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One important aspect in non-invasive brain–computer interface (BCI) research is

to acquire the electroencephalogram (EEG) in a proper way. From an end-user

perspective, it means with maximum comfort and without any extra inconveniences

(e.g., washing the hair), whereas from a technical perspective, the signal quality has

to be optimal to make the BCI work effectively and efficiently. In this work, we

evaluated three different commercially available EEG acquisition systems that differ in

the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data

transmission method. Every systemwas tested regarding three different aspects, namely,

technical, BCI effectiveness and efficiency (P300 communication and control), and user

satisfaction (comfort). We found that water-based system had the lowest short circuit

noise level, the hydrogel-based system had the highest P300 spelling accuracies, and

the dry electrode-based system caused the least inconveniences. Therefore, building a

reliable BCI is possible with all the evaluated systems, and it is on the user to decide

which system meets the given requirements best.

Keywords: brain–computer interface, practical electrodes, dry electrodes, water-based electrodes, gel electrodes,

P300, electrode test

1. INTRODUCTION

Measuring electrical activity of the human brain and utilizing this data to bypass the traditional
motor output pathways of the nervous system is one of the main purposes of brain–
computer interface (BCI) systems. One way to collect these signals non-invasively is by using
electroencephalography (EEG). Nowadays, two main factors that impede the widespread use of
BCIs for healthy as well as for severely impaired people are the BCI control method (i.e., how
measurable brain signals are generated) and the EEG signal acquisition system (i.e., the used
hardware) to measure the signals.

We consider three control methods based on different brain signals: (i) neural oscillations, (ii)
event-related potentials (ERP), and (iii) steady-state evoked potentials (SSEP).

A typical BCI based on neural oscillations, for example, utilizes the fact that defined frequency
components of the EEG signal create a typical pattern briefly before, during, and after movement
execution and less pronounced atmovement imagination (e.g., Pfurtscheller et al., 2000; Faller et al.,
2014; Schwarz et al., 2015). Tasks that also show detectable oscillations are word association, mental
subtraction, mental rotation, auditory imagery, or spatial navigation (Friedrich et al., 2013). This
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phenomenon can be used to create a so-called self-paced BCI (i.e.,
no external trigger is needed). However, the illiteracy rate and
also the effort on training the system are very high (cf. Blankertz
et al., 2010).

The other two BCI control methods need stimulation to evoke
a defined pattern in the EEG. A very prominent representative of
this group relies on the P300 EEG-wave complex. This positive
amplitude approx. 250–500ms after an event can be elicited by
an odd-ball paradigm (Pritchard, 1981; Polich, 2007). Due to
the fact that the difference between the P300 amplitude and the
spontaneous EEG is small, the stimulation has to be repeated,
and the signals averaged until the signal to noise ratio (SNR) is
high enough for classification. One of the first implemented BCIs
(Farwell and Donchin, 1988) was based on this method. Many
studies were conducted to show that P300-based BCIs enable
healthy as well as motor impaired users to communicate or to
control their environment (Donchin et al., 2000; Piccione et al.,
2006; Hoffmann et al., 2008; Nijboer et al., 2008; Kaufmann et al.,
2013; Pokorny et al., 2013).

SSEP-based BCIs, as another type, also require stimulation.
The stimuli are periodically presented at a repetition rate higher
than approx. 6Hz. SSEP BCIs are based on the fact that
the stimulation rate is represented as SSEP (i.e., a periodically
repeated pattern) in the EEG when the user shifts their
attention to these stimuli. Stimuli can be visual (SSVEP, Bagolini
et al., 1988; Müller-Putz et al., 2005; Vialatte et al., 2009),
auditory (Stapells et al., 1984; Picton et al., 2003; Lopez et al.,
2009), or somatosensory (Müller-Putz et al., 2001, 2006; Pokorny
et al., 2011).

The second important part of each BCI is how brain signals
are measured. At the very beginning, in 1924, scientists inserted
steal needles into the subcutaneous tissue of the scalp and
had galvanometers to visualize and interpret the recorded
signals (Berger, 1929). The quality and the interpretability of
the signals improved with the usage of vacuum tubes, and
later, transistor technology was used to amplify the very small
signals. Silver chloride (AgCl) covered electrodes, which are
standard nowadays, were introduced by Berger in 1931 (Collura,
1993). Today, Bergers’ method would not be called non-invasive
but it is called minimal invasive EEG acquisition, because
he penetrated the skin of the scalp. More invasive brain
signal acquisition techniques are the electrocorticogram (ECoG),
subdurally/epidurally measured on the brain surface (Leuthardt
et al., 2004), and multi/single unit activity derived with needle
electrodes directly from the cortex (Hochberg et al., 2006).
However, these methods are more common in clinical settings
and not yet envisaged for everyday use in practical BCI systems.

