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Insulin-Like Growth Factor 1 (IGF-1) is a neurotrophic polypeptide with crucial roles to

play in Central Nervous System (CNS) growth, development and maturation. Following

interrogation of the neurobiology underlying several neurodevelopmental disorders and

Autism Spectrum Disorders (ASD), both recombinant IGF-1 (mecasermin) and related

derivatives, such as (1-3)IGF-1, have emerged as potential therapeutic approaches.

Clinical pilot studies and early reports have supported the safety/preliminary efficacy

of IGF-1 and related compounds in the treatment of Rett Syndrome, with evidence

mounting for its use in Phelan McDermid Syndrome and Fragile X Syndrome. In ASD,

clinical trials are ongoing. Here, we review the role of IGF-1 in the molecular etiologies

of these conditions in addition to the accumulating evidence from early clinical studies

highlighting the possibility of IGF-1 and related compounds as potential treatments for

these childhood-onset neurodevelopmental disorders.

Keywords: IGF-1, autism spectrum disorders, Rett Syndrome, Fragile X Syndrome, Phelan-Mcdermid Syndrome

INTRODUCTION

Insulin-Like Growth Factor 1 (IGF1) is a polypeptide hormone and a member of a superfamily of
related insulin like hormones termed Insulin Like Peptides (ILPs) (Fernandez and Torres-Alemán,
2012). IGF-1 is primarily released by hepatocytes in response to Growth Hormone, but is also
produced in the Central Nervous System (CNS) where it has pleiotrophic effects on all major
CNS cell types (Bach et al., 1991; O’Kusky and Ye, 2012). IGF-1 has crucial roles to play in the
development, growth and maturation of the CNS and its synapses, roles which have been reviewed
extensively elsewhere (Bach et al., 1991; Popken et al., 2004; Aberg et al., 2006; Llorens-Martín et al.,
2009; Corvin et al., 2012; O’Kusky and Ye, 2012; Supeno et al., 2013; Huat et al., 2014; Dyer et al.,
2016).

IGF-1 and IGF1 receptor (IGF1R) expression levels have a definite spatio-temporal patterns
(Bach et al., 1991; Bartlett et al., 1992; Bondy and Lee, 1993; Zhang et al., 2007). Of note, the
abundance of IGF-1R expression over IGF-1 hints at the importance of peripherally produced
IGF-1 in mediating the effects of IGF-1 on the CNS (Fernandez and Torres-Alemán, 2012).
IGF-1 acts on its glycoprotein receptor (IGF1R), a tyrosine kinase receptor, to activate canonical
signaling pathways, including: (i) the PI3K (phosphatidylinositol-3 kinase)—AKT1 (serine-
threonine-specific protein kinase)—FOXO (forkhead box protein O) and (ii) the RAS—MAPK
(mitogen-activated protein kinases)—ERK (extracellular signal regulated kinases) pathway. Both
of these pathways have important roles to play including cell cycle regulation, gene expression,
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protein synthesis, autophagy, apoptosis and remodeling of the
cytoskeleton (Fernandez and Torres-Alemán, 2012; Costales and
Kolevzon, 2015).

Once released in the serum, IGF-1 can be cleaved to yield an
amino terminal glycine-proline-glutamate (GPE tripeptide) and
a truncated IGF-1 form called des-N-(1-3)-IGF-1, lacking the
N-terminal GPE tripeptide, which has greatly reduced affinity
for IGFBPs and is therefore, is more potent than IGF-1. (1-
3)IGF-1 is an active metabolite with neuroprotective effects as
well as effects on excitatory synaptic markers such as synapsin
1 and post-synaptic density 95 (PSD-95), recapitulating many
of the effects of IGF-1 on synaptic maturation and plasticity
(Guan et al., 1999; Corvin et al., 2012). Of note, this effect of
(1-3) IGF-1 may be different in neuronal and non-neuronal cell
populations. In one report studying the effects of IGF-1 acting
on its canonical pathways in neuronal and non-neuronal cells,
IGF-1 was found to increase pAkt statining in neurons but not
glial cells, whilst (1-3) IGF-1 increased staining in glial cells but
not neurons (Corvin et al., 2012). Thus, signaling by IGF-1 and
its active tripeptide may demonstrate different effects in different
CNS cell populations, adding further to the biological complexity
of IGF-1 signaling. One mechanism of action of (1-3)IGF-1 may
be to indirectly activate the IGF-1R via an increase in endogenous
IGF-1 release (Corvin et al., 2012). Another important aspect of
IGF-1 physiology is its binding to IGF Binding Proteins (IGFBP),
which regulate its bioavailability, localization and activity (Ocrant
et al., 1990; Clemmons, 1998; Hwa et al., 1999; Firth and Baxter,
2002).

