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Executive function (EF) plays vital roles in our everyday adaptation to the ever-changing

environment. However, limited existing studies have linked EF to the resting-state brain

activity. The functional connectivity in the resting state between the sub-regions of the

brain can reveal the intrinsic neural mechanisms involved in cognitive processing of EF

without disturbance from external stimuli. The present study investigated the relations

between the behavioral executive function (EF) scores and the resting-state functional

network topological properties in the Prefrontal Cortex (PFC). We constructed complex

brain functional networks in the PFC from 90 healthy young adults using functional

near infrared spectroscopy (fNIRS). We calculated the correlations between the typical

network topological properties (regional topological properties and global topological

properties) and the scores of both the Total EF and components of EF measured by

computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB). We

found that the Total EF scores were positively correlated with regional properties in

the right dorsal superior frontal gyrus (SFG), whereas the opposite pattern was found

in the right triangular inferior frontal gyrus (IFG). Different EF components were related

to different regional properties in various PFC areas, such as planning in the right

middle frontal gyrus (MFG), working memory mainly in the right MFG and triangular

IFG, short-term memory in the left dorsal SFG, and task switch in the right MFG. In

contrast, there were no significant findings for global topological properties. Our findings

suggested that the PFC plays an important role in individuals’ behavioral performance in

the executive function tasks. Further, the resting-state functional network can reveal the

intrinsic neural mechanisms involved in behavioral EF abilities.
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INTRODUCTION

Executive function (EF) refers to a set of higher order
psychological processes that are involved in goal-oriented
behavior (Zelazo and Müller, 2002). It consists of a variety
of cognitive components, such as planning, working memory,
short-term memory, inhibition, and switch (Zelazo and Müller,
2002; De Luca et al., 2003; Testa et al., 2012). EF plays vital
roles in our everyday adaptation to the environment. Executive
dysfunction may increase the risk of serious cognitive or
social problems, such as attention-deficit hyperactivity disorder
(ADHD), autism, and Parkinson’s disease (Zelazo and Müller,
2002; Miyasaki et al., 2006).

Due to EF’s significant role in our lives, its neural correlates
have been extensively investigated in many neuropsychological,
clinical, and neuroimaging studies. Researches have consistently
shown that the prefrontal cortex (PFC) is involved in EF. The
most direct evidence comes from neuropsychological studies,
suggesting that cerebral lesions or damages to the PFC cause
deficits in EF (Owen et al., 1990, 1991; Burgess et al., 2000;
Bonnì et al., 2014). Clinical studies have also shown that
mental illnesses with EF deficits, such as obsessive-compulsive
disorder (OCD), depression, and schizophrenia are related to
functional impairment of PFC (Selemon et al., 1998; Davidson
et al., 1999; Gu et al., 2008; Melloni et al., 2012). Additionally,
recent neuroimaging studies using a variety of non-invasive
functional neuroimaging methodologies, such as functional
magnetic resonance imaging (fMRI), magnetoencephalography
(MEG), and functional near-infrared spectroscopy (fNIRS), have
revealed significant relations between EF performance and
neural activation levels in the PFC in both healthy and clinical
individuals (Peters et al., 2009; Pu et al., 2011; Melloni et al.,
2012; Moriguchi and Hiraki, 2013; de Vries et al., 2014; Oh et al.,
2014). For example, for healthy participants, fMRI activation in
the bilateral PFC was associated with a planning task (Newman
et al., 2003), and the neural MEG activities can be enhanced by a
set-shifting task (Oh et al., 2014). For patients with some mental
illnesses (e.g., Alzheimer’s disease or depression), the decreased
neural activities of the PFC was related to a poor performance of
EF tasks (Peters et al., 2009; Pu et al., 2011).

However, it should be noted that the existing neuroimaging
studies mostly focused on the activation of the PFC elicited by
EF tasks. Limited existing studies have linked EF to the resting-
state brain functional activity. Resting-state functional activity
refers to the internally spontaneous fluctuations of the brain in
a natural condition without stimulation (Biswal et al., 1995). It
has been consistently shown that functional connectivity in the
resting state between the sub-regions of our brains can reveal
the intrinsic neural mechanisms involved in cognitive processing
without disturbance from external stimuli (Fox et al., 2005).

The human brain is a dynamical system that is characterized
by complex exchanges of information among the brain regions
(Friston, 1994). Such dynamic interaction and synergy of
multiple brain regions is necessary for high level cognitive
processing, especially executive function (Douw et al.,
2011). Indeed, some recent studies have found significant
relations between high level cognitive processing and functional

connectivity. For example, Wang et al. (2011) found that
the level of intelligence was correlated with resting-state
connectivity of multiple brain regions including the middle
frontal, inferior parietal lobules. Douw et al. (2011) using
MEG reported significant correlations between the overall
brain resting-state topology and performance in cognitive tasks
measuring EF, attention, and working memory. Additional
studies have also demonstrated that resting-state functional
connectivity abnormality may be associated with cognitive
decline (Damoiseaux et al., 2008; Douw et al., 2011; Wang
et al., 2011). Most relevant to the present study, Reineberg
et al. (2015) found that EF was associated with functional
connectivity intensity of the right frontoparietal resting-state
functional network identified by independent components
analysis (ICA). This finding suggested that the resting-state
functional connectivity analysis method can be applied to the
study of neural correlates of EF.