One major issue concerning the EEG measurement is noise.
According to Bressler and Ding (2006), the following sources
of noise in brain activity recordings exist: (1) potentials from
the brain (cephalic noise), (2) potentials from the head muscles
and skin, eyes, and tongue (extracephalic cranial noise), (3)
potentials from parts of the body other than the head, such
as the heart (extracranial physiological noise), (4) random
microscopic fluctuations at the electrodes (thermal noise), (5)
noise from movement of the person or animal (movement
artifact), (6) fluctuations introduced by electronic recording

components (electronic noise), (7) radiated contamination from
other electrical equipment (environmental noise), and even (8)
fluctuations due to imprecision in the discrete digitization of the
continuously varying voltage from the electrode for storage in a
digital computer (quantization noise) (Bressler and Ding, 2006).
According to points 4–8, the recorded amount of noise strongly
depends on the characteristics of the EEG acquisition system
being used.

To measure EEG, a way has to be found to bridge the gap
between the electrode and skin surface. Currently, there are three
common types of electrodes that differ based on whether the
conductive connection is established based on gel, water, or no
additional conductive substance (“dry”).

The gel-based type can be subdivided based on the usage
of abrasive gel and hydrogel, respectively. Abrasive gel is
mainly used in combination with passive electrodes (i.e., no
amplification happens directly at the electrode). In contrast, the
hydrogel is mainly used for active electrodes (i.e., the signal is pre-
amplified directly at the electrode). The main difference between
these two types of gels is that with the abrasive gel, the topmost
layer of the skin, consisting of dead cells, is removed in a time-
consuming procedure to decrease the impedance. This can lead
to skin irritation, infection, or inflammation. For both types of
gel-based electrodes, gel has to be filled between the electrode and
the scalp, which then typically makes it necessary for the user to
wash their hair, after the measurement. Water-based electrodes
use a water or saline solution soaked felt or fabric to connect the
metal part of the electrode with the skin. Using tap water-soaked
fabric to connect the two surfaces is a new and practical method.
This type of electrodes should deliver a very good signal quality,
and no hair wash is needed after the measurement (Volosyak
et al., 2010).

Dry electrodes, work without any conductive substance. Pins
made of metal alloy or conductive rubber are pressed directly
onto the skin, and rely on small amounts of existing perspiration
to get connected to the skin. Several studies were conducted
highlighting the advantages of different dry electrode-based
systems (e.g., Zander et al., 2011; Guger et al., 2012; Mota et al.,
2013). However, experience shows that one main disadvantage of
this type of electrodes is their sensitivity to movement artifacts.

Several papers deal with user-centered BCI approaches
(e.g., Zickler et al., 2011; Kübler et al., 2014; Scherer et al.,
2015). Concerning data acquisition, these papers find similar
results: Users want to have an easy to handle data acquisition
system, which should not require the subject to wash their
hair after acquisition. At the same time, the signal quality
should allow for BCI accuracies comparable to gel-based
systems. The dry electrode-based systems can only fulfill the
first part as the BCI accuracies of gel-based systems are not
fully achieved yet. For example, Zander et al. (2011) reported
a mean BCI classification accuracy of 94.0% for gel-based
and 90.7% for dry electrode-based systems, respectively, and
Guger et al. (2012) reported a mean P300 BCI accuracy of
91.0% for gel-based and 90.4% for dry based-electrode systems,
respectively.

Existing literature only compared one new EEG acquisition
system (i.e., the dry electrode-based or the tap water-based
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electrode system) with one gel-based system, aiming to show that
the new system works comparably well (cf. Volosyak et al., 2010;
Zander et al., 2011; Guger et al., 2012; Mota et al., 2013).

The aim of this study is to evaluate three different EEG
acquisition systems with regard to their suitability for building a
BCI, meeting technical requirements and requirements for user-
centered design specifications. Therefore, we tested and evaluated
a hydrogel-based, a tap water-based, and a dry electrode-based
systems with their corresponding amplifiers under controlled
conditions. Technical tests and real BCI tasks with healthy
volunteers were performed. Subsequently, we compared our
findings with the findings of existing literature.

2. MATERIALS AND METHODS

2.1. Systems and Data Acquisition Methods
Three different EEG acquisition systems were tested. The
systems differ in electrode design, amplifier technique, and data
transmission (see Table 1).

