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Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular

methods of acquiring diffusion MRI data in a research context. However, single-shell

acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion

imaging (HARDI), still remain the most common acquisition schemes in practice. Here

we tested whether multi-shell and DSI data have conversion flexibility to be interpolated

into corresponding HARDI data. We acquired multi-shell and DSI data on both a

phantom and in vivo human tissue and converted them to HARDI. The correlation and

difference between their diffusion signals, anisotropy values, diffusivity measurements,

fiber orientations, connectivity matrices, and network measures were examined. Our

analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity

matrix of the HARDI converted from multi-shell and DSI were highly correlated with those

of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8∼0.9.

The average angular error between converted and original HARDI was 20.7◦ at voxels

with signal-to-noise ratios greater than 5. The network topology measures had less

than 2% difference, whereas the average nodal measures had a percentage difference

around 4∼7%. In general, multi-shell and DSI acquisitions can be converted to their

corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI

acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

Keywords: HARDI, multi-shell, diffusion spectrum imaging, connectome, connectomics, graph theoretical

analysis, network measures

INTRODUCTION

Diffusion MRI offers a non-invasive way to map the structural connectivity of the human brain
(Behrens et al., 2003, 2007; Wedeen et al., 2012), and several diffusion sampling schemes have been
used to acquire the diffusion MRI data. The single-shell scheme, such as diffusion tensor imaging
(DTI) (Basser et al., 1994; Basser and Pierpaoli, 1996) and high angular resolution diffusion imaging
(HARDI) (Tuch et al., 2002; Tuch, 2004) remain the most popular diffusion MRI acquisition
approaches, whereas multi-shell (Sotiropoulos et al., 2013) and diffusion spectrum imaging (DSI)
(Wedeen et al., 2005) acquisition methods are becoming increasingly popular. For example, the
Human Connectome Project (HCP) is acquiring diffusion MRI data using multi-shell (WU-Minn
consortium; Sotiropoulos et al., 2013) and DSI schemes (USC-MGH consortium; Fan et al., 2016).
Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated
into corresponding single-shell HARDI data. Conversion flexibility, where data acquired from one
scheme can be interpolated into another, would increase the analytical tractability of diffusion
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MRI data and facilitate comparing and aggregating results across
studies with different acquisition approaches.

To explore this possibility, we used generalized q-sampling
reconstruction (Yeh et al., 2010) to interpolate multi-shell and
DSI data into their corresponding HARDI representation. These
converted data sets are then compared with the original HARDI
data acquired using a single-shell scheme. This comparison was
conducted in both a single phantom study and several in vivo
human studies. In the phantom study, HARDI, multi-shell, and
DSI data were acquired. The multi-shell and DSI data were
converted to a corresponding HARDI data set (hereafter referred
to as the “converted HARDI” data set). A correlation analysis
was conducted between the converted HARDI and the HARDI
acquired from the MR scanner (termed “original HARDI”
hereafter) to examine whether the converted HARDI can predict
the original HARDI. In our in vivo study, we examined the
correlation between their diffusion signals, anisotropy values,
and diffusivity measurements. In addition, we further applied
constrained spherical deconvolution (CSD; Tournier et al., 2007)
to the converted and original HARDI and examined whether
the angular error between the converted HARDI and the
original HARDI. We also conducted tractography to generate
connectivity matrices and determined their similarity using
a correlation analysis. The network measures (Bullmore and
Sporns, 2009) were also calculated using graph theoretical
analysis to examine their difference.

MATERIALS AND METHODS

Signal Interpolation
We interpolated DSI and multi-shell data into their
corresponding HARDI using the generalized q-sampling
method (Figure 1). Generalized q-sampling reconstruction
provides a linear relation between diffusion MR signals and
the spin distribution function (SDF; Yeh et al., 2010). This
linear relation enables a direct conversion between SDFs
and diffusion signals acquired from single-shell (HARDI),
multi-shell, and grid (DSI) schemes. SDF measures the
density of diffusing water at different orientation and is thus
a measurement of spin density. It is thus different from the
diffusion orientation distribution function (dODF), which is
normalized as a probability density function and “unit-free.” It is
also different from fiber orientation distribution function (fODF)
calculated from spherical deconvolution, which represents the
volume fraction of the fiber distribution and is a fractional
measurement.

Studies have shown that the SDFs from different schemes
present a consistent pattern (Yeh et al., 2010, 2011; Yeh and
Tseng, 2013), and thus we can make use of the SDF to convert
diffusion signals from one sampling scheme to another. DSI or
multi-shell data can be converted to a common SDF and the
linear relation between SDF and the HARDI signals will allow for
estimating the corresponding HARDI representation by solving
the inverse problem using constraint optimization.

To illustrate this idea, we start with the generalized q-sampling
reconstruction that is based on the linear relation between the
diffusion MRI signals and the spin distribution function (SDF).

FIGURE 1 | The scheme conversion method uses the spin distribution

function (SDF) to convert multi-shell or DSI data to their corresponding

HARDI representation. This is made possible by the linear relationship

between the diffusion signals and the SDF provided by the generalized

q-sampling reconstruction approach.

