimuli containing speech and language related
information. Interestingly, the connectivity between primary
auditory cortex and the reward and affective brain circuitry seems
to be preserved in high-functioning older children with ASD,
whereas connectivity between the voice structural module (see
Figure 3B) described in Belin’s model above and the reward
system is impaired, preventing the normal processing of speech

related content but allowing low-level sensory processing to
occur (Abrams et al., 2013).

The results provided by the study by Lombardo et al. are
important for several reasons. First, they indicate the presence
during toddlerhood already of brain related differences in the
neural underpinnings implicated in the processing of early voice
related auditory information and this between different subtypes
of ASD (that is, differences between ASD poor and ASD good).
Second, longitudinal measurements of pre-diagnostic clinical
behavioral information and early fMRI language and speech-
related brain responses and combination thereof was found to
have a strong predictive value in terms of determining later ASD
subgroup prognosis.

Other experiments also point to the presence of early brain
biomarkers in EEG. Kuhl et al. (2013) found that the response
pattern of ERPs to words at the age of 2 year was predictive of later
receptive language capacities at ages 4 and 6 years (Kuhl et al.,
2013). In comparison to the Lombardo et al. (2015) study where
clinical groups were subdivided based on their language skills,
Kuhl and colleagues compared the ERPs in response to words in
2 year old children that were subdivided as a function of social
symptoms, into “ASD high” (sever social symptoms) and “ASD
low” less social symptoms. Results showed only a left lateralized
brain response similar to the TD group in the “ASD low”
group. Only the single electrode where the time locked response
manifested was different between those two groups (T3 for TD
and P3 for “ASD low”). For the “ASD high” group on the other
hand, the ERP was more diffuse and right lateralized. Then, in a
second phase of the study, the authors looked at the predictive
power of their P3 effect found in the first phase for all ASD
toddlers on linguistic, cognitive, and adaptive functions at ages
4 and 6 years. For the ASD toddlers who had strong negativity
in the ERP to known words at P3 measured at enrollment, a
better outcome was observed at 6 years of age. In stark contrast,
toddlers with ASDwho did not show this ERP sensitivity at intake
had worse outcomes (that is, they showed less improvement).
Interestingly, the ERP measures to words furthermore exceeded
the predictive value of cognitive measures performed at intake.
Another important finding by this study was that the predictive
aspect of the brain response to words at age 2 years of age did
not modulate depending on the type of intensive treatments the
toddlers received. Adding another control condition with no
treatments may perhaps have added valuable information with
respect to the effectiveness of the treatments as recent evidences
indicate that early behavioral intervention is associated with
normalized patterns of EEG brain activity in the visual modality
at least (Dawson et al., 2012). Unfortunately and as mentioned
by the authors, the source localization of those differences could
not be performed. As already discussed, methods for estimating
inverse solutions are now available and it will be important in
further studies to include those when possible.

PERSPECTIVE AND FUTURE DIRECTIONS

Neuroimaging studies using exciting new approaches that
combine early brain measurements with early behavioral data
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are starting to highlight important differences in the functional
and structural wiring of the young autistic brain compared to
the TD one using auditory speech and language related stimuli.
With time, the field will hopefully see the appearance of other
experiments with larger sample sizes combined with longitudinal
measurements to subtype ASD infants according to the core
impaired dimension of early language development that was the
main focus of the present review, and of social interaction and
communication deficits that are both central hallmarks of autism.
This will help to explore the efficiency of early intervention
in correcting the developmental trajectories on the one hand,
and to tackle the question of heterogeneity inherent to autism
on the other. Ultimately this will lead to the possibility of
improving, developing and modifying therapeutic interventions
and adapting them depending to the infant’s specific needs.
Moreover, because autism cannot always be diagnosed with high
certainty before the age of 2–3 years (Zwaigenbaum et al., 2009;
Jones et al., 2014), additional prospective longitudinal studies
of high-risk populations are necessary to provide understanding
about how, when and where developmental trajectories that
result in ASD deviate from the TD young brain. These later will
in turn aid to understand the general heterogeneity observed
in early language development in autism as well as allow
early identification of toddlers who should receive intensive
therapeutic intervention. The few experiments of infants at risk
reported here indicate that brain differences in response to
human voice and its speech and language related content are
already present before the end of the first year in some cases
suggesting that aberrant voice processing could be a promising
marker to identify ASD very early on.