2.1.1. The Hydrogel-Based Electrode System
We tested the g.GAMMAsys from g.tec (Guger Technologies
OG, Graz, Austria) in combination with active, hydrogel-based,
silver/silver chloride (Ag/AgCl) electrodes (g.LadyBirds) (see
Figure 1). The system allows the acquisition of up to 64 biosignals
such as EEG, electrooculogram (EOG), electromyogram (EMG),
and electrocardiogram (ECG) simultaneously in combination
with up to four g.USBamps to amplify and transmit the signals
via universal serial bus (USB) to a personal computer (PC) or
laptop. Main technical specifications are listed in Table 1. In

TABLE 1 | Comparison of the used EEG amplifier systems.

g.GAMMAsys Mobita g.Sahara

Electrode technique Hydrogel-based Tap water-based Dry

ADC resolution 24 bit 24 bit 24 bit

Voltage input range ± 250.0mV ± 204.8mV ±250.0mV

Notch filter 50 and 60Hz n/a (active cable

shielding)

50 and 60Hz

Sampling frequencies 64−38400Hz 250–2000Hz 64–38 400Hz

Data transmission technique USB WiFi (802.11b/g) USB

addition, different filter settings are available. After every usage,
the electrodes as well as the cap have to be washed under running
water using a brush.

2.1.2. The Water-Based Electrode System
The Mobita is a wireless system of the company TMSi (Twente
Medical Systems International B.V., Oldenzaal, the Netherlands).
It acquires a maximum of 32 channels of EEG plus three channels
for the built-in accelerometer. We tested its capability to measure
EEG with passive, water-based electrodes (see Figure 1). The
special characteristics of these water-based electrodes are rolled-
in, tap water-soaked cotton pieces attached to small AgCl pellets
as electrodes. These cotton pieces are disposable. Therefore,
for regular cleaning, it is sufficient to dry the cap and the
wristband. Another main feature is the actively shielded cable
connection between the electrodes and the amplifier. This active
shielding should strongly reduce the mains interference and
cable movement artifacts. These techniques should provide high
signal quality without the necessity of washing the hair after the
measurement.

Technical specifications are listed in Table 1. The channel
bandwidth is limited between direct current (DC) and
0.2× sampling frequency (i.e., the average number of samples
obtained in 1 s). The system uses the WLAN IEEE standard
802.11 b/g to transmit the amplified signals wirelessly to a PC
or laptop.

2.1.3. The Dry Electrode-Based System
The g.Sahara is also produced by g.tec (Guger Technologies
OG, Graz, Austria). The acquisition of the EEG with up to 16
dry electrodes in combination with the g.USBamp (also from
g.tec) is possible. The electrodes consist of 8 pins made of a
special gold alloy (see Figure 1). Two different pin lengths (7 and
16mm) and three different cap sizes are available to adapt the
system to different hair lengths and shapes of users’ heads. The
operator has to find the optimal type of electrodes and cap size
for each participant to get the best signal quality. Disposable
Ag/AgCl mastoid electrodes are used for reference and ground.
The other electrodes have to be cleaned with a smooth cotton
cloth and alcohol (70%). Since we used the g.USBamp to amplify
the signals, the same technical amplifier specifications for the
g.GAMMAsys are valid.

FIGURE 1 | From left to right: the g.LADYbird hydrogel-based electrode, the tap water-based electrode of the Mobita system, and the dry electrode of

the g.Sahara system.
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2.2. Technical Test
The short circuit noise of the EEG acquisition systems (electrodes
and amplifier) was determined by acquiring the signal of the
electrodes that were attached to a polished copper plate (10 ×

10 cm) (see Figure 2). The copper plate was polished with
an abrasive cleaner and residues were removed with ethyl
alcohol shortly before each measurement. The measurement was
conducted at normal room temperature (approx. 21◦C). Since the
electrode systems were purchased nearly at the same time, the
influence of aging should be the same for all electrodes.

Sampling frequencies (fs) were 500Hz for the tap water-based
system and 512Hz for the hydrogel-based and dry electrode-
based systems. Signal processing was performed with Matlab
(2014b, The MathWorks, Natick, USA). The data of the different
electrode systems was streamed to Matlab with the TOBI
SignalServer software (Breitwieser et al., 2012). Signal filters were
disabled as far as possible to get the full spectrum of the signal.
As recommended by the manufacturer, proper grounding was
performed for the dry electrode-based system.

Twelve minutes of short circuit noise was recorded with
all systems. The first and the last minute were excluded from
analysis to avoid any movement artifacts from the operator.
Consequently, 10 min of noise were available from all systems
for analysis.