9 = A · w (1)

where 9 is a diffusion ODF vector, and w is a vector of diffusion
MRI signals, and its i-th dimension represents the diffusion signal
acquired by a b-value of bi and diffusion gradient direction (b-

vector) of b̂i. A is a matrix, and its element, Ai,j, at row i and
column j is defined as follows:

Ai,j = sinc

(

σ
√

6D · |bi| ·

〈

bi

|bi|
, ûj

〉)

(2)

where σ is a length ratio that controls the detection radius of the
diffusion. D is the diffusion coefficient of free water diffusion and
ûj is a unit vector representing the j-th direction of the diffusion
ODF. Using Equation (1), we can convert the DSI or multi-shell
signals, w, to their corresponding HARDI representation, wh, by
equalizing their SDFs.

Ah · wh = A · w s.t. wh ≥ 0 (3)

where Ah is a matrix defined by an HARDI b-table, and wh is
the corresponding HARDI representation to estimate. Equation
(3) formulates the conversion of the MRI signals as an inverse
problem, and we can construct an over-determined equation
(more equations than unknowns) by assigning more sampling
directions in SDF than in HARDI. Equation (3) can be solved by
using the Tikhonov regularization.

wh ≈
(

AT
hAh + λI

)−1
AT
hA · w (4)

where λ is a regularization parameter and we chose the
smallest possible value that resulted in more than 99% of
the estimated HARDI representation being positive within the
brain mask. This loosens the constraint for Equation (3) and
provides a quick estimation for the constraint optimization.
The conversion routine was implemented in DSI Studio
(http://dsi-studio.labsolver.org), a publicly available and open
source tool. The source code for scheme conversion can be
found at https://github.com/frankyeh/DSI-Studio (search for
“SchemeConverter”).
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Correction for Gradient Nonlinearity
The nonlinearity of diffusion gradients can induce a prominent
image distortion that alters the effective b-values (Bammer et al.,
2003; Sotiropoulos et al., 2013). This can be corrected using the
nonlinear terms of the magnetic field obtained from gradient
coils (Jovicich et al., 2006). Themulti-shell data set from theWU-
Minn consortium includes a 3-by-3 gradient deviation matrix G
for each voxel to estimate the effective gradient direction and
strength. This matrix can be directly embedded in the element
of matrix A to account for the effect of gradient nonlinearity:

Ai,j = sinc

(

σ

√

6D · |Gbi| ·

〈

Gbi

|Gbi|
, ûj

〉)

(5)

Equation (5) can replace Equation (2), and the converted HARDI
representation already considers the gradient nonlinearity.

Diffusion Phantom
An anisotropic diffusion phantom (Brain Innovation,Maastricht,
Netherlands; Pullens et al., 2010) was scanned using a 3T
Siemens Verio scanner (Siemens, Erlangen, Germany) in the
Scientific Imaging and Brain Research Center at Carnegie Mellon
University. The maximum gradient strength was 45mT/m. The
phantom consists of one straight fiber bundle and a pair of
crossing fiber bundles, as shown in Figure 2A. Each bundle
contains 10,000 polyester yarns (KUAG Diolen, 22 dtex 18)
and each yarn is made up of 18 fibers. The production
process and phantom property are detailed in the corresponding

reference above. The acquisition parameters for HARDI, multi-
shell, and DSI schemes are listed in Table 1. The images were
acquired using the same spatial parameters: the field of view was
288 × 288mm, the matrix size was 96 × 96, the slice thickness
was 3.0mm (no gap), resulting in a voxel size of 3.0 × 3.0 ×

3.0mm. The multi-shell and DSI data were converted to 256-
direction HARDI using a regularization parameter of 0.05. Since
the actual values of the diffusion signals can be scaled due to
scanner settings, to facilitate comparison, both converted and
original HARDI were multiplied by a scaling constant to equalize
the mean of the overall signals. To exclude background noise,
we selected two regions of interest (ROIs), one placed on the
straight fibers (29 voxels) and another placed at the center of

TABLE 1 | Summary of diffusion scans in phantom and in vivo study.

Scheme b-value Number of TR (ms) TE (ms)

(s/mm2) diffusion gradients

PHANTOM STUDY

DSI 400∼4000 257 1800 135

Multi-shell 1500/3000 30/64 2100/2500 135/143

HARDI 3000 256 2500 143

IN VIVO STUDY

DSI 400∼4000 202 7200 144

Multi-shell 1500/3000 30/64 5500/6300 101/121

HARDI 4000 252 7200 133

FIGURE 2 | (A) The layout of the anisotropic diffusion phantom consists of one straight fiber bundle and a pair of crossing bundles. (B) Scatter plots showing a signal

correlation between the converted HARDI and the original HARDI in our phantom study. The dotted lines indicate identity. The converted HARDI was calculated from

the multi-shell or DSI data, whereas the original HARDI was acquired from the MR scanner. All comparisons had a high correlation coefficient (r > 0.9), suggesting that

the converted HARDI data strongly predict the original HARDI images.
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the crossing fibers (20 voxels). The diffusion signals at these two
ROIs were averaged to increase the signal to noise ratio. Each
diffusion weighted image had one average signal for the straight
fibers, and one average signal for the crossing fibers. A total of 256
average values (one average value from each diffusion-weighted
image) were calculated for original HARDI. The same processing
procedures were applied to the HARDI converted from DSI and
multi-shell data. A correlation analysis between the converted
and original HARDI was conducted to examine whether the
converted HARDI can predict original HARDI.