The present study used resting-state high-density fNIRS
to examine the relations between behavioral performances in
different EF tasks and functional connectivity of the PFC. fNIRS
is a non-invasive neuroimaging methodology that measures
cortical hemodynamic changes optically (Villringer and Dirnagl,
1994; Tak and Ye, 2014). It has many advantages over fMRI (Ding
et al., 2013; Tak and Ye, 2014) which are particularly important
for the present study. Over the past decade, the appropriateness
of using fNIRS to examine localized cortical neural activities has
been well established (Ferrari and Quaresima, 2012; for reviews,
see Boas et al., 2014). In particular, systematic studies with
human adults using both fNIRS and fMRI have produced highly
consistent results regarding the cortical locations of specific
cognitive functions (for a review, see Cui et al., 2011). Although
the spatial resolution of NIRS is worse than MRI (cm vs. mm),
the temporal resolution of fNIRS is greater than that of fMRI
(e.g., 10 vs. 0.5Hz). The higher temporal resolution of fNIRS
is helpful to describe the time course of the fluctuations of the
brain’s neural activities more precisely.More specifically, the high
temporal resolution of the fNIRS signals allows for preventing
the higher frequency physiological signals from interfering with
low-frequency fluctuations (Lu et al., 2010), which is the focus
of our study. Additionally, the operating cost and complexity of
a NIRS system is far less than a MRI machine, allowing for the
collection of data from a larger sample of participants to ensure a
high level of statistical power. The advantages of fNIRS over fMRI
lend fNIRS very well as a tool to study functional connectivity.

The applications of resting-state fMRI have been widely
accepted (for a review, see Lee et al., 2013). Given the similarity
between fNIRS and fMRI hemodynamic signals (Steinbrink et al.,
2006), it is reasonable to extend the techniques of resting-
state study to fNIRS. Over the past several years, there were
an increasing number of studies on the resting-state functional
connectivity using fNIRS (for a review, see Niu and He, 2014).
For example, Lu et al. (2010) obtained the resting-state fNIRS
functional connectivity maps using both seed-based correlation
analysis and data-driven cluster analysis. Niu et al. (2012)
investigated the topological organization of the brain functional
networks based on fNIRS, and found that the topological
properties were consistent with previous fMRI findings. Recently,
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Li et al. (2015) capitalized on fNIRS’ higher temporal resolution
and examined the dynamic characteristics of the resting-state
functional connectivity on the whole cortex by a sliding-window
correlation method. They revealed high temporal variabilities in
the cortical resting-state functional connectivity. In summary, the
feasibility and validity of fNIRS for the assessment of resting-state
neural activities had been sufficiently established.

The present study capitalized on the advantages of fNIRS to
obtain resting-state functional data from 90 adults. We then used
graph theory to analyze the resting-state data. The analysis of the
complex brain networks based on graph theory is one of the most
widely used methods in resting-state functional connectivity
analysis (for a review, see van den Heuvel and Pol, 2010). This
is because graph theory provides the state-of-the-art measures to
describe the interaction and synergy of information between the
brain regions from a global perspective. In the present study, we
used this method to link the network properties of the functional
connectivity among the regions of the PFC to behavioral EF
performances.

Although some studies have linked the resting-state functional
connectivity to performances in various EF tasks (Widjaja et al.,
2013; Lin et al., 2015; Reineberg et al., 2015), to the best of
our knowledge, few have specifically focused on the resting-
state network topological properties. One exception was an MEG
study by Douw et al. (2011). They, however, only focused on
global parameters of resting-state network and did not analyze
regional parameters. Thus, it is entirely unclear whether and
to what extent the nodal and global topological properties of
the brain network were associated with behavioral performances
in various EF tasks. The present study aimed to bridge this
significant gap in the literature.

More specifically, we aimed to examine an important
theoretical question that hitherto has yet to be answered
empirically:Whether and to what extent are global or local neural
network connectivities associated with executive functioning in
behavior? One possibility is that both types of connectivities
are important to engender EF behaviors and therefore the
greater people’s global and local functioning connectivities,
the greater their behavioral EF performance (the Global and
Local Property Hypothesis). Although no specific evidence
exists to support this possibility, a recent study showed
that the resting-state global neural connectivity indexes are
predictive of participants’ intelligence as measured by IQ (Langer
et al., 2012). Given some components of EF (e.g., working
memory) is part of an intelligence scale that measures IQ,
we hypothesized that global connectivity indexes are related
to EF performance. Further, given the roles of the PFC in EF
processing revealed by the existing studies, we hypothesized
that the local topological properties of the resting-state brain
functional network in the PFC would be significantly correlated
with participants’ overall EF performance. In addition, given the
fact that different EF components (e.g., working memory, switch)
entails different cognitive processes with different underlying
neural mechanisms, we hypothesized that participants’ scores in
specific EF components would be related to different regional
properties and such linkage should emerge in different regions
in the PFC.

However, it is well established in the behavioral literature that
IQ is an index of a general and global intellectual ability (van
den Heuvel et al., 2009; Langer et al., 2012), whereas EF is a
specialized cognitive ability (though with wide-range usages in a
variety of situations). Thus, an alternative possibility is that unlike
IQ, EF might be more associated with local than global neural
connectivities (the Local Property Only Hypothesis). If this
possibility is true, the local, but not global, network topological
properties would be expected to link to both overall EF behavioral
performance and different EF components.

MATERIALS AND METHODS

Participants
Ninety healthy right-handed young adults (30 males; 20.4 ±

1.5 years old) with normal or corrected to normal vision
participated in the present study. None of them had any
history of learning disabilities, neurological and psychiatric
disorders. All participants gave informed written consent prior
to their participation. This research was approved by the Ethics
Committee of Zhejiang Normal University.

Imaging Acquisitions and Data
Preprocessing
During the resting state, participants were required to sit still
with eyes closed but not fall asleep, and to think of nothing as
far as possible. The NIRS data collection lasted 12min for each
participant.

