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Brain-machine interfaces (BMI) may support motor impaired patients during activities

of daily living by controlling external devices such as prostheses (assistive BMI).

Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of

lost motor function via neurofeedback training (restorative BMI). Using assistive BMI

in a rehabilitation context does not automatically turn them into restorative devices.

This perspective article suggests key features of restorative BMI and provides the

supporting evidence: In summary, BMI may be referred to as restorative tools when

demonstrating subsequently (i) operant learning and progressive evolution of specific

brain states/dynamics, (ii) correlated modulations of functional networks related to the

therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit

correlation between the modulated brain dynamics and the achieved behavioral gains.

Such findings would provide the rationale for translating BMI-based interventions into

clinical settings for reinforcement learning and motor rehabilitation following stroke.

Keywords: assistive technology, neurorehabilitation, stroke, rehabilitation robotics, brain-computer interface,

brain-robot interface

In stroke patients with severe and persistent motor deficits, restitution of useful function is very
limited. Despite intensive rehabilitation programs, these patients are often left with a dysfunctional
upper extremity and, consequently, with a long-term dependency on others for activities of daily
living (Jørgensen et al., 1999; Dobkin, 2004; Feigin et al., 2008). There are many technology-
driven efforts to improve recovery in this patient group on the basis of motor re-learning.
Brain-machine interfaces (BMI), for example, have been applied lately to bridge the impaired
connection in the sensorimotor loop. Unlike classical BMIs that assist motor impaired patients, for
example by controlling external devices such as prostheses, their restorative counterparts provide
brain-state dependent proprioceptive feedback by way of orthotic devices attached to the hand
or arm of the patient to facilitate rehabilitation training toward functional restoration. Such
supported movements facilitate the detection of motor intention even in the absence of actual
movements (Gomez-Rodriguez et al., 2011; Brauchle et al., 2015). When used in conjunction
with commercially available robotic rehabilitation technology (Bauer et al., 2015; Brauchle et al.,
2015; Vukelić and Gharabaghi, 2015a), these devices are also known as brain-robot interfaces
(BRI). Patient control over these robotic training devices is usually mediated by motor imagery-
related sensorimotor oscillations of the ipsilesional cortical electroencephalogram (EEG) or
electrocorticogram (Gharabaghi et al., 2014b). However, the translation from assistive toward
restorative BMI cannot be realized simply by applying the identical method in altered environments
for different goals. We, therefore, propose a conceptual framework for restorative BMI distinct
from their assistive predecessors, summarize the most recent supporting evidence (Kraus et al.,
2016a; Naros et al., 2016), and project future developments and perspectives in this field. We
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exemplify this concept for the area of movement recovery
after stroke. The underlying assumption is that learning
to modulate sensorimotor beta-oscillations might facilitate
post-stroke functional restoration. Current evidence for this
assumption is circumstantial: (i) Movement-related beta-
oscillations are compromised in stroke patients and correlate
with the impairment level (Rossiter et al., 2014). (ii) Volitional
modulation of sensorimotor beta-oscillations can be learned
via BMI and correlates with corticospinal excitability increases
(Kraus et al., 2016a) and motor learning (Naros et al., 2016) in
healthy subjects. However, there is currently only one pilot study
available in literature that has addressed this concept of “learning
beta-band self-regulation” for post-stroke rehabilitation (Naros
and Gharabaghi, 2015). This perspective article intends to
outline in detail the rationale for this approach and to initiate a
discussion on necessary features and prerequisites of restorative
BMI for stroke rehabilitation.

FROM ASSISTANCE TO RESTORATION

Despite the application of novel techniques such as BMI training
combined with physiotherapy (for an overview, see Naros and
Gharabaghi, 2015), there is still a lack of relevant functional
improvement of the hand and finger function in the patient
group with persistent deficits of the upper limb. This has attracted
interest in the specificity and mechanisms of BMI therapy, since
the underlying neurophysiology of this intervention (Kraus et al.,
2016a), together with appropriate strategies to optimize learning
and motor gains (Naros et al., 2016) have not yet been fully
explored.

The BMI approach in rehabilitation comes into play once
standard physical practice is no longer possible in the targeted
patient group. Consequently, the lost motor function following
stroke limits the re-learning of movements (Doyon and Benali,
2005; Halsband and Lange, 2006; Naros et al., 2016). In such
cases, motor imagery (MI) might constitute an alternative for
physical practice (Halsband and Lange, 2006; Boe et al., 2014)
since it activates the sensorimotor system without any overt
movement (Gao et al., 2011; Szameitat et al., 2012; Vukelić
and Gharabaghi, 2015a; Naros et al., 2016). This volitional
modulation of oscillatory activity during MI can be supported
by providing BMI feedback about the user’s current brain state
to facilitate operant learning of oscillatory patterns considered
beneficial to recovery (Vukelić and Gharabaghi, 2015a; Naros
et al., 2016). The concept of restorative BMI training, therefore,
is based on the premise that associative learning facilitates self-
regulation of such MI-related brain activity by connecting the
neural correlates of movement intention and the contingent
feedback. Notably, for behavioral gains, this approach requires
not only operant learning of brain self-regulation but also the
progression of the trained brain dynamics (see also paragraph
on Adaptive BMI feedback). More specifically, movement-
related desynchronization (ERD) in the contralateral, ipsilesional
sensorimotor cortex is compromised in stroke patients compared
to healthy controls, i.e., the more severe the patient’s motor
impairment, the less ERD (Rossiter et al., 2014). Accordingly,

a restorative training approach would need to increase this
oscillatory modulation range again.