Disruption of IGF-1 function has profound phenotypic
consequences both in murine models and in humans,
underscoring the important role of IGF-1 in CNS development
and maturation (Beck et al., 1995; Woods et al., 1996; Netchine
et al., 2011). In the present Mini-Review, we address the role of
perturbed IGF-1 signaling and the therapeutic potential of IGF-1
and (1-3)IGF-1 in neurodevelopmental disorders such as Rett
Syndrome (RTT), Fragile X Syndrome (FXS), Phelan McDermid
Syndrome (PMDS) as well as broader Autism SpectrumDisorder
(ASD).

RETT SYNDROME

Rett Syndrome (RTT) is a pervasive X-Linked
neurodevelopmental disorder affecting 1:10,000 female (Percy
and Lane, 2004). RTT is characterized by an apparently
normal development, followed by a subsequent regression
in psychomotor, social and cognitive abilities, deficits in
social interaction and a loss of acquired fine motor skills and
purposive hand movements. In the CNS, RTT is characterized by
microcephaly, neuronal atrophy and leads to cardiorespiratory
problems (Julu et al., 2001; Hagberg, 2002). At present, the
treatment of RTT represents an unmet therapeutic need.

More than 85% of RTT is caused by a mutation in methyl
CpG-binding protein 2 (MeCP2), encoding the protein MECP2,
which has roles both inside and outside the nucleus (Kaufmann
et al., 2005; Chahrour et al., 2008). Atypical cases of RTT
may also be caused, in less than 10% cases, by mutations in

cyclin-dependent kinase-like 5 (CDK-L5) and in the Forkead Box
G1 (FOXG1) in 1% cases (Cahrour and Zoghbi, 2007).

The deletion of the MeCP2 gene in mouse models
recapitulates many of the autonomic, motor and cognitive
features of the human RTT phenotype (Banerjee et al., 2012;
Castro et al., 2014; Katz et al., 2016), together with reduced
connectivity (Armstrong, 2005; Chapleau et al., 2009) and
defects in neurotransmitter and receptor expression. MeCP2
loss in mice results in an alteration in excitatory-inhibitory
balance with reduced excitation/increased inhibition in cortical
samples/tissue (Dani et al., 2005; Durand et al., 2012).

MeCP2 deficient brains demonstrate large numbers of modest
transcriptional changes, both positive and negative (Katz et al.,
2016). One well characterized target of MECP2 function is Brain
Derived Neurotrophic Factor (BDNF), an important modulator
of CNS growth, which shows synergy with IGF1 in the CNS
(Ding et al., 2006). BDNF is down-regulated in murine models
of RTT as well as patients with RTT (Chang et al., 2006; Zhou
et al., 2006). Although studies in rats have shown that there is
clear exchange of BDNF between the brain and the periphery
(Pan et al., 1998) and viceversa (Poduslo and Curran, 1996), other
studies have failed to raise BDNF in the brain to therapeutic
levels, suggesting crossing through the blood-brain barrier (BBB)
of this neurotrophin to be insufficient for clinical purposes
(Pardridge et al., 1994). IGF-1 is a potential alternative, which on
crossing the BBB acts on the same pathways as BDNF (such as
the PI3K-Akt and MAP-ERK pathways) and appears important
for BNDF effects on activity dependent plasticity (Pardridge et al.,
1994; Ding et al., 2006).

In Mecp2 mutant mice, administration of both IGF-1 and (1-
3)IGF-1 reverses many of the features of the RTT phenotype
(Chen and Russo-Neustadt, 2007; Castro et al., 2014). Castro et al.
(2014) demonstrated reduced IGF-1 levels in MeCP2 mutant
mice, with subsequent daily administration of IGF-1 resulting
in an improved lifespan, weight and autonomic parameters in
the knockout mice. IGF-1 significantly improved abnormalities
in activity dependent plasticity in MeCP2 mutant mice (using a
monocular deprivation paradigm). Similar effects are observed
with (1-3) IGF-1 administration (Tropea et al., 2009), together
with improved spine density, synaptic amplitude and increased
excitatory synaptic markers (Tropea et al., 2009). Furthermore,
in a mouse model of atypical RTT with mutations in CDLK5,
IGF-1 was demonstrated to rescue deficits in dendritic spine
instability and expression of PSD-95 adding further support
to IGF-1 as a potential treatment in RTT (Della Sala et al.,
2016).