A 24 channel continuous wave system (ETG-4000 Hitachi
Medical Co., Japan) was used for resting-state fNIRS data
acquisition. The instrument consisted of five light emitters
(each generated two wavelengths of near-infrared light: 760
and 850 nm) and four detectors on each hemisphere which
allowed for 24 different measurement channels. During the
experiment, the probes were embedded in two rubber shells,
which were covered with a swimming cap to keep it attached
to the participant’s head. The inter-optode distance was 30mm
and the sampling rate was set to 10Hz. The measurement of
neural activities approximately 15–25mm beneath the scalp was
achieved.

A 3D digitizer (EZT-DM401, Hitachi Medical Corporation,
Japan) was used to complete the 3 dimensional spatial
registration of NIRS channel locations. The estimated
corresponding location of each NIRS channel in the Montreal
Neurological Institute (MNI) space was obtained using the
probabilistic registration method (Singh et al., 2005). The NIRS
channels covered the bilateral PFC, including the dorsal superior
frontal gyrus (SFG), the middle frontal gyrus (MFG), the
triangular inferior frontal gyrus (IFG) and the left orbital MFG
(Brodmann’s Areas 9, 10, 45, 46) (Figure 1). The Brodmann’s
Areas (MRIcro), anatomical label and MNI coordinates were
listed in Table 1.

The raw optical signal was firstly converted to hemoglobin
signal using the modified Beer-Lambert Law conducted by
NIRS-SPM (Ye et al., 2009). To obtain relatively steady signals,
the first 2-min of data for each participant were discarded.
Preprocessing was conducted by the resting-state fMRI data
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FIGURE 1 | Locations of near-infrared spectroscopy (NIRS) channels. (A) The estimated positions of the NIRS channels. (B) The anatomical label (color) and

Brodmann’s Areas (MRIcro) (curve). Abbreviation: SFG (dor), dorsal superior frontal gyrus; MFG, middle frontal gyrus; ORBmed, Orbitofrontal cortex (medial); IFG

(triang), triangular inferior frontal gyrus.

analysis toolkit (REST) (http://resting-fmri.sourceforge.net).
Briefly, after removing the linear trend, in order to reduce
low-frequency drift and high-frequency physiological noise, the
hemoglobin data were passed through a band-pass filter (0.009–
0.08Hz) which was consistent with previous fNIRS study (Niu
et al., 2012). Although both oxygenated hemoglobin ([oxy-
Hb]) and deoxygenated hemoglobin ([deoxy-Hb]) signals were
obtained in this study, we only chose [oxy-Hb] data to perform
further analyses due to its superior signal-to-noise ratio relative
to [deoxy-Hb] (Strangman et al., 2002; Homae et al., 2007).

Behavioral Tasks Description
After the image acquisitions, the participants were measured
EF behaviorally using the computer-based Cambridge
Neuropsychological Test Automated Battery (CANTAB).
CANTAB is a widely used and well validated cognitive test
software system that provides an automated and efficient
assessment of multiple EF components (http://www.
cambridgecognition.com). Due to its normative procedures
and nonverbal nature, CANTAB is highly suitable for use in
different cultural settings (De Luca et al., 2003; Gau and Shang,
2010). CANTAB had been used extensively to assess cognitive
impairments of patients with mental illness (Ozonoff et al.,
2004; Gau and Shang, 2010; Collinson et al., 2014), and group
differences in EF (De Luca et al., 2003).

In the present study, four cognitive tests were selected from
the CANTAB to measure EF including Stockings of Cambridge
(SOC), Spatial Working Memory (SWM), Spatial Span (SSP),
and Intra-dimensional/Extra-dimensional Shifts (IED). Before
each test, participants were told the rules through a brief
oral instruction from the experimenter to ensure an accurate
understanding. Participants were tested individually in a quiet
room. All tests were performed on a computer screen.

The SOCwas designed to be similar to Tower of London tasks,
which assessed the ability of spatial planning and motor control.
Two groups of patterns containing three colored balls were
displayed on the computer screen in a specific configuration. The

participants needed to move the balls on the bottom of screen to
match with the goal set on the top using as few moves as possible.
The number of moves increased from 2 to 4. In the motor control
phases inserted in the test, the software waited for 500ms and
then moved a ball in the example configuration, and the subject
needed to followwhat it did. The duration after each problemwas
3000ms. The outcome scores of problems solved in minimum
moves were chosen to measure planning (Table 2).

The SWM assessed the ability to retain spatial information
and to manipulate remembered items in working memory and
heuristic strategy. The test began with a specific number of
colored squares (boxes) shown on the screen. Participants were
required to find one blue “token” in each of the square through
the boxes with an increasing number (3 to 8). When a blue token
was found, it would be used to fill up an empty column on the
right hand side of the screen. The reveal time for the empty
content of the box was 1000ms. The outcome scores of “between
errors” and strategy were chosen to measure working memory
(Table 2).

The SSP measured the capacity of spatial short-term memory.
In this task, nine white boxes were displayed on the screen at the
beginning and then some of themwould change color in a specific
order. Participants were asked to repeat the order by clicking
the boxes which had changed color. The difficulty level ranged
from 2 to 9 boxes. The stimulus duration of color changing was
3000ms, and the inter-stimulus time was 500ms. After the last
box in the sequence had reverted to white, there would be a
delay of 1000ms followed by a beep with a duration of 1000ms
(interim sound duration). The outcome scores of span length
and total errors were chosen to measure short-term memory
(Table 2).