In vivo Experiment
We used publicly available data from Advanced Biomedical MRI
Lab at National Taiwan University Hospital (http://dsi-studio.
labsolver.org/download-images). The data include HARDI,
multi-shell, and DSI data acquired on a 25-year-old male subject
using a 3TMRI system (Tim Trio; Siemens, Erlangen, Germany).
The maximum gradient strength was 40mT/m. A 12-channel
coil and a single-shot twice-refocused echo planar imaging (EPI)
diffusion pulse sequence was used to acquire HARDI, multi-shell,
and DSI data on the same subject, as summarized in Table 1. The
HARDI, multi-shell, and DSI data were acquired using the same
spatial parameters: the field of view was 240×240mm, thematrix
size was 96× 96, the slice thickness was 2.5mm (no gap), and the
number of the slices was 40 to cover the cerebral cortex, resulting
in a voxel size of 2.5×2.5×2.5mm. The multi-shell and DSI data
were converted to 252-direction HARDI using a regularization
parameter of 0.05. Both converted and original HARDI were
scaled by a constant to equalize the mean of the overall
signals. The JHU white-matter tractography atlas (Laboratory
of Brain Anatomical MRI, Johns Hopkins University) was
used to segment the corpus callosum (1383 voxels), cerebral
peduncle (229 voxels), coronal radiata (1385 voxels), internal
capsule (677 voxels), and cingulum pathways (286 voxels). Unlike
what was done in the phantom study, we did not average
the signals of each region because the containing fibers may
not have the same orientation. A correlation analysis between
converted and original HARDI signals was conducted to examine
whether the converted HARDI representation can predict those
of the original HARDI. Furthermore, we calculated generalized
fractional anisotropy (GFA), fractional anisotropy (FA), and
mean diffusivity (MD) from the converted and original HARDI.
The GFA was calculated from q-ball imaging (Tuch, 2004),
whereas FA was estimated using DTI, and MD was calculated
by averaging the axial and radial diffusivities calculated from the
tensor model. The correlation of the indices between converted
and original HARDI was analyzed at voxels with a different
signal-to-noise ratio (SNR). The SNR was estimated using the
original HARDI data.

We also calculated the fODF from the converted HARDI
and examined whether they presented the same pattern as those
from the original HARDI. The converted and original HARDI
were reconstructed using constrained spherical deconvolution
(MRtrix, www.nitrc.org/projects/mrtrix) to obtain fODFs. As
suggested in the MRtrix’s user document, the response function
was estimated using voxels with FA value greater than 0.7 and
a maximum harmonic order of 8 were used. The calculated

fODFs were used to resolve fiber orientations, and the angular
error between converted HARDI and the original HARDI was
calculated to examine the consistency of fODFs across schemes.

Graph Theoretical Analysis
A deterministic fiber tracking algorithm (Yeh et al., 2013)
was applied to obtain a total of 5000 tracks using an
anisotropy threshold that covered the white matter region. The
angular threshold was 60◦. The connectivity matrices were
calculated using the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). A total of 116 regions
were nonlinearly transformed to the subject space in DSI
Studio. The fiber count was used as the matrix entry. A binary
form of the connectivity matrices was obtained by a threshold
of 0.1% of the maximum matrix value. Network measures,
such as characteristic path length, global efficiency, clustering
coefficient, and betweenness centrality, were calculated using
graph theoretical analysis (Bullmore and Sporns, 2009). The
differences of the measurements were computed between the
converted HARDI and the original HARDI to quantify the
discrepancy.

Human Connectome Project Data
A multi-shell data set was selected from the WU-Minn
consortium (subject# 113619) and a DSI data set was from USC-
MGH consortium. TheWU-Minnmulti-shell data were acquired
in a Siemens 3T Skyra scanner using a 2D spin-echo single-
shot multiband EPI sequence with a multi-band factor of 3 and
monopolar gradient pulse (Sotiropoulos et al., 2013). The spatial
resolution is 1.25mm isotropic. TR = 5500ms, TE = 89ms. The
b-values were 1000, 2000, and 3000 s/mm2. The total number of
diffusion sampling directions was 270. The total scanning time
was approximately 55min. The multi-shell data were converted
to HARDI using a regularization parameter of 0.05 and a b-value

TABLE 2 | Results of correlation analysis in the phantom and in vivo study.