One mechanism by which IGF-1 exerts its effects in RTT
may be by acting on its canonical signaling pathways (such as
PI3K and MAPK pathways as above). Interestingly, a recent
study demonstrates that IGF-1 application may actually increase
nuclear MeCP2 transcript and protein (Tropea et al., 2016).
Activity dependent plasticity was also shown to modulate
MeCP2 expression and this additionally demonstrates the
profound effects of IGF-1 on cellular neuroplasticity in the
CNS. Restoration of these abnormalities in activity-dependent
plasticity may be one important way in which IGF-1 may
exert its effects in RTT. Interestingly, MeCP2 may affect IGF-1
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levels by regulation of IGFBPs which has been demonstrated
for IGFBP3 in both murine models and humans (Itoh et al.,
2007).

IGF-1 is already indicated in the pediatric population for
severe growth failure and IGF-1 deficiency. In RTT patients, two
early studies have been performed demonstrating the tolerability
and safety of IGF-1 as a potential treatment (Pini et al., 2012;
Khwaja et al., 2014). Khwaja et al. (2014) demonstrated the safety
of IGF-1 in 12 patients withMeCP2mutations (9 with RTT) with
a 4 weekmultiple ascending dose (40–120 ug/kg bd) followed by a
20 week open label extension, without any serious adverse events
or hypoglycamia. A previous clinical study had demonstrated
safety in 6 patients with RTT receiving twice daily injections of
IGF-1 for a 6 month period (Pini et al., 2012). This was followed
by a single case study of one of the patients reporting the safety of
repeated treatment with IGF-1 for a second 6 month cycle (Pini
et al., 2014).

Preliminary efficacy analysis by Khwaja et al. (2014)
demonstrated an improvement in cardiorespiratory parameters,
some neurobehavioral parameters and EEG measures of mood
and anxiety (reversed frontal alpha band asymmetry). Pini
et al. analyzed 10 patients whom had received IGF-1 treatment
in a clinical study and compared various parameters to age
and disease severity matched controls (Pini et al., 2016). They
reported a significant improvement in disease severity as assessed
by clinicians as well as two independent and blinded observers
using a novel video based scoring system. Whilst this evidence
is preliminary, this early data demonstrating efficacy of IGF-1
in RTT is encouraging. The results of ongoing Phase 2 clinical
trials using IGF-1 in RTT are eagerly awaited (NCT01777542).
Furthermore, an analog of (1-3)IGF-1, NNZ-2566 (administered
orally) has demonstrated efficacy in both clinician and caregiver
assessments in an industry-led Phase 2 trial on patients with
RTT aged 15-45 (NCT01703533), with a Phase 2 trial on younger
patients in progress (NCT02715115). Taken together, there is
encouraging evidence for the use of IGF-1 and (1-3) IGF-1 in the
treatment of RTT (see Tables 1, 2).

FRAGILE X SYNDROME

Fragile X Syndrome (FXS) results from a mutation in the
Fmr1 gene, encoding the protein Fragile X Mental Retardation
Protein (FMRP1). The disorder is characterized by learning
disability, social anxiety and attention deficit disorder, impaired
social interactions and seizures as well as an abnormal physical
phenotype with macro-orchidism and facial dysmorphism
(Hagerman, 1997; Garber et al., 2008). The treatment of FXS
represents a largely unmet clinical need.

FMRP, an mRNA binding protein, expressed in neuronal
cell bodies and dendrites acts to regulate protein translation at
the synapse, with important roles to play in activity-dependent
plasticity (e.g., inhibition of translation triggered by mGluR1/5
in response to neuronal stimulation) (Bhakar et al., 2012).
FMRP may also have important presynaptic effects on neuronal
transmission, mediated via its effects on large conductance Ca2+

activated K+ channels (Deng et al., 2013).

Several studies have reported disruptions in MAPK/ERK
signaling in FXS. Weng et al. (2008) have demonstrated delayed
early-phase phosphorylation of ERK in mice deficient in FMRP
whilst Curia et al. (2013) demonstrate a resistance to seizures
with dephosphorylation of p-ERK in Fmr1 mice (Weng et al.,
2008; Curia et al., 2013). In the PI3K pathway, the p110beta
catalytic subunit can be regulated by FMRP, with p110beta and
PI3K activity elevated in Fmr1 knockout neurons. This suggests
that dysregulation of PI3K signaling may be involved in the
synaptic deficits seen in FXS. Indeed, inhibition of PI3K activity
may correct dysregulated synaptic protein synthesis, AMPA
internalization and spine density defects in knockout neurons
(Gross et al., 2010). Thus, alterations in the same canonical
pathways stimulated by IGF-1 and other neurotrophins may
underlie a large part of the synaptic pathology seen in FXS.