The IED assessed the ability of attention set shifting which
included inhibition and switch. The participants needed to
determine the rules by clicking on one of the two colored graphics
randomly in each trial and make the right choice according to
the feedback of computer. The rules would change in a new stage
(after six trials of consecutive right choices). If the participant still
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TABLE 1 | The Brodmann’s Areas (BA), anatomical label (AAL), and MNI

coordinates of near-infrared spectroscopy (NIRS) channels.

Channel BA AAL MNI (x, y, z)

1 46 ORBmed −46, 54, −3

2 10 SFG (dor) −26, 68, 3

3 45 IFG (triang) −53, 41, 5

4 10 MFG −38, 60, 12

5 10 SFG (dor) −17, 71, 17

6 45 MFG −47, 46, 21

7 46 SFG (dor) −27, 61, 26

8 45 IFG (triang) −52, 29, 28

9 46 MFG −37, 47, 34

10 9 SFG (dor) −14, 58, 39

11 9 MFG −44, 31, 43

12 9 SFG (dor) −23, 45, 46

13 10 SFG (dor) 27, 70, 4

14 46 IFG (triang) 46, 58, −2

15 10 SFG (dor) 18, 71, 18

16 10 MFG 39, 63, 12

17 45 IFG (triang) 54, 44, 6

18 10 MFG 28, 63, 26

19 46 MFG 47, 50, 21

20 9 SFG (dor) 16, 60, 37

21 46 MFG 36, 51, 34

22 45 IFG (triang) 54, 33, 29

23 9 SFG (dor) 25, 48, 46

24 9 MFG 44, 35, 43

SFG (dor), dorsal superior frontal gyrus; MFG,middle frontal gyrus; ORBmed, Orbitofrontal

cortex (medial); IFG (triang), triangular inferior frontal gyrus.

did not meet the criterion above after 50 trials at any stage, the
test was terminated. These transformations included a reinforced
stimulus dimension (intra-dimensional shift) corresponding to
the ability of inhibition, and a previously irrelevant stimulus
dimension (extra-dimensional shift) corresponding to the ability
of switch. There was a pause of 250ms (pre-stimulus pause)
before the test stimuli were added to the boxes. The feedback
of choice was displayed for 1500ms in each trial, and following
the feedback there was a blank screen with a duration of
1000ms. The outcome scores of errors made prior to the extra-
dimensional shift of the task (Pre-ED errors) were chosen to
measure inhibition, and the outcome scores of errors made in
the extra-dimensional shift stage (EDS errors) were chosen to
measure switch (Table 2).

The correlation between each of component of EF score was
listed in Table 3.

Construction of the Brain Functional
Networks
The complex brain network analysis was applied to our resting-
state data. The most critical elements of a complex network are
nodes and edges. The nodes were defined as the positions of
the 24 NIRS channels and the edges were defined as functional
connectivity between the node pairs. By calculating the Pearson

TABLE 2 | The scores of EF performances provided by CANTAB.

EF tasks Components of EF

measurement

Outcome

measures scores

Mean SD

SOC planning Problems solved in

minimum moves

−1.26 1.07

SWM working memory Between errors −0.58 1.34

Strategy −0.53 0.92

SSP short−term memory Span length 0.54 1.11

Total errors −0.14 1.34

IED inhibition Pre−ED errors 0.05 0.59

switch EDS errors −0.36 1.23

SOC, Stockings of Cambridge; SWM, Spatial Working Memory; SSP, Spatial Span; IED,

Intra-dimensional/Extra-dimensional Shifts. The right two columns indicate the mean value

and standard deviation (SD) of the scores from 90 participants, respectively.

correlation coefficients of time courses between each pair of
nodes to quantify the functional connectivity, a 24 × 24
correlation matrix was obtained for each participant. Then each
correlation matrix was converted to binary matrixes by applying
fixed thresholds (network density). In this study, the thresholds
were set over a wide network density range (10–46%) at the
intervals of 1% because the wide density range could maintain
the small-world properties (Watts and Strogatz, 1998; Tian et al.,
2011).

Network Analysis
Evaluation of the Small-World Property
To evaluate whether our resting-state data indeed had the small-
world properties, we first calculated our small-world network
parameters to see whether they met the following criteria:

γ = Cnet/Cran > 1, λ = Lnet/Lran ≈ 1 and σ = γ /λ > 1 (1)

where Cnet and Lnet represent the clustering coefficient and
the characteristic path length [see basic definitions (4) and
(5)] of our real networks, respectively, and Cran and Lran
are the corresponding indices drawn from the average of 100
matched random networks (Watts and Strogatz, 1998; Maslov
and Sneppen, 2002; Tian et al., 2011).

The small-world property of network could be summarized as:
σ = γ /λ > 1. In this study, we carried out the statistical tests to
further verify σ > 1. Specifically, for each of network threshold
range (10–46%, at the intervals of 1%), we tested whether σ

significantly was greater than 1 across all the participants using
a one-sample t-test.

Network Topological Properties
We obtained seven network topological properties metrics
including three regional nodal parameters (nodal degree Dnod,
nodal efficiency Enod, nodal betweenness centralityNbc), and four
global parameters (clustering coefficient Cp, characteristic path
length Lp, global efficiency Eglob, local efficiency Eloc) by using
the graph theoretical network analysis toolbox: GRETNA (http://
www.nitrc.org/projects/gretna/). Although there are many
parameters to characterize network functional connectivity,
we chose these particular parameters because they have been
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TABLE 3 | The correlation between each of component of EF score.