Original Location Regression Correlation

data line coefficient

PHANTOM

DSI Straight fibers y = 1.7621 × −0.3810 0.9576

DSI Crossing fibers y = 1.5545 × −0.2772 0.9766

Multi-shell Straight fibers y = 1.0467 × −0.0234 0.9773

Multi-shell Crossing fibers y = 0.8970 × +0.0515 0.9866

IN VIVO

DSI Corpus callosum y = 1.1045 × −0.0435 0.8251

DSI Cerebral peduncle y = 0.9628 × +0.0303 0.7912

DSI Coronal radiata y = 0.9595 × +0.0225 0.6777

DSI Internal capsule y = 0.9756 × +0.0258 0.7338

DSI Cingulum y = 0.9067 × +0.0099 0.6408

Multi-shell Corpus callosum y = 0.8335 × +0.0795 0.8476

Multi-shell Cerebral peduncle y = 0.7951 × +0.1128 0.7996

Multi-shell Coronal radiata y = 0.7812 × +0.1148 0.7207

Multi-shell Internal capsule y = 0.8073 × +0.1228 0.7617

Multi-shell Cingulum y = 0.7317 × +0.0925 0.6735
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of 4000 s/mm2. The diffusion gradient nonlinearity was corrected
using Equation (5). The converted HARDI was analyzed using
CSD implemented in MRtrix (http://www.nitrc.org/projects/
mrtrix/). To examine the angular resolution of our converted
HARDI, we compared the CSD results with the ball-and-sticks
model (Behrens et al., 2003), the recommended analysis method
for the WU-Minn HCP data (Sotiropoulos et al., 2013). The
angular deviation between fiber orientations was calculated to
examine whether their orientations are substantially close to
each other. The FSL’s bedpostx program was used to resolve a
maximum of 3 fibers per voxel. All default parameters were
used. The resolved fiber orientations were compared with those
resolved by CSD applied to the converted HARDI.

The USC-MGH DSI data were acquired in a Siemens 3T
Connectome scanner equipped with a 300mT/m gradient system
(McNab et al., 2013). A 2D spin-echo EPI sequence was used
to acquire diffusion images. The spatial resolution is 1.5mm
isotropic. TR = 4200ms, TE = 53ms. The maximum b-value

was 15,000 s/mm2, and the total number of diffusion sampling
directions was 515. The DSI data were converted to HARDI using
a regularization parameter of 0.05 and a b-value of 4000 s/mm2.
The converted HARDI was analyzed using CSD implemented in
MRtrix (http://www.nitrc.org/projects/mrtrix/). The CSD results
were compared with DSI reconstruction.

RESULTS

Diffusion Signals
Figure 2B shows the scatter plots of the diffusion MRI signals
from the converted HARDI and original HARDI data sets.
The dotted lines indicate identity. The regression equation
and correlation coefficient are listed in Table 2. The converted
HARDI data are strongly correlated with the original acquired
HARDI data in the phantom. The high correlation coefficient
(>0.9) suggests that the converted HARDI is a good predictor
of the original HARDI. It should be noted that the HARDI

FIGURE 3 | The HARDI images converted from (A) a multi-shell scheme and (B) a DSI scheme compared with (C) the original HARDI images from the

scanner. The converted HARDI images show a signal pattern similar to the original HARDI acquired from the MRI scanner. (D) The scatter plots show the signal

correlation between the converted HARDI and the original HARDI in our in vivo study. The converted HARDI data correlates well with the original HARDI images

(r > 0.6).
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FIGURE 4 | GFA, FA, MD measurements between (A) HARDI converted from DSI and original HARDI and between (B) HARDI converted from multishell

and original HARDI. The dotted lines indicate identity. The dotted lines indicate identity. identity. For both DSI and multishell schemes, the converted HARDI shows

high correlation coefficients of GFA, FA, and MD around 0.9 with those of the original HARDI. The low SNR voxels also present moderate to good correlation,

suggesting that HARDI converted from DSI and multishell can provide highly predictive GFA, FA, and MD measurements.
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converted from the DSI data has a positive x-intercept. This can
be due to differences in the b-value and the effective diffusion
time.

Our in vivo experiment also showed a high correlation
between the converted HARDI and the original HARDI
(Figure 3). The dotted lines indicate identity. The HARDI images
converted from multi-shell (Figure 3A) and DSI (Figure 3B)
and the original HARDI image acquired from the MRI
scanner (Figure 3C) share high similarity in the axial views
of the centrum semiovale. The converted HARDI images
(Figures 3A,B) show a signal intensity pattern consistent with
the original HARDI image (Figure 3C). The hyperintensity
regions are consistent in the converted and original HARDI.
Figure 3D shows the scatter plots of the diffusion MRI signal
from theHARDI converted fromDSI andmulti-shell data against
those from the original HARDI at different brain regions. The
regression equations and correlation coefficients are listed in
Table 2. The correlation coefficients range from 0.67 to 0.84,
suggesting a strong similarity in signal values regardless of the
brain regions. The HARDI converted from DSI shows regression
equations with coefficients around 1.0 and intercepts around
0. However, the HARDI converted from multi-shell results in
regression equations with coefficients around 0.8 and intercepts
around 0.1. The bias can be attributed to the b-value difference
between the multi-shell acquisition (b = 1500 and 3000 s/mm2)
and the original HARDI (b = 4000 s/mm2). The multi-shell
data were acquired by lower b-value and the signals were higher,
resulting in biased coefficients.