Impressive preclinical evidence comes from a study byDeacon
et al. (2015) using an analog of (1-3)IGF-1, NNZ-2566. In
Fmr1 knockout mice, NNZ-2566 demonstrated a significantly
reduced brain phospho-ERK and phospho-Akt. Similarly, NNZ-
2566 resulted in a significant reduction in spine numbers, which
are increased in the Fmr1 mice in comparison to controls.
Improvement in hyperactivity and anxiety, learning and memory
deficits was also observed (Deacon et al., 2015). In patients with
FXS, a Phase 2 industry-led clinical trial has been completed
using NNZ-2566, with clinical improvement in many of the
core symptoms of FXS as disclosed by Neuren Pharmaceuticals
(NCT01894958). The exact efficacy of IGF-1 related compounds
such as NNZ-2566 awaits further clarification, but this early
clinical evidence is encouraging.

PHELAN-MCDERMID SYNDROME

Phelan-McDermid Syndrome (PMDS) is another monogenic
neurodevelopmental disorder and results from deletions in
the SHANK3 gene on chromosome 22q13.3. Affected patients
demonstrate global developmental delay, severe impairments in
speech and intellectual disability (Phelan and McDermid, 2012).
The protein product of SHANK3 is a key scaffolding protein
present in the post-synaptic density of excitatory synapses, with
key roles in activity-dependent plasticity and the functional
maintenance of these synapses.

In 3-week old hippocampal neurons treated with siRNA to
inhibit SHANK3 synthesis, there was a decreased number and
an increased length of dendritic spines (Roussignol et al., 2005).
Similarly, application of SHANK3 resulted in the formation of
spine-like protrusions containing SHANK3 in aspiny neurons
supporting the role of SHANK3 in spine formation and
synaptic plasticity. Further, application of SHANK3 increased
immunoreactivity for AMPAR subunits in cell body and
dendritic spines (but not for GABA subunits), supporting its
role in the function and maintenance of excitatory synapses
(Roussignol et al., 2005). Using mice deficient in Shank3, Bozdagi
et al. found reduced amplitude of miniature excitatory post-
synaptic currents (mEPSCs) in the hippocampus and impaired
Long Term Potentiation (LTP), with only transient spine
expansion present (Bozdagi et al., 2010).
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TABLE 2 | Ongoing trials examining IGF-1 as a potential treatment in several childhood-onset neurodevelopmental disorders.

References Disorder Treatment Dose Sample size Study type Treatment duration Findings Company (if

applicable)

NCT01777542 RTT rhIGF-1 Unknown In progress Phase II Trial 10 months In progress –

NCT02715115 RTT NNZ-2566 Various In progress Phase II Trial 11 weeks (avg.) In progress Neuren

Pharmaceuticals Ltd.

NCT01970345 ASD rhIGF-1 0.04 mg/kg bd to a

maximum of 0.12 mg/kg bd

In progress Phase II Trial 12 weeks In progress –

RTT, Rett Syndrome; FXS, Fragile X Syndrome; PMDS, Phelan McDermid Syndrome; ASD, Autism Spectrum Disorder.

In Shank3 deficient mice, intraperitoneal injection of IGF-
1, administered daily for a 2 week period reversed deficits in
AMPAR receptors and LTP described above. Similar results
were also seen for the active tripeptide (1-3) IGF-1 (Bozdagi
et al., 2013). Recently, similar effects for IGF-1 on Shank3
deficient human neurons has been demonstrated. By using
induced pluripotent stem cells (iPSCs) from patients with PMDS
and using them to produce functional neurons, Shcheglovitov
et al. demonstrated that these neurons had a reduced expression
of SHANK3 with accompanying defects in excitatory synaptic
transmission as seen in the murine models above (Shcheglovitov
et al., 2013). Treatment of the SHANK3 deficient neurons
with IGF-1 increased the amplitude and frequency of EPSCs,
restored the amplitude of evoked AMPA and NMDAR EPSCs
and restored NMDA receptor currents on application of NMDA
(Shcheglovitov et al., 2013). IGF-1 also caused a 340% increase
in the fraction of puncta expressing PSD-95 in PMDS neurons
(Shcheglovitov et al., 2013).

In a double blind, placebo controlled Phase 2 trial reported
by Kolevzon et al., the safety and preliminary efficacy of IGF-1
treatment in PMDS were reported on 9 patients with PMDS aged
5–15 (Kolevzon et al., 2014). IGF-1 treatment was associated with
significant improvements in social impairment and restrictive
behaviors (Aberrant Behavior Checklist and Repetitive Behavior
Scale). No serious adverse events occurred with the main side
effects including sleep disturbance, hypoglycemia (<50 mg/dL),
constipation, increased appetite and mood changes/irritability.
This encouraging evidence awaits further confirmation and
exploration in further clinical trials in the PMDS population.