Components of EF planning working memory short-term memory inhibition switch

R p R p R p R p R p

planning — 0.234 0.026 0.110 0.303 −0.056 0.602 0.072 0.499

working memory — — 0.016 0.882 0.022 0.836 −0.034 0.748

short-term memory — — — 0.080 0.454 0.032 0.762

inhibition — — — — −0.025 0.815

switch — — — — —

The bold values represent the correlation coefficient and the corresponding p-value with significant correlation.

commonly used in the existing neuroimaging studies to
characterize the global and regional nodal network properties (Li
et al., 2009; Tian et al., 2011; Niu et al., 2012). Second and more
specifically, some previous studies (Tian et al., 2011; Niu et al.,
2012; Wang et al., 2012) have used these network parameters to
characterize resting-state network functional connectivities. To
ensure comparability between these existing network functional
connectivity studies and the present study, we chose to use these
specific parameters.

For a graph G, N represented the total number of nodes in the
network. The basic definitions are listed as follows.

Nodal degree [Dnod(i)] is the number of edges linked to the
node i. Dnod(i) reflectes the importance of node i in the network
structure (Tian et al., 2011; Wang et al., 2012).

Nodal efficiency [Enod(i)] (Achard and Bullmore, 2007):

Enod(i) =
1

(N − 1)

∑

j 6= i∈G

1

Lij
(2)

where Lij represents the shortest path length from node i to j. The
Enod(i) measures the information transfer efficiency between the
node i and other nodes (Wang et al., 2012).

Nodal betweenness centrality [Nbc(i)] (Freeman, 1977):

Nbc(i) =
∑

j 6= i 6= k∈G

δjk(i)

δjk
(3)

where δjk represents the number of shortest paths from node j to
node k, and δjk(i) represents the number of shortest paths from
node j to node k passing through node i within graph G. The
Nbc(i) reflects the importance of node i over information flow in
the entire network (Tian et al., 2011; Xu et al., 2014).

Nodal degree measures the local interconnection capability
of a brain region (Wang et al., 2012), nodal efficiency the
transfer capability (Wang et al., 2012), and nodal betweenness
centrality the frequency of participation in information transition
of specific areas over the whole network (Freeman, 1977;
Achard and Bullmore, 2007; Wang et al., 2012; Gao et al.,
2013). These three regional parameters reflect the importance of
the specialization and integration of information processing of
specific brain areas in the whole functional network (Freeman,
1977; Achard and Bullmore, 2007; Li et al., 2009; Tian et al., 2011;
Xu et al., 2014).

Clustering coefficient CP (Watts and Strogatz, 1998):

CP =
1

N

∑

i∈G

2Ei

Dnod(i)(Dnod(i)−1)
(4)

where Ei is the number of edges in the subgraphGi which consists
of the neighbors of node i.

Characteristic path length LP (Newman, 2003):

LP =
1

1
N(N−1)

(

∑

j 6= i∈G
1
Lij

) (5)

Global efficiency Eglob (Latora and Marchiori, 2001):

Eglob =
1

N (N−1)

∑

j 6= i∈G

1

Lij
(6)

Local efficiency Eloc (Latora and Marchiori, 2001):

Eloc =
1

N

∑

i∈G
Eglob(i) (7)

where Eglob(i) is the global efficiency of Gi.
CP and Eloc measure the clustering degree of the entire

network, whereas LP and Eglob measure the global information
transfer efficiency of a network with the former being the inverse
of the latter (Tian et al., 2011).

We calculated the integral quantity to obtain the summations
of each network density for every participant (Tian et al., 2011).
For the global network parameters,

Pglob =
∑46

k= 10
P(k∆s)∆s (8)

where ∆s is the density interval of 1%; P(k∆s) represents the
global network parameter at the network density of k∆s.

For the regional nodal parameters:

Pnod(i) =
∑46

k= 10
P(i, k∆s)∆s (9)

where P(i, k∆s) represents a regional nodal parameter of the
node i at the network density of k∆s.

Correlation Analyses
We used scores produced by each of the four tasks in CANTAB
as the raw scores. All raw scores were then converted to z-scores
before further analyses:

Z =
(X−M)

S
(10)
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where X is the raw scores, M is the mean value of the raw scores
from the entire sample, and S is the standard deviation of the raw
scores from the entire sample.

Because the working memory task produced two raw scores
(i.e., between errors and strategy; Table 2), we first normalized
each of these two raw scores, and then added up these two
normalized scores as an index of their performance of working
memory. We did the same for the short-term memory task,
namely that we added up the normalized scores of span length
and total errors as an index of their performance of the short-
term memory task. With respect to the two raw scores of IED,
they actually indicated two performances (i.e., inhibition and
switch), respectively. We therefore only normalized each of these
two raw scores. Thus, in total, we obtained five scores: planning,
working memory, short-term memory, inhibition, and switch
(Table 2). Additionally, we added up all of these five normalized
scores to obtain the Total EF score.

Then, to examine the linkage between resting-state functional
neutral network topological properties and EF performances, we
performed correlation analyses of neural network topological
property and behavioral EF scores with the permutations tests.
We first computed correlation coefficient of each EF score
with each network topological index. Then, we performed a
permutation test to assess the statistical significance of the
coefficient.

Below we used Total EF score and nodal degree to illustrate
how such test was implemented.

(1) We obtained a Pearson correlation coefficient between Total
EF score and nodal degree with the data from all 90
participants to obtain a non-permuted correlation coefficients.

(2) Total EF scores were scrambled (randomly permuted) and
were correlated with nodal degree (unscrambled) to obtain
a permuted Pearson correlation coefficient. We did so 1000
times.

(3) Based on (2), we ordered the permuted correlation coefficients
according to their values from the lowest to the highest. We
obtained the 25th values from both the top and bottom of
the distribution to establish 95% bilateral confidence intervals.
The p values are defined as (Tian et al., 2016):

p =
1+ Ngreater

1+ N
(11)

Where N is the number of permutations, and here N = 1000;
Ngreater is the number of permuted correlation coefficients
whose absolute value is greater than that of absolute value
of non-permuted correlation coefficients. If p < 0.05, the
non-permuted correlation coefficient is considered significant.