The noise was evaluated for a frequency range of 0.1–40Hz,
which is typical for BCI systems. Therefore, the signals were 8th
order band-pass filtered (Butterworth) between 0.1 and 40Hz.
The histogram and the amplitude spectrum were calculated
with Matlab to compare the different systems. In addition, the
root mean square (RMS) was calculated and smoothed with a
Gaussian filter (3-dB bandwidth-symbol time = 0.1 s, periods to
the filters peak= 4, oversampling factor= 250/256).

2.3. User-Centered Test
BCI effectiveness and efficiency were evaluated with P300
communication and control tasks. Participants had to spell
several words and then had to control a multimedia player and a
web browser with a P300 BCI. Afterwards, the participants were
asked to complete several questionnaires.

It was not possible to randomize the sequence of the tests,
because the EEG acquisition systems were not available at the
same time. Therefore, the participants tested the dry system
first, then the gel-based system, and finally the tap water-based
system. However, between the user-centered tests of the different
EEG acquisition systems were always more than 1 month, and
therefore, one can assume that adaptation or learning effects did
not occur.

2.3.1. Participants
Eight healthy volunteers (1 female, mean age 25± 2.3, range 22–
30 years) participated in this study. All participants stated that
they had no history of neurological or psychiatric disorders. The
study protocol was approved by the ethics committee of the
Medical University of Graz, and the participants gave informed
written consent before the experiment. Out of the eight study
participants, seven performed the user-centered test per EEG
aquisition system.

2.3.2. Signal Acquisition and Processing
Six channels per system were recorded at a sampling rate of
250Hz (tap water-based system) and 256Hz (hydrogel-based and
dry system), respectively. The locations of the electrodes (Fz, Cz,
Pz, PO7, PO8, and Oz) were based on the extended international
10–20 system for electrode placement. The channels were
referenced to the left and grounded to the right earlobe when
using the gel-based and dry electrode-based systems. The ground
of the tap water-based system was attached to the participant’s
wrist. In addition, as recommended by the manufacturer, a
grounding of the user and operator was performed for the dry
electrode-based system. The data acquisition was started only
once before each session.

Due to the fact that different data acquisition systems (see
Section 2.1) were used, the signal processing differed slightly
between the systems (see Table 1). We used the integrated
0.1–60Hz band-pass filter for the hydrogel-based electrode
signal and the 0.5–30Hz filter for the dry electrode-based
signal. The dry electrode is more sensitive to person and cable
movement artifacts. Therefore, the signals from that electrodes

FIGURE 2 | Setup of the noise test. All three systems were attached to a polished copper plate to simulate a short circuit of the electrodes.
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were band-pass filtered between 0.5 and 30Hz. Further signal
processing was performed with Matlab. The data of the systems
were streamed to Matlab, see Section 2.2. No band-pass filter
is integrated into the tap water-based system. Consequently,
we implemented a filter in Matlab. We used a fourth order
Butterworth band-pass filter with cut-off frequencies of 0.1 and
60Hz. The rest of the signal processing and classification was
identical between the tested systems.

2.3.3. P300 Classification
A stepwise linear discriminant analysis (SWLDA) classifier was
trained with the training data and used for the online runs.
The number of flashing sequences (one sequence means that
all characters of the stimulation matrix flashed once) was
automatically set between 8 and 15 according to Pinegger et al.
(2013). The algorithm classifies the training letters with a leave
one letter out cross-validation and calculates the reached total
accuracy for every flashing sequence. The number of sequences,
where 100% accuracy is reached, plus two sequences is chosen as
number of flashing sequences for the online run.Whenever 100%
accuracy is not reached, but the highest value for the accuracy
is higher than 75% , 15 sequences are chosen. Otherwise, the
calibration fails and must be performed again.

2.3.4. Experimental Design
The participants were seated in a comfortable chair approx. 65 cm
away from two computer screens (39.5 and 43 cm diameter). One
screen was centered in front of the participants. On this screen,

a P300 matrix was displayed to select letters or commands; a
second screen was placed right beside the first and was used to
show a multimedia player or a web browser. The multimedia
player was controlled via network commands (see Halder et al.,
2015 for details). The custom-made web browser automatically
detects all possible links, buttons, and text fields of the currently
shown website and marks them with letters. These letters were
sent to the BCI for selection with the P300 matrix. By sending
back the desired element to the web browser, the corresponding
link, button, or text field was selected (see Halder et al., 2015 for
details).

The P300 user interface and the signal processing in Matlab
were presented in Pinegger et al. (2013). Elements of the matrix
were highlighted with famous faces (Kaufmann et al., 2011).