Achieving a better understanding regarding which neural
systems implicated in speech and language-critical processing are
impaired very early on is difficult to highlight and this for several
reasons. First, scanning individuals aged between 6 months and 3
year implies using scanning conditions with passive presentation
of stimuli most of the time. Implementing tasks that need an
engagement of the participant at such a young age is difficult
to achieve. For example asking what is voice specific vs. speech
specific has only been addressed by one study so far, which used
a behavioral task in preschool TD children aged around 6 years
(Raschle et al., 2014). In the studies discussed in this review, based
in infants and toddlers (i.e., before 4 years), the vast majority
of experiments used contrast between speech stimuli and rest,
reversed speech or other auditory stimuli (words, sentences, and
syllables). Yet, contrasting speech stimuli vs. rest activation does
not allow to determine what is specifically related to the voice
and what is related to the speech content. The question remains
open as to whether a voice specific impairment is present in
the brain of young children with ASD. Thus, future experiments
should include contrasts between voice specific vs. speech specific
brain related activity. This would allow to test whether aberrant
voice processing that has been reported in older children and
young adults is indeed a hallmark in autism very early on leading
to impairments in the social-communication language brain.
Currently there is only one experiment to our knowledge where
the brain responses to human vocalizations alone were contrasted
with non-vocal sounds in infants at risk for autism (Blasi et al.,

2015). However, the authors reported that their sample had not
been assessed for ASD at the age of 3 years yet. Further work is
thus needed to resolve this issue.

Some authors have also recently hypothesized that it is not
human speech per se that is an issue in autism but rather the
mode of communication of speech that might be challenging for
individuals with ASD. For example, recent results suggest that
the mode of presentation of human speech sounds might play
a role in speech perception in older children and young adults
with autism. In an fMRI experiments, Lai et al. (2012) passively
presented familiar human speech stimuli (spoken sentences by
parents) or song stimuli containing vocals to children with ASD
(including low functioning ones) and aged matched controls.
While brain activations were found to be different between
the children with ASD and TD during the spoken condition,
they turned out to be comparable when speech was delivered
in a sung format (Lai et al., 2012). Another study found
comparable brain activation patterns and preserved fronto-
temporal connections between children with ASD and aged
matched controls during perception of sung but not spoken
words (Sharda et al., 2015). Most of the experiments reviewed
here have shown abnormalities in lateralization and aberrant
functional activation during speech processing during infancy
and toddlerhood similarly to what has been reported in older
children and adults. However, none of them varied the mode of
presentation of the speech sounds that were always presented
in a spoken format. Interestingly, one experiment found that
toddlers with ASD (aged 2 years) who preferred motherese
speech signals (that is, a pattern of speech characterized by high-
pitch intonations) exhibit similar ERP responses compared to
aged match TD controls in a passive syllable discrimination
task (Kuhl et al., 2005). In this later, toddlers with ASD who
didn’t preferred an analog speech signal had different ERP
responses compared to TD toddlers. It will be instrumental
to detect how early the mode of communication impacts
human speech processing in infants and toddlers with ASD
and in at risk population as preliminary results now suggest
that sung over spoken speech might effectively improve socio-
communicative behaviors in toddlers with ASD at least (Paul
et al., 2015).

Another final important aspect that has to be considered
besides the various impairments in the development of
speech processing highlighted by the relevant neuroimaging
literature we reviewed here, is that functional and structural
anomalies have also been reported at earlier stages of the
auditory processing system in autism. Some studies highlight
functional abnormalities within low level primary sensory
auditory pathways in adults with ASD (Dinstein et al., 2012;
Haigh et al., 2015). A recent experiment points toward the
presence of maturational differences in the development of
primary/secondary auditory areas in children with ASD aged
between 6 and 14 years (Edgar et al., 2015). The presence
of abnormal auditory brainstem response in newborns/infants
(tested between 0 and 3 months) and toddlers (tested between
1.5 and 3.5 years) later diagnosed with ASD has also been
demonstrated (Miron et al., 2015). Further work is thus required
to understand how these impairments in the early stages of the
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auditory processing system might impinge on the development
of speech and language processing in autism.
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