RESULT

Small-World Properties of Network
We found that over the network density range of 10–46%, γ

was greater than 1, λ was approximately equal to 1, σ was
greater than 1 and decreased gradually with the increase of
density (Figure 2A). One-sample t-test showed that the t-statistic
values of σ was far greater than the t-statistic critical value

at the significant level of p < 0.05 (one-tailed) (Figure 3).
The result verified σ>1 of the networks in our study. Thus,
the functional network in the PFC showed prominent small-
world properties similar to those with the whole brain functional
network reported in the previous studies (Tian et al., 2011; Niu
et al., 2012). Additional results (CP, LP, Eglob, Eloc) (Figures 2B,C)
further supported the small-world properties, which integrated
the high information processing efficiency and local connectivity
effectively (Watts and Strogatz, 1998; Li et al., 2009; Tian et al.,
2011; Niu et al., 2012).

Relations between Network Properties and
Behavioral EF Scores
The behavioral results of EF performances included scores
of Total EF, planning, working memory, short-term memory,
inhibition, and switch provided by CANTAB (Table 2).

None of the behavioral EF scores were correlated with any
of the global network topological parameters. However, the
behavioral EF scores were significantly correlated with several
nodal network topological parameters.

The scores of Total EF were significantly and positively
correlated with nodal efficiency (Enod) in the right SFG (p =

0.036, channel 15, BA 10; Figure 4A); The scores of Total EF were
also significantly and negatively correlated with nodal efficiency
(Enod) the right IFG (p = 0.044, channel 17, BA 45; Figure 4A),
and nodal betweenness centrality (Nbc) in the right IFG (p =

0.043, channel 17, BA 45; Figure 4B).
The scores of planning were significantly and positively

correlated with nodal degree (Dnod, p = 0.021; Figure 5A), nodal
efficiency (Enod, p = 0.023; Figure 5B) and nodal betweenness
centrality (Nbc, p = 0.019; Figure 5C) in the right MFG (channel
21, BA 46). The scores of working memory were significantly and
negatively correlated with nodal degree (Dnod) in the right MFG
(p = 0.028, channel 24, BA 9; Figure 6A), nodal efficiency (Enod)
in the left orbital MFG (p = 0.008, channel 1, BA 46), the right
IFG (p = 0.029, channel 14, BA 46), the right IFG (p < 0.001,
channel 17, BA 45) and the right MFG (p = 0.042, channel 19,
BA 46; Figure 6B), and nodal betweenness centrality (Nbc) in
the right IFG (p = 0.003, channel 17, BA 45; Figure 6C). The
scores of working memory were also significantly and positively
correlated with the right MFG (p = 0.039, channel 21, BA 46;
Figure 6C). The scores of short-term memory were significantly
and positively correlated with nodal degree (Dnod, p = 0.008;
(Figure 7A), nodal efficiency (Enod, p = 0.004; Figure 7B) and
nodal betweenness centrality (Nbc, p = 0.025; Figure 7C) in the
left SFG (channel 5, BA 10).

The scores of inhibition were not significantly correlated
with any of the regional nodal network topological parameters.
The scores of switch were significantly and positively correlated
with nodal degree (Dnod, p = 0.007; Figure 8A) and nodal
betweenness centrality (Nbc, p = 0.019; Figure 8B) in the right
MFG (channel 19, BA 46).

DISCUSSION

In this study, we investigated the relations between behavioral
performance in various EF tasks and the fNIRS resting-state
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FIGURE 2 | The small-world properties and efficiency of the resting-state functional network. (A) Normalized parameters (γ and λ) and small-world

parameters (σ ). (B) Clustering coefficient (Cp) and characteristic path length (Lp). (C) Global efficiency (Eglob) and local efficiency (Eloc). The standard errors were

shown on the figures. The parametric statistical values were averaged over the networks of all individuals (removing abnormal data based on the triple standard

difference method).

functional network global and local topological properties in the
PFC. We obtained several major findings.

Small-World Network Properties
We found prominent small-world properties in our participants’
resting-state brain functional networks. This finding is consistent
with the results of several fMRI resting-state studies (Achard
et al., 2006; Tian et al., 2011). More specifically, our findings
are in line with an existing fNIRS resting-state study (Niu
et al., 2012) reporting that the whole brain resting-state
network has prominent small-world network properties. The

present finding taken together with those from Niu et al.
(2012) suggested that small-world properties are the essential
characteristics of brain resting-state network. Further, our
finding suggested that fNIRS is an effective technology to
describe the topological properties of the brain functional
network.

Relations between Behavioral EF Scores
and Neural Network Parameters
We found that none of the four global parameters (i.e.,
clustering coefficient, characteristic path length, global efficiency
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and local efficiency) was related to any of the behavioral EF
scores. However, EF scores were significantly correlated with
the regional nodal network parameters (i.e., nodal degree, nodal

FIGURE 3 | One-sample t-test statistics of σ (compared to 1) at each

network threshold. The vertical axis is the t-statistic values of the

one-sample t-test. The blue line represents the t-statistic values of σ at each

network threshold, and the red line represents the t-statistic critical value (T =

1.662) at the significant level of p = 0.05 (one-tailed).

efficiency and nodal betweenness centrality). These findings
support the Local Property Only Hypothesis.