Every participant performed one session per day and system.
The experimenter was trained once on every system by an
experienced supervisor. In addition, the supervisor supported the
experimenter and was available during the whole length of every
measurement. A graphical sketch of the user-centered test can be
seen in Figure 3. One session comprised the following tasks:

• P300 classifier training

The word “BRAIN” was used for P300 classifier calibration.
The speller matrix consisted of six rows and six columns, and
every target letter was highlighted 30 times. The collected data
was used to train an SWLDA classifier and to calculate an
optimal number of flashing sequences.

• Task 1: First copy spelling

FIGURE 3 | The participants had to perform four tasks for the user-centered test. The basis was a P300 BCI system. The first task was to spell two words (ten

letters), the second task was to control a media player, the third task was to look for a certain web page in a special web browser, and the fourth task was to spell two

words (10 letters) again.
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The participants had to spell the German words
“SONNE” (English “sun”) and “BLUME” (English “flower”)
consecutively. Each word was presented to them shortly
before they started spelling. The users were instructed not to
correct wrongly spelled letters. After a short break, the second
word was spelled. The matrix for training and copy spelling
was the same.

• Task 2: Multimedia player

Within this task, the participants had to start a slideshow
and to look at certain pictures within the Xbox media
center (XBMC), a powerful multimedia player. Instructions
as to which commands to execute were provided by the
experimenter in spoken form. The task could be completed at
best with 10 correct selections. To correct wrong selections,
the investigator indicated a correct alternative or the way
back to the last correct selection. If the goal could not
be reached within 15 selections, the task was aborted.
The matrix for this task consisted of six rows and three
columns.

• Task 3: Web browser

The goal of this task was to navigate to the Wikipedia article
about BCI and look over the whole article. The start page
was “www.google.de”. Instructions as to which commands to
execute were provided by the experimenter in spoken form.
The task could be finished within 10–12 correct selections.
The ideal number of selections varies because Google has very
dynamic web pages, and therefore, the number of links vary
considerably over time on these pages. Wrong selections were
corrected in the same manner as during the media player run.
If the goal could not be reached within 18 selections, the task
was aborted. The matrix for this task consisted of six rows and
a variable number of columns depending on the number of
links on the actual web page. However, the maximum number
of columns was seven.

• Task 4: Second copy spelling

This task was performed in the same way as the first
copy spelling task. The only difference was that two other
words—“TRAUM” (English “dream”) and “KRAFT” (English
“force”)—have to be spelled.

Overall, every participant had to perform a minimum of 40 and a
maximum of 53 selections per system.

2.3.5. Questionnaires
After the last run of every session, the participants were asked to
fill out several questionnaires concerning the satisfaction with the
system and the system design.

• VAS: The level of satisfaction of the users was assessed with a
visual analog scale (VAS), ranging from 0 (not at all satisfied)
to 10 (absolutely satisfied).

• eQUEST 2.0: A usability test was adapted for BCI usage
by Zickler et al. (2011). This test evaluates 12 categories
(dimension, weight, adjustability, safety, ease of usage, well-
being, effectiveness, service features, reliability/robustness,
speed, learnability, and aesthetic of design) on a scale from one
to five where one stands for not satisfied and five stands for

very satisfied. In addition, the three most important categories
must be indicated.

2.3.6. Evaluation Metrics
The effectiveness was determined by calculating the percentage
of correct selections of all selections (accuracy). The efficiency of
a system was determined with the amount of flashing repetitions
participants needed to make selections with the P300 speller.
Results of the questionnaires were evaluated by calculating the
averaged values.

3. RESULTS

3.1. Technical Results
The noise of the different systems was recorded and evaluated.
A graphical comparison of the signals from the systems can be
seen in Figure 4. The tap water-based system with a mean RMS
(yellow line in Figure 4) of 0.37µV had the lowest measured
value followed by the hydrogel-based (0.68µV) and the dry
electrode-based system (0.82µV) within the frequency range of
0.1–40Hz. Moderate pressure on the electrodes was necessary
to obtain a good signal from the tap water-based and the dry
electrode-based system.

3.2. User-Centered Results
3.2.1. Effectiveness and Efficiency
The hydrogel-based system was the most effective with a mean
BCI accuracy of 96% (SD: 3.5) followed by the tap water-
based system with 93% (SD: 4.5) and the dry electrode-based
system with 77% (SD: 11.8). On average, the accuracies of the
hydrogel-based (between 93 and 99%) and the tap water-based
system (between 91 and 96%) stayed stable above 90% over
the four tasks, whereas the dry electrode-based system showed
decreasing accuracies over time from 87% for the first spelling
task to 70% for the second spelling task (see Table 2 and
Figure 5).