Anisotropy and Diffusivity
The anisotropy and diffusivity measurements calculated from
the converted HARDI strongly predict those of the original
HARDI (Figure 4). The analysis was conducted across all voxels
(within the brain mask) as well as voxels with different SNRs
estimated from original HARDI so as to understand how the
SNR affects the correlation. The results on all voxels show high
correlation coefficients around 0.8 for all indices. At a higher
SNR, the converted HARDI reliably predicts the anisotropy
measurements. The correlation coefficient between MD at high
SNR is lower because the MD is limited to a narrow dynamic
range with no obvious linearity; however, the lower correlation
coefficient value does not indicate poor predictivity. On the
contrary, the scatter plots show how converted HARDI still
reliably predicts the same MD value within the same dynamic
range. It is noteworthy that the HARDI converted from DSI
shows overall higher FA values than those of the original HARDI
while the HARDI converted from multi-shell data shows a
consistent higher GFA values. This bias is expected as studies
have shown that the anisotropy and diffusivity measurements are
b-value dependent (Hui et al., 2010; Papinutto et al., 2013).

Fiber Orientations
We also found that the fODFs from the converted HARDI
data are consistent with the fODFs from the original HARDI
data. Figure 5 shows the results of CSD applied to the HARDI
converted from the multi-shell scheme (Figure 5A), the HARDI
converted from the DSI scheme (Figure 5B), and the original

HARDI (Figure 5C). The fODFs are presented in a coronal view
focusing on the same slice covering the central semiovale. The
fODFs of the converted and original HARDI present very similar
shapes in these voxels. The crossing fibers formed by corpus
callosum (horizontal) and corticospinal tracts (vertical) can be
resolved using converted HARDI though the converted HARDI
was calculated using fewer diffusion sampling directions.

A more consistent pattern of results is seen in the multi-
shell and DSI data from the two HCP consortiums. The
converted HARDI were analyzed using CSD, and the resolved
fiber orientations were compared with those from the ball-and-
sticks model and DSI applied to the original data. The fiber
orientations resolved by CSD applied to the HARDI converted

FIGURE 5 | The results of CSD applied to (A) the HARDI converted from

the multi-shell data, (B) the HARDI converted from DSI data, and (C)

the original HARDI data. The fiber orientation distribution functions (fODFs)

show similar patterns and comparable angular resolution.
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from the WU-Minn consortium multi-shell data are shown in
Figure 6A, whereas the fiber orientations resolved by ball-and-
sticks model applied to the same data are shown in Figure 6B.
The underlying maps are the maximum values of the fODFs and
dODFs calculated from CSD and DSI, respectively. The figures
are coronal views focused on the centrum semiovale, whereas
the horizontally going corpus callosum intersects with the
vertically going corticospinal tracks and the superior longitudinal
fasciculus that passes in-plane. The CSD and ball-and-sticks
models resolve a similar pattern of crossing fibers, suggesting that
the HARDI converted from the multi-shell scheme can achieve
a comparable angular resolution. Likewise, the fiber orientations
resolved by CSD applied to the HARDI converted from the USC-
MGH consortium DSI data are shown in Figure 6C, whereas the
fiber orientations resolved by DSI reconstruction applied to the
same data are shown in Figure 6D. The figures are also coronal
views focused on the centrum semiovale. The CSD and DSI
resolve a similar pattern of crossing fibers. The converted HARDI
datasets displayed substantially more false positives fibers in the
ventricles than the original multi-shell and DSI acquisitions. This
may be due to a limitation of CSD reconstruction to handle the
partial volume of free diffusion (Dell’Acqua et al., 2009).

To quantify the similarity between the fiber orientations,

we calculated the angular error between the converted and the

original HARDI (Figure 7). The analysis was conducted on the
data from our in vivo experiment. The primary fiber orientations
were determined from the peak orientation of the fODFs. The

angular error (in degrees) was calculated for voxels with different
SNR. In Figure 7A, the HARDI converted from DSI shows
angular errors between 10◦ and 40◦ (the 1st and 3rd quartiles).
For voxels with SNR greater than 5, the average angular error
was 20.7◦, which is smaller than angular resolution of the
deconvolution methods (around 15◦∼30◦) (Tournier et al., 2008;

FIGURE 7 | Boxplots showing the angular error between (A) HARDI

converted from DSI and the original HARDI and (B) HARDI converted

from multishell and the original HARDI. Overall, the median of the angular

error is around 20◦. At voxels with SNR greater than 5, the angular error is

substantially lower than the limit an orientation distribution function, suggesting

that the fiber orientations calculated from the converted HARDI are sufficiently

close to those of the original HARDI.