Our findings are thus in contrast to existing studies that
examined the relations between intelligence and the network
properties of the resting-state functional connectivity in healthy
adults (van den Heuvel et al., 2009; Langer et al., 2012). They
found that intelligence was significantly correlated with the
global network indexes. Our findings taken together with these
existing studies suggested that the global network properties
may underlie such a general ability as intelligence, whereas
the network regional properties may subserve such a special
cognitive ability as EF. In other words, the specific aspects of
the network properties of the resting-state brain network play
different roles for different cognitive abilities. As EF involves a
specialized set of cortical regions and the connections among
them, the regional quality of the resting-state network matters
more than its global quality.

This interpretation is consistent with our findings that Total
EF scores and different components of EF are associated with
the regional network properties in different cortical areas. For
the Total EF scores, the better nodal efficiency the higher the
Total EF scores in the right dorsal SFG, whereas the opposite
pattern was observed in the right triangular IFG (the better nodal
efficiency and nodal betweenness centrality the lower Total EF
scores; Figure 4). The opposite patterns of the Total EF scores
might reflect the different roles of SFG and IFG in EF (Petrides,

FIGURE 4 | The estimated positions of the cortical regions showing significant correlation between the scores of Total EF and the regional nodal

topological properties of the network. (A) Total EF and nodal efficiency. (B) Total EF and nodal betweenness centrality. These positions are labeled using channel

number in red circles (positive correlation) or green circles (negative correlation) with respective MNI coordinates shown below. The left and right subgraphs show the

permutations tests results of correlation coefficients. The shaded parts are the reject regions of permutations tests at significant level 5% (two-tailed) and the p-values

are shown in the subgraphs. The red line and green lines indicate the positive and negative non-permuted correlation coefficients, respectively. Abbreviation: SFG

(dor), dorsal superior frontal gyrus; IFG (triang), triangular inferior frontal gyrus.
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FIGURE 5 | The estimated positions of the cortical regions showing significant correlation between the scores of planning and the regional nodal

topological properties of the network. (A) Planning and nodal degree. (B) Planning and nodal efficiency. (C) Planning and nodal betweenness centrality. These

positions are labeled using channel number in red circles (positive correlation) with respective MNI coordinates shown below. The left subgraphs show the

permutations tests results of correlation coefficients. The shaded parts are the reject regions of permutations tests at significant level 5% (two-tailed) and the p-values

are shown in the subgraphs. The red line indicates the positive non-permuted correlation coefficients. Abbreviation: MFG, middle frontal gyrus.
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FIGURE 6 | The estimated positions of the cortical regions showing significant correlation between the scores of working memory and the regional

nodal topological properties of the network. (A) Working memory and nodal degree. (B) Working memory and nodal efficiency. (C) Working memory and nodal

betweenness centrality. These positions are labeled using channel number in red circles (positive correlation) or green circles (negative correlation) with respective MNI

coordinates shown below. The left and right subgraphs show the permutations tests results of correlation coefficients. The shaded parts are the reject regions of

permutations tests at significant level 5% (two-tailed) and the p-values are shown in the subgraphs. The red line and green lines indicate the positive and negative

non-permuted correlation coefficients, respectively. Abbreviation: MFG, middle frontal gyrus; ORBmed, Orbitofrontal cortex (medial); IFG (triang), triangular inferior

frontal gyrus.
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FIGURE 7 | The estimated positions of the cortical regions showing significant correlation between the scores of short-term memory and the regional

nodal topological properties of the network. (A) Short-term memory and nodal degree. (B) Short-term memory and nodal efficiency. (C) Short-term memory and

nodal betweenness centrality. These positions are labeled using channel number in red circles (positive correlation) with respective MNI coordinates shown below. The

left subgraphs show the permutations tests results of correlation coefficients. The shaded parts are the reject regions of permutations tests at significant level 5%

(two-tailed) and the p-values are shown in the subgraphs. The red line indicates the positive non-permuted correlation coefficients. Abbreviation: SFG (dor), dorsal

superior frontal gyrus.
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FIGURE 8 | The estimated positions of the cortical regions showing significant correlation between the scores of switch and the regional nodal

topological properties of the network. (A) Switch and nodal degree. (B) Switch and nodal betweenness centrality. These positions are labeled using channel

number in red circles (positive correlation) with respective MNI coordinates shown below. The left subgraphs show the permutations tests results of correlation

coefficients. The shaded parts are the reject regions of permutations tests at significant level 5% (two-tailed) and the p-values are shown in the subgraphs. The red line

indicates the positive non-permuted correlation coefficients. Abbreviation: MFG, middle frontal gyrus.

2005). A recent fMRI study (Reineberg et al., 2015) examined
the relations between Total EF scores and resting-state functional
connectivity. They found that the Total EF was associated
with functional connectivity intensity of the right frontoparietal
resting-state functional network, which was consistent with our
findings. We found that better information transfer of SFG was
associated with higher Total EF scores, and better information
transfer of IFG was linked to lower Total EF scores. Although
the specific functions of SFG and IFG for EF are yet to be
ascertained, our findings support the idea that the right PFC in
the resting-state is crucial to EF overall.

For planning, we found that the ability of planning was
positively correlated with all the three resting-state regional
network parameters in the right MFG (BA46) (Figure 5). A
study by Woo et al. (2010) using positron emission tomography

(PET) showed that poor planning performances in patients
with Alzheimer’s disease were associated with lower resting
metabolism in the right MFG and adjacent IFG (BA45 and
BA46). Woo et al. (2010) suggested that the right PFC was
necessary to foster planning ability that was consistent with our
findings. Moreover, a previous task-based fMRI study (Newman
et al., 2003) showed that although both the right and left PFC
were activated by a planning task, the activation in the right
dorsolateral prefrontal cortex (DLPFC) was attenuated by task
difficulty. Newman et al. (2003) confirmed that the right PFC
areas were involved in information generation and integration
of planning and strategy. In addition, Petrides, (2005) suggested
the middle DLPFC (BA 46, and 9/46) could control cognition
and planned behavior consciously. Our findings further sugested
that the right MFG may be a central area for the planning ability
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with both high local association capability and high information
transfer level. In other words, the resting-state network quality of
the right MFG may play a key role in performing organizational
planning functions during cognitive processes (Woo et al., 2010).