The inter-participant variance (cf. SD in Table 2) was low for
the hydrogel-based system, moderate for the tap water-based
system, and high for the dry electrode-based system.

The tap water-based and gel-based systems showed on
average the same number of needed sequences followed by
the dry electrode-based system (see Table 3). The overall result
of the training cross-validation can be seen in Figure 6.
The hydrogel-based and tap water-based systems showed
comparable results; the accuracies of the dry electrode-based
system, however, were slightly lower at the same number of
sequences.

3.2.2. Satisfaction
Overall device satisfaction per system and results of the eQUEST
2.0 are listed in Table 4. Scores from the VAS were between
6.64 (dry electrode) and 8.76 (tap water-based) on average and
indicate a high general satisfaction.

In the eQUEST 2.0, only “speed” received scores below 4 (quite
satisfied) for all three systems. The items that were rated as
most important by the study participants were “effectiveness”
(n = 6), “reliability” (n = 3), and “speed” (n = 3) for the
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FIGURE 4 | Signal plot (left), histogram (middle), and amplitude spectrum (right) of the short circuit noise measurement after 0.1–40Hz band-pass

filtering. The yellow line in the left plots represents the RMS of the signal.

TABLE 2 | Accuracies of the systems in percent (%).

Participant Hydrogel-based system Tap water-based system Dry electrode system

Sp1 MmP WeB Sp2 Sp1 MmP WeB Sp2 Sp1 MmP WeB Sp2

P1 100 100 70 100 100 100 91 90 80 90 60 50

P2 100 100 100 100 90 100 90 100 90 80 60 90

P3 90 80 100 90 100 100 100 100 50 80 40 60

P4 100 70 80 100 80 64 73 70 90 60 30 30

P5 100 100 100 100 * * * * 100 100 100 80

P6 100 100 100 100 100 100 91 100 100 100 100 90

P7 100 100 100 100 100 100 100 90 100 100 60 90

P8 * * * * 100 92 100 90 * * * *

Mean 99 93 93 99 96 94 92 91 87 87 64 70

SD 4 13 1 4 8 13 10 11 18 15 27 24

Sp1, Sp2. . . Spelling run 1, 2; MmP. . .Multimedia player; WeB. . .Web browser.
*Data not available for this system.

hydrogel-based system; “speed” (n = 6), ”effectiveness” (n =

4), and ”learnability” (n = 4) for the tap water-based system;
“speed” (n = 6), “effectiveness” (n = 5), and “easy of use,”
“reliability” and “learnability” (all three: n = 3) for the dry
electrode-based system.

Participants commented negatively on the unaesthetic and
tight design of the caps and the low speed. On the other
hand, most of the participants were positively surprised that it
worked at all.

4. DISCUSSION

Building a reliable BCI is possible with all the introduced EEG
amplifier systems. However, small but important differences

between the systems are detectable and deliver arguments to
define special areas of application for each system.

4.1. Technical Evaluation
For EEG measurements, it is crucial to have minimal noise
resulting in a maximum signal-to-noise ratio. Having in mind
that all short circuit RMS noise levels stayed below 1 µV, our
measurements indicate that the short circuit RMS noise level
of the tap water-based system is almost half the level of the
hydrogel-based and less than half of the dry electrode-based
system. It is obvious that the histogram of the tap water-based
system is very narrow compared to the others, which means
that the noise amplitude is low (see Figure 4). This is not
surprising with the knowledge that the other electrodes are
active electrodes, i.e., powered electronics are contained within
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FIGURE 5 | Boxplots showing the BCI accuracies of each task for every system. The central mark (dashed line) of each box is the median, the edges of the

box are the 25th and 75th percentiles; the whiskers extend to the most extreme data points (1.5× interquartile range). Outliers are marked with red crosses.

TABLE 3 | Sequences needed after training.

Participant Hydrogel-based

system

Tap water-based

system

Dry electrode

system

P1 8 8 8

P2 15 13 13

P3 14 9 15

P4 13 11 15

P5 8 * 8

P6 8 8 15

P7 8 14 15

P8 * 10 *

Mean 10.6 10.4 12.7

SD 3.3 2.4 3.3

Minimum possible value is eight.
*Data not available for this system.

the electrode, and this feature is probably the source of the
additional short circuit noise. The active electronic parts (dry
electrode-based and gel-based systems) and the active shielding
technique (tap water-based system) are used to reduce noise
pickup from cables. From our results, we cannot determine which
technique works better regarding suppressing cable movement
artifacts, because all the cables were fixed and not moving
like they could in real-world usage. To determine the real-
world behavior of the systems, we performed the user-centered
evaluation.