FIGURE 6 | The fiber orientations resolved by (A) CSD applied to the multi-shell data of the WU-Min consortium using our scheme conversion method,

(B) ball-and-sticks model applied to the same WU-Min consortium data, (C) CSD applied to the DSI data of the USC-MGH consortium using our

scheme conversion method, and (D) DSI reconstruction applied to the same USC-MGH consortium data. The data converted from and multi-shell and DSI

achieve a comparable angular resolution, and the crossing fibers can be readily resolved.
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Yeh and Tseng, 2013). In Figure 7B, the HARDI converted from
multi-shell data presents a similar pattern of results. The average
angular error was also 20.7◦. The low angular error suggests that
the fODFs calculated from converted HARDI are consistent with
the original HARDI and that the converted HARDI can achieve
an angular resolution comparable to the original HARDI.

Connectivity Matrix and Network Measures
The similarity in voxel-wise fiber angle estimates suggests
that these methods should produce highly similar tractography
results. To determine this, we compared the whole-brain
connectivity results to a set whitematter areas using deterministic
tractography (see Materials and Methods). Figure 8 shows the
connectivity matrix calculated using the HARDI converted from
the multi-shell scheme (Figure 8A), the HARDI converted from
the DSI scheme (Figure 8B), and original HARDI (Figure 8C).
We further conducted graph theoretical analysis to examine the
consistency between the network topology. The major network
measures calculated are listed in Table 3. The network topology
measures such as characteristic path length and global efficiency
show less than 2% difference, whereas the average nodal measures
such as clustering coefficient and centrality show a difference
around 4∼7%. This result suggests the network topology remains
high consistency across schemes, whereas the local nodal pattern
such as clustering coefficient and betweenness centrality may
differ more.

DISCUSSION

There has been a long-standing debate about whether acquisition
using multiple b-values is more efficient than single-shell
acquisitions (Kuo et al., 2008; Tournier et al., 2011; Sotiropoulos
et al., 2013; Daducci et al., 2014). Currently, single-shell
acquisition schemes still remain the most popular diffusion MRI
acquisition approach in clinical and research scanners (Tournier
et al., 2011; Le Bihan and Johansen-Berg, 2012; Abhinav et al.,
2014). While identifying the true optimal acquisition scheme
is still under active investigation, it is crucial to investigate
how diffusion characteristic and network measures changes

due to different diffusion sampling schemes. Here we show
that schemes with multiple b-values have conversion flexibility.
The diffusion signals converted from DSI and multi-shell
acquisition strongly predict those of the original HARDI in
our phantom and in vivo experiment. The high predictive
power was also observed for common diffusion indices, such
as fractional anisotropy and diffusivity. The fODF, connectivity
matrix, and network measures all show a highly similar
profile between converted HARDI and the original HARDI.
Taken together, our results show that multi-shell and DSI
acquisitions can be converted to their corresponding single-
shell HARDI and be used to supplement the collection of
original HARDI data. Since it is more difficult to convert
single-shell data into a multi-shell or DSI representation, the
asymmetrical direction of the conversion suggests that acquiring
diffusion MRI data with a single-shell scheme inherently limits
analytical accessibility. Moreover, while multi-shell and DSI can
distinguish partial volume of free water, the converted HARDI
cannot effectively remove the effect (shown in Figure 6). This
provides crucial evidence that, until a true optimal sampling
scheme is identified, the diffusion community should adopt
acquisition schemes with multiple b-values, such as multi-
shell or DSI, over single-shell schemes such as DTI and
HARDI.

TABLE 3 | Network measures calculated from converted HARDI and

original HARDI.

HARDI Change HARDI from Change Original

from DSI (%) multishell (%) HARDI

Characteristic path

length

1.572 −0.581 1.582 0.064 1.581

Global efficiency 0.719 1.175 0.712 0.238 0.711

Average cluster

coefficient

0.607 6.909 0.589 3.860 0.567

Average

betweenness

centrality

49.397 4.677 50.293 6.576 47.190

FIGURE 8 | The connectivity matrices calculated from (A) the HARDI converted from the multi-shell data, (B) the HARDI converted from DSI data, and

(C) the original HARDI data. Graph theoretical analysis shows that less than 2% difference in network topology and around 4∼7% difference in nodal measures.
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While the current results show that the diffusion scheme can
be converted from DSI and multi-shell to single-shell HARDI,
there are some limitations to this approach that should be
considered before applying it to existing data sets. As shown in
our phantom and in vivo study, the diffusion images acquired
from low b-value may have a bias if they are converted to a high
b-value scheme. The bias can be observed in the anisotropy and
diffusivity measurements, though the conversion still resulted
in a reasonably high correlation with the original HARDI data
set. This is due to the fact that low b-value acquisitions are
more sensitive to nonrestricted diffusion, whereas high b-value
acquisitions are more sensitive to restricted diffusion (Callaghan,
1991). Different b-values may also have different diffusion times
and diffusion encoding durations. Unfortunately, information
on the diffusion time and diffusion encoding duration was
not supplied by the manufacturer or the spin-echo sequence
used. Consequently, the diffusion indices derived from different
b-values cannot be directly compared. In addition, the conversion
is one-way, i.e., we cannot use the SDF to convert a HARDI
data set into a multi-shell or DSI data set. Theoretically, a
HARDI data set does not have the radial information that can
differentiate slow diffusion from fast diffusion due to its uniform
diffusion sensitization strength. Thus, some information loss is
unavoidable in this process and the conversion from HARDI
to multi-shell or DSI data set cannot fully recover this missing
information.