AUTISM SPECTRUM DISORDER

Autism Spectrum Disorder is a heterogenous
neurodevelopmental disorders characterized by deficits in
social interaction and in speech and language with narrowed
interests and repetitive behaviors (Wang and Doering, 2015).
Autism affects about 3–6 per 1000 of the population, although
recent estimates place its prevalence higher at 1 in 68 (CDC,
2012). The most substantial clue to ASD etiology is its substantial
heritability (−90%) (Freitag, 2007). ASD demonstrates complex
genetics, and whilst it is a genetically heterogenous disorder,
evidence repeatedly implicates genes involved in synaptic
development, function and activity-dependent plasticity by
both common and rare variation (Wang et al., 2009; Hussman

et al., 2011; De Rubeis et al., 2014). The potent effects of IGF-1
on synaptic function, maintenance and plasticity make it a
potentially attractive target for the treatment of ASDs.

Vanhala et al. reported low levels of IGF-1 in children with
autism, however sample sizes were small (n= 11) (Vanhala et al.,
2006). In 25 young children with a diagnosis of autism, it was
subsequently shown that IGF-1 levels were significantly reduced
(Riikonen et al., 2001), and in those with a diagnosis of autism,
Cerebrospinal Fluid (CSF) IGF-1 was correlated with head size
(Mills et al., 2007). On measuring urinary IGF-1 excretion, Anlar
et al. (2007) demonstrated that IGF-1 level was significantly lower
in autistic children than in age matched controls. In contrast, a
larger study has demonstrated significantly higher levels of IGF-1
in children with autism (Marchetto et al., 2016). The exact role of
the IGF-1 axis in ASD awaits further clarification.

Interestingly, in a recent report using neurons derived from
patients with ASD, Marchetto et al. found a partial rescue
of deficits in neuronal networks (neuronal spike number and
activity) on application of IGF-1 (Marchetto et al., 2016).
At present, clinical trials of IGF-1 in Autism Spectrum
Disorder are ongoing, with a phase 2 trial currently recruiting
(NCT01970345). The trial aims to pilot the use of IGF-1 as a
novel treatment for the core symptoms of ASD. The results of
this trial are eagerly awaited. If successful, further trials will be
needed in the ASD population to determine the exact efficacy of
IGF-1 as a potential treatment, as well as studies to investigate the
specific groups of patients with ASD which benefit the most from
treatment with recombinant IGF-1.

POTENTIAL MOLECULAR MECHANISMS
OF IGF1 AND DERIVATES IN DIFFERENT
DISORDERS

There are three potential mechanisms by which IGF-1 may
exert its effects in these neurodevelopmental disorders. The
first is increased glutamatergic transmission, as seen in various
preclinical studies (Tropea et al., 2009; Corvin et al., 2012; Castro
et al., 2014; Marchetto et al., 2016). A potential consequence of
this includes effects related to increased synaptic potentiation and
plasticity (Bozdagi et al., 2013). A second potential action of IGF-
1 in these neurodevelopmental disorders includes activation of
molecular pathways involved in growth and connectivity (PI3K
and MAPK). In RTT models, where these pathways are down-
regulated, IGF1 induces an increase in the relative markers of
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neuronal function (Tropea et al., 2009; Castro et al., 2014), whilst
in FXS models, where they are up-regulated, an (1-3)IGF1 analog
induces a decrease in the cellular pathways (Deacon et al., 2015).
This may be the result of a homeostatic action of IGF-1, in re-
establishing basal levels of activity in these canonical signaling
pathways. The third potential mechanism relates to effects on
transcription. This has been demonstrated in recent studies of
IGF-1 on mecp2 transcript (Tropea et al., 2016). More work
is needed to clarify the direct and indirect effects of IGF1 and
derivates, and their action in different cell types.

CONCLUSION

Preliminary evidence is beginning to emerge from well validated
murine models and early clinical studies, that treatment with

recombinant human IGF-1 (rhIGF-1/mecasermin) and derived
compounds may be of benefit in several childhood onset
neurodevelopmental disorders. Whilst the evidence base is
preliminary, further clinical trials and studies are needed in
order to quantify the effects of IGF-1 on patients with these
disorders, as well as identifying particular patients which may
derive maximum benefit from treatment with IGF-1 and related
compounds. The results of ongoing clinical trials are eagerly
awaited.
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