4.2. User-Centered Evaluation
4.2.1. Effectiveness and Efficiency
Both “wet” systems, the hydrogel-based and the tap water-based,
showed comparable averaged accuracies and seemed to be equally
effective (see Figure 5). In addition, the increase of accuracy with

increased number of sequences is also comparable (see Figure 6).
However, the tap water-based as well as the dry electrode-based
system showed a higher standard deviation of the accuracies (see
Table 2). One possible explanation for this is that the connection
between the electrode and the skin of the head is also a crucial
factor. The shape of the human head is neither a sphere nor
identical for all people. Therefore, the connection between the
electrode and the head has to be very flexible. The tap water-based
system as well as the dry electrode-based system has amore or less
rigid connection. The dry electrode-based system with its gold
alloy pins is delivered with two different pin lengths and three
different cap sizes to be adaptable to different head shapes and
hair lengths. It is time consuming to find a tradeoff between too
much pressure of the pins against the skin (good signal quality,
but less wearing comfort) and too little pressure (moderate signal
quality, but comfortable). Since the time of our participants was
limited and every participant used the system only once, we
might have not found the optimal pin length and cap size solution
for all of our participants. However, a visual inspection of the
recorded signal before the measurement guaranteed that at least
the alpha wave (i.e., an oscillation of approx. 8–13Hz) was visible
within the EEG, when the participants were instructed to close
their eyes and relax.

The cotton pieces that connect the electrode of the tap water-
based systemwith the skin are soft and flexible. However, they are
rolled up and put into a housing where just 3mm of the material
is outside. Only these 3mm of the material are available to fit the
electrode to the head shape (see Figure 1). Consequently, the hair
under each electrode has to be carefully pushed to the side (i.e.,
under the electrode housing of the cap) to reach a high real-world
signal quality.

These problems will not occur with hydrogel-based electrodes,
because the electrodes and the skin are connected with gel. Gel
perfectly bridges the gap between the electrode and the skin.

Frontiers in Neuroscience | www.frontiersin.org 8 September 2016 | Volume 10 | Article 441

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Pinegger et al. Evaluation of Different EEG Acquisition Systems

Number of Sequences
1 3 5 7 9 11 13 15

A
cc

u
ra

cy
 (

%
)

25

50

70

80

90

100

Hydrogel-based system Tap water-based system Dry electrode-based system

FIGURE 6 | Result of the leave one letter out cross-validation of the training data. Error bars indicate the standard error of the mean. The dry electrode-based

system showed in general lower accuracies at the same number of sequences compared to the hydrogel-based and the tap water-based systems.

TABLE 4 | Results of the eQUEST 2.0 and VAS for all systems.

Category Hydrogel-based system Tap water-based system Dry electrode system

eQUEST 2.0

Dimensions 4.6 (0.8) 4.6 (0.8) 4.1 (0.7)

Weight 4.4 (1.0) 4.6 (0.5) 4.4 (0.8)

Adjustment: EEG cap 4.4 (0.8) 4.7 (0.8) 4.7 (0.8)

Adjustment: Amplifier 4.8 (0.4) 4.8 (0.4) 4.8 (0.4)

Safety 5.0 (0.0) 5.0 (0.0) 5.0 (0.0)

Comfort: physical 4.1 (0.9) 4.0 (0.8) 4.1 (0.9)

Comfort: emotional 4.3 (1.0) 4.4 (0.8) 4.3 (1.0)

Easy of use 4.4 (0.5) 4.6 (0.8) 3.7 (1.3)

Effectiveness 4.4 (0.5) 4.4 (0.8) 3.3 (1.5)

Reliability: EEG cap 4.7 (0.8) 5.0 (0.0) 5.0 (0.0)

Reliability: Amplifier 5.0 (0.0) 5.0 (0.0) 4.7 (0.8)

Speed 3.4 (1.3) 3.7 (1.0) 3.6 (1.0)

Learnability 4.7 (0.5) 4.9 (0.4) 4.9 (0.4)

Aesthetic design: EEG cap 3.9 (0.9) 4.1 (1.1) 4.0 (1.3)

Aesthetic design: Amplifier 4.4 (0.8) 4.6 (0.5) 3.7 (1.3)

Mean 4.44 (0.40) 4.58 (0.39) 4.33 (0.50)

VAS Mean 8.00 (1.75) 8.76 (2.00) 6.64 (1.41)

The eQUEST 2.0 scores range from 1 (not satisfied at all) to 5 (very satisfied), and the VAS scores range from 0 (not at all satisfied) to 10 (absolutely satisfied). The standard deviation
(SD) is given in parenthesis. Results of the most important features per system are printed in bold.