Due to this missing information, we cannot remove the
false fibers caused by partial volume of free water in the
converted HARDI data. This fundamentally limits what types
of analysis can be applied to data already collected using a
single-shell scheme.We should point out, however, that although
the diffusion metrics cannot be directly compared due to
different b-values and diffusion times, we have shown a strong
correlation between the converted and original HARDI data.
Thus, it is still feasible to aggregate data sets using a multi-site
analysis approach, in which the acquisition difference can be
modeled as a site difference (e.g., a categorical variable indicating
scanner environment in a regression analysis). For analysis
concerning mostly fiber orientation (e.g., graph theoretical

analysis), the scheme conversion can be used since the fiber
orientations are largely identical. Lastly, the convertibility itself
may shade a light on the redundancy issue of diffusion acquisition
and help develop an optimal sampling strategy in the near
future.

In conclusion, we show that schemes with multiple b-values,
such as multi-shell acquisition and DSI, can be converted
to their corresponding single-shell HARDI images with high
fidelity. The diffusion signals, anisotropy values, and diffusivity
measurements derived from converted HARDI strongly predict
those of the original HARDI. The global network measures
show less than 2% difference, whereas local nodal measures
show 4∼7% difference. The converted HARDI data achieves
an angular resolution comparable to the original HARDI data.
These results give a solid support for connectomic studies to
continue using multi-shell or DSI acquisitions over the more
popular DTI and HARDI approaches and highlights a utility
for comparing these data sets to previously collected single-shell
experiments.

AUTHOR CONTRIBUTIONS

FY conducted the analysis and wrote the paper. TV acquired
image data and wrote the paper.

ACKNOWLEDGMENTS

This research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-10-2-0022. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein. This research was supported by and NSF
BIGDATA Grant #1247658. Data were provided in part by the
Human Connectome Project, WU-Minn Consortium (D. Van
Essen and K. Ugurbil, 1U54MH091657 NIH).

REFERENCES

Abhinav, K., Yeh, F. C., Pathak, S., Suski, V., Lacomis, D., Friedlander, R. M.,

et al. (2014). Advanced diffusion MRI fiber tracking in neurosurgical and

neurodegenerative disorders and neuroanatomical studies: a review. Biochim.

Biophys. Acta 1842, 2286–2297. doi: 10.1016/j.bbadis.2014.08.002

Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M. T., Pelc, N. J., et al.

(2003). Analysis and generalized correction of the effect of spatial gradient field

distortions in diffusion-weighted imaging.Magn. Reson. Med. 50, 560–569. doi:

10.1002/mrm.10545

Basser, P. J., Mattiello, J., and LeBihan, D. (1994). Estimation of the effective self-

diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254. doi:

10.1006/jmrb.1994.1037

Basser, P. J., and Pierpaoli, C. (1996). Microstructural and physiological features of

tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111,

209–219. doi: 10.1006/jmrb.1996.0086

Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R.

G., Clare, S., et al. (2003). Characterization and propagation of uncertainty

in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088. doi:

10.1002/mrm.10609

Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., and Woolrich,

M. W. (2007). Probabilistic diffusion tractography with multiple

fibre orientations: what can we gain? Neuroimage 34, 144–155. doi:

10.1016/j.neuroimage.2006.09.018

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Callaghan, V. P. T. (1991). Principles of Nuclear Magnetic Resonance Microscopy.

Oxford: Oxford Science Publications; Clarendon Press.

Daducci, A., Canales-Rodríguez, E. J., Descoteaux, M., Garyfallidis,

E., Gur, Y., Lin, Y. C., et al. (2014). Quantitative comparison of

reconstruction methods for intra-voxel fiber recovery from diffusion

MRI. IEEE Trans. Med. Imaging 33, 384–399. doi: 10.1109/TMI.2013.

2285500

Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., et al.

(2009). A modified damped Richardson-Lucy algorithm to reduce isotropic

Frontiers in Neuroscience | www.frontiersin.org 10 September 2016 | Volume 10 | Article 418

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yeh and Verstynen Converting Multi-Shell and DSI to HARDI

background effects in spherical deconvolution.Neuroimage 49, 1446–1458. doi:

10.1016/j.neuroimage.2009.09.033

Fan, Q., Witzel, T., Nummenmaa, A., Van Dijk, K. R., Van Horn, J. D.,

Drews, M. K., et al. (2016). MGH-USC Human Connectome Project datasets

with ultra-high b-value diffusion MRI. Neuroimage 124, 1108–1114. doi:

10.1016/j.neuroimage.2015.08.075

Hui, E. S., Cheung, M. M., Chan, K. C., and Wu, E. X. (2010). B-value

dependence of DTI quantitation and sensitivity in detecting neural tissue

changes. Neuroimage 49, 2366–2374. doi: 10.1016/j.neuroimage.2009.10.022

Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., et al.