For working memory, the score of spatial working memory
was significantly correlated with nodal degree in the right
MFG (BA 9) (Figure 6A). The score of working memory
was also significantly correlated with the nodal efficiency and
nodal betweenness centrality in parts of the right triangular
IFG and the adjacent MFG (BA 45 and 46) (Figures 6B,C).
In addition, working memory was significantly correlated
with nodal efficiency of the left orbitofrontal cortex (BA46)
(Figure 6B). Our findings are generally consistent with the
findings of a recent study by Zou et al. (2013). They found
that the amplitude of low-frequency fluctuation (ALFF) in the
MFG was related to the task-evoked activation associated with
working memory. Given the fact that the scores of planning and
those of working memory were significantly correlated (r =

0.23; p = 0.026; Table 3), our findings suggested that the
MFG may be involved in information processing underlying
both planning and working memory. Additionally, based on the
negative correlations in our results in the right triangular IFG and
left orbitofrontal cortex, the high internally spontaneous activity
levels, especially information transfer levels of these areas of PFC,
may be detrimental to one’s working memory.

The significant positive correlations between the score of
short-term memory and all the three resting-state regional
network characteristics were localized in the left SFG (BA10)
(Figure 7). An fMRI study by Wu et al. (2014) showed that
patients with amnestic mild cognitive impairment indicated
both significantly declined short-term memory and reduced
resting-state connectivity strength in the bilateral DLPFC. In
particular, among the findings of Wu et al. (2014), the functional
connectivity of the left SFG (BA 10) was significantly reduced,
consistent with our results. Our findings support the relationship
between the spontaneous activity in the left frontal pole and
the ability of short-term memory. In addition, combining with
the results of working memory, it suggested that the different
component of memory function involved different areas of PFC
in resting-state.

The EF scores for inhibition showed no significant correlation
with any of the regional nodal network topological parameters.
In contrast, the EF scores for switch were significantly positively
correlated with the nodal degree and nodal betweenness
centrality in the right MFG (BA 46) (Figure 8). This finding
suggested that the increased capabilities of both local association
and frequency of information transition of the right MFG (BA
46) are linked to the increased switch level. Our results are
not entirely in line with the existing studies that examined the
activations of cortical regions involved in performing actual
inhibition and switch tasks. For example, the existing studies
examining neural correlates of actual inhibition revealed the
activation of IFG specifically (Aron et al., 2004; Collette et al.,
2006; Vidal et al., 2012). For switch, several studies found
that it was associated with the DLPFC broadly (Collette et al.,
2006; Jazbec et al., 2007). Moreover, the different cortical
areas of PFC are activated during different stages of the

switch task (Oh et al., 2014). As the right MFG (BA 46)
was also associated with planning and working memory (see
above), the middle DLPFC might be a crucial area for the
information integration and controlling of EF (Petrides, 2005).
The discrepancy between our resting-state findings and the
existing task-evoked findings may be due to multiple reasons,
such as the differences in research foci (our study’s focus
on network properties vs. the existing research’s focus on
neural activations) and the task demands (resting-state vs.
performing a specific task). Future specifically designed studies
could address this issue by linking the resting-state network
properties to both EF behavioral performance and EF task related
activations.

Limitation and Conclusion
Despite our novel findings, the limitations should be taken
into consideration. First, in this study, we only assessed the
network properties in the PFC regions. Although our findings
are in line with the existing studies that suggest the central
role of the prefrontal cortex (PFC) in EF, recent studies
suggested that some other regions, such as parietal cortex
are also involved in EF. Thus, future studies may wish to
extend the range of a similar fNIRS study to cover the
whole cortical surface. Second, intelligence was not included in
this study. It is generally accepted that intelligence is related
to EF (Friedman et al., 2006; Duan et al., 2010) but the
relation between them in the brain is less clear. Hence, it
is necessary to introduce intelligence as a control variable
to take into consideration the effect of intelligence on EF
performance and its relation to the neural network topological
properties. Third, changes in functional connectivity between
two regions may also be affected by changes in signal or noise
in either region or by another connection (Friston, 2011).
Thus, future studies must use stricter experimental controls, a
larger sample size, and more advanced statistical methods to
rule out the influence of these potentially confounding factors.
For example, future work employing a executive function task
could utilize psychophysiological interaction analysis, which
reveals consistent and specific patterns of effective connectivity
(e.g., Smith et al., 2016). Forth, on one hand, the limited
spatial resolution of fNIRS compared to fMRI may result in
the less accurate space localization of the cortex regions. On
the other hand, the superior temporal resolution of fNIRS is
more conducive to describe the time course of the resting
state fluctuations of the brain’s neural activities. Thus, to study
the resting-state neural correlation of EF, future studies should
consider combining fNIRS with fMRI.

This study investigated the relationship between the
behavioral EF scores and the resting-state functional network
topological properties in the PFC utilizing functional near
infrared spectroscopy (fNIRS). We found that only regional
nodal but not global network properties were associated with
EF components scores. We also observed that the different EF
components were related to different regional properties in
various PFC areas. Our findings suggested that the resting-state
PFC activity plays an important role in individuals’ behavioral
performance in the executive function tasks. Further, the
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resting-state functional network can reveal the intrinsic neural
mechanisms underlying behavioral EF abilities.
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