In addition, this connection is flexible, which means that the
connection will not be lost if the head is slightly moved.

The described electrode fitting problem might also be an
explanation for the higher inter-individual variances (i.e., higher
standard deviations) of the tap water-based and the dry electrode-
based systems (see Table 2).

Another shortcoming of the tap water-based system is that
all 32 available electrodes are permanently connected to the
amplifier in contrast to the two other systems where only the
used number of electrodes are connected. However, it is possible
to order the tap water-based system with fewer permanently

connected electrodes. Nevertheless, the problem is that unused
electrodes could swing around, when the user moves the head,
and the weight of the cable bundle might pull the used electrodes
down causing EEG artifacts. Therefore, we fastened the cable
bundle and the unused electrodes to the cap to minimize those
ar tifacts.

4.2.2. Satisfaction
The high average accuracies achieved with the hydrogel-based
and the tap water-based systems are also reflected in the
results of the VAS and eQUEST 2.0. A mean VAS score of
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8.00 (hydrogel-based) and 8.76 (tap water-based) and a mean
eQUEST 2.0 score close to the maximum indicate that the
participants were “very satisfied” with these two systems.

Although the mean eQUEST 2.0 score of the dry electrode-
based system is not considerably lower than the scores of the two
other systems, the negative difference of the VAS score is 2.12 to
the tap water-based and 1.36 to the hydrogel-based systems (see
Table 4). The main reason for that is probably the dissatisfaction
of the users with the speed and effectiveness of the dry electrode-
based system. Both criteria are rated low (below 4.0), whereas at
the same time, they are listed as the most important features by
most of the users.

However, the participants tested every system only once.
Therefore, one can assume that the questionnaire scores
may change when they are using the systems more often.
Consequently, the results can only indicate a trend not absolute
values.

One statement of the participants is consistent for all EEG
amplifier systems: The users disliked the electrode cap. They felt
that the cap was unaesthetic and conspicuous.

4.3. Comparison to Existing Literature
Volosyak et al. (2010) compared a prototype of the used water-
based electrode system with passive Ag/AgCl electrodes. The
major statements and conclusions out of this paper are “EEG
activity can be measured with the novel water-based electrodes”
and no significant differences between the two sensor modalities
concerning the BCI classification accuracy (SSVEP spelling task)
could be found. Both the points are also supported by our
findings.

In Zander et al. (2011), the prototype of a dry electrode-based
system was compared to an active Ag/AgCl electrode system. The
electrodes were tested in two scenarios: ERPs were investigated
and occipital alpha was measured. In addition, BCI classification
accuracies were evaluated. The outcomes were, that no significant
differences in the amplitude and the temporal structure of ERPs
and no significant classification accuracy differences between
the dry electrode-based and gel-based systems were detectable.
However, the dry electrode-based system has a slightly lower
ERP classification accuracy. Our findings indicate that the
dry electrode-based system has a considerably lower ERP
classification accuracy.

Guger et al. (2012) tested dry electrodes that were identical
with the electrodes tested in this manuscript. Participants
performed a simple P300 spelling task. The results were
compared with the results gathered from standard passive and
active electrodes. In addition, the dry electrodes were evaluated
concerning the wearing comfort. Our results support their
findings that the dry electrodes have a lower ERP classification

accuracy. However, our assessed classification accuracy of the
dry electrodes is on average more than 15% (cf. Guger et al.:
0.6%) lower and some participants reported discomfort after
some time of usage. This is hardly surprising, considering that
the participants of Guger et al. just had to copy spell five
characters. In contrast, our participants had to copy spell at least
40 characters.

5. CONCLUSION

On the basis of the findings, the gel- and tap water-based systems
are comparably suitable to build a very effective and efficient
BCI. However, many users do not want to have gelled or wet
hair and may accept a possibly lower effectiveness or efficiency to
avoid inconveniences. Therefore, the dry based-electrode system
is perfectly suitable.

Taking into account the outcome of a recent user-centered
BCI evaluation (Kübler et al., 2014) and the recommendations
of the BNCI roadmap (Brunner et al., 2015), the further
development of BCI-suitable EEG acquisition systems should
focus on the integration of the hardware into a single unit,
wireless data transmission, and especially an appealing solution
for placing gel-free electrodes on the head. The realization
of these recommendations would strongly increase the user
acceptance of BCIs outside the laboratory.
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