(2006). Reliability in multi-site structural MRI studies: effects of gradient non-

linearity correction on phantom and human data.Neuroimage 30, 436–443. doi:

10.1016/j.neuroimage.2005.09.046

Kuo, L. W., Chen, J. H., Wedeen, V. J., and Tseng, W. Y. (2008). Optimization

of diffusion spectrum imaging and q-ball imaging on clinical MRI system.

Neuroimage 41, 7–18. doi: 10.1016/j.neuroimage.2008.02.016

Le Bihan, D., and Johansen-Berg, H. (2012). Diffusion MRI at 25: exploring

brain tissue structure and function. Neuroimage 61, 324–341. doi:

10.1016/j.neuroimage.2011.11.006

McNab, J. A., Edlow, B. L., Witzel, T., Huang, S. Y., Bhat, H., Heberlein, K., et al.

(2013). The Human Connectome Project and beyond: initial applications of

300mT/m gradients.Neuroimage 80, 234–245. doi: 10.1016/j.neuroimage.2013.

05.074

Papinutto, N. D., Maule, F., and Jovicich, J. (2013). Reproducibility and biases

in high field brain diffusion MRI: an evaluation of acquisition and analysis

variables.Magn. Reson. Imaging 31, 827–839. doi: 10.1016/j.mri.2013.03.004

Pullens, P., Roebroeck, A., and Goebel, R. (2010). Ground truth hardware

phantoms for validation of diffusion-weighted MRI applications. J. Magn.

Reson. Imaging 32, 482–488. doi: 10.1002/jmri.22243

Sotiropoulos, S. N., Jbabdi, S., Xu, J., Andersson, J. L., Moeller, S., Auerbach,

E. J., et al. (2013). Advances in diffusion MRI acquisition and processing

in the Human Connectome Project. Neuroimage 80, 125–143. doi: 10.1016/j.

neuroimage.2013.05.057

Tournier, J. D., Calamante, F., and Connelly, A. (2007). Robust determination of

the fibre orientation distribution in diffusion MRI: non-negativity constrained

super-resolved spherical deconvolution. Neuroimage 35, 1459–1472. doi:

10.1016/j.neuroimage.2007.02.016

Tournier, J. D., Mori, S., and Leemans, A. (2011). Diffusion tensor imaging and

beyond.Magn. Reson. Med. 65, 1532–1556. doi: 10.1002/mrm.22924

Tournier, J. D., Yeh, C. H., Calamante, F., Cho, K. H., Connelly, A., and Lin, C.

P. (2008). Resolving crossing fibres using constrained spherical deconvolution:

validation using diffusion-weighted imaging phantom data. Neuroimage 42,

617–625. doi: 10.1016/j.neuroimage.2008.05.002

Tuch, D. S. (2004). Q-ball imaging. Magn. Reson. Med. 52, 1358–1372. doi:

10.1002/mrm.20279

Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., and

Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals

intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582.

doi: 10.1002/mrm.10268

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., and Weisskoff, R. M.

(2005). Mapping complex tissue architecture with diffusion spectrummagnetic

resonance imaging.Magn. Reson.Med. 54, 1377–1386. doi: 10.1002/mrm.20642

Wedeen, V. J., Rosene, D. L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P.,

et al. (2012). The geometric structure of the brain fiber pathways. Science 335,

1628–1634. doi: 10.1126/science.1215280

Yeh, F. C., and Tseng, W. Y. (2013). Sparse solution of fiber orientation

distribution function by diffusion decomposition. PLoS ONE 8:e75747. doi:

10.1371/journal.pone.0075747

Yeh, F. C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., and Tseng,

W. Y. (2013). Deterministic diffusion fiber tracking improved by quantitative

anisotropy. PLoS ONE 8:e80713. doi: 10.1371/journal.pone.0080713

Yeh, F. C., Wedeen, V. J., and Tseng, W. Y. (2010). Generalized q-

sampling imaging. IEEE Trans. Med. Imaging 29, 1626–1635. doi:

10.1109/TMI.2010.2045126

Yeh, F. C., Wedeen, V. J., and Tseng, W. Y. (2011). Estimation of fiber orientation

and spin density distribution by diffusion deconvolution. Neuroimage 55,

1054–1062. doi: 10.1016/j.neuroimage.2010.11.087

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Yeh and Verstynen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 September 2016 | Volume 10 | Article 418

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
	Introduction
	Materials and Methods
	Signal Interpolation
	Correction for Gradient Nonlinearity
	Diffusion Phantom
	In vivo Experiment
	Graph Theoretical Analysis
	Human Connectome Project Data

	Results
	Diffusion Signals
	Anisotropy and Diffusivity
	Fiber Orientations
	Connectivity Matrix and Network Measures

	Discussion
	Author Contributions
	Acknowledgments
	References