However, most BMI studies do not demonstrate such a
progressive modulation range, i.e., the improved skill of brain
self-regulation in the course of the training, even when behavioral
gains are reported after the intervention (for an overview, see
Naros et al., 2016). This suggests that the reported BMI use
had general priming effects on subsequent physiotherapy rather
than genuine effects, i.e., intervention specific motor gains (for
an overview, see Naros et al., 2016). The demonstration of
direct brain-function and/or brain-behavior relationships would,
however, be a requirement for the concept of restorative BMI,
which is based on the assumption that operant conditioning
of the targeted brain state and dynamics facilitates task-
specific motor gains (Naros and Gharabaghi, 2015). Unlike
previous ambivalent findings during BMI motor rehabilitation,
neurofeedback-induced operant conditioning of the targeted
brain states was indeed successfully achieved in the cognitive
domain and led to task-specific functional gains (Zoefel et al.,
2011). This ambiguity between the findings in the cognitive
and the motor domain might be related to the methodological
limitations of earlier BMI approaches in the motor domain. This
applies in particular to the cortical frequency-band trained by
ERD in previous studies, i.e., alpha- instead of beta-oscillations,
the feedback strategy and/or the application or lack of additional
brain stimulation (Naros and Gharabaghi, 2015; Naros et al.,
2016).

ADAPTIVE BMI FEEDBACK

Classical BMI approaches maximize the classification accuracy
of the device to optimally detect task-related MI (Thomas et al.,
2013; Thompson et al., 2013; Spüler et al., 2014; Bauer and
Gharabaghi, 2015a). This approach has been applied in most
previous studies with stroke patients without resulting in a gain
of the skill for BMI control as one might have expected in a
continuous learning experience (for an overview, see Naros and
Gharabaghi, 2015). On the basis of learning principles, a certain
degree of challenge for the participant, therefore, seems to be
required to reinforce continuous effort and progression of brain
self-regulation (Bauer and Gharabaghi, 2015a). In this context,
mathematical simulations (Bauer and Gharabaghi, 2015b) and
empirical data (Naros and Gharabaghi, 2015; Naros et al., 2016)
suggest that dynamic threshold adaptation of the oscillatory
desynchronization level that has to be achieved to control the
BMI in the course of the training, i.e., adjusting the difficulty
level of the neurofeedback task on the basis of the performance,
is a more appropriate method for achieving BMI reinforcement
learning than a fixed threshold at maximum classification
accuracy, i.e., an unchanged oscillatory desynchronization level
that has to be achieved to control the BMI (Theodoridis and
Koutroumbas, 2009).

Along these lines, a recent study with healthy subjects over a
3-day training period was the first to demonstrate that dynamic
threshold adaptation is instrumental in facilitating learning of
movement-related brain self-regulation. By contrast, subjects
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who trained with a classical BMI concept, i.e., without threshold
adaptation, failed to progressively modulate the targeted brain
activity (Naros et al., 2016). This matched the concept that BMI
paradigms which focus on the maximization of classification
accuracy optimize the metabolic cost (Jackson and Fetz, 2011;
Naros et al., 2016). Restorative BMIs should, therefore, be
designed in such a manner as to provide incentives not only
for achieving but also for enhancing the targeted brain activity,
e.g., progressing the level of ERD (Carmena, 2013; Naros and
Gharabaghi, 2015; Naros et al., 2016). Although, BMI tasks are
potentially linked to the experience of frustration (Fels et al.,
2015), a less demanding task structure of reaching the brain state
only once so as to be rewarded with feedback did not result in
improved brain self-regulation (Naros et al., 2016). By contrast,
the more demanding task of providing or withholding feedback
contingent to the targeted brain self-regulation was essential for
achieving sustained ERD (Naros et al., 2016). More specifically,
when comparing different BMI training conditions in a parallel-
group design [(i) adaptive classifier thresholding and contingent
feedback, (ii) adaptive classifier thresholding and non-contingent
feedback (iii) non-adaptive classifier thresholding and contingent
feedback, (iv) non-adaptive classifier thresholding and non-
contingent feedback], contingent neurofeedback and adaptive
classifier thresholding were critical for learning brain self-
regulation which, in turn, led to behavioral gains after the
intervention. Contingent feedback to successful brain self-
regulation meant that as soon as the predefined ERD level was
achieved the participants were rewarded by the robotic opening
of the hand. However, if the targeted brain state could not
be sustained, the robotic movement ceased again but could
be resumed within the same trial if the predefined brain state
was attained again (Naros et al., 2016). Furthermore, adaptive
classifier thresholding throughout the intervention was realized
by adjustments of the task difficulty before each training session
in the course of a multi-session program. These adjustments were
made in accordance with the BMI performance in the preceding
session based on an algorithm that has been shown to support
reinforcement learning of self-regulated beta-oscillations (Naros
and Gharabaghi, 2015).

In this context, future studies may evaluate the impact of
different task thresholds, i.e., targeted ERD levels, on the learning
incentive, thereby empirically determining the optimal difficulty
level for brain self-regulation and disentangling the relative
contribution of neurofeedback specificity and sensitivity (Bauer
et al., 2016a). Moreover, future approaches may investigate
alternative approaches to balancing the mental effort involved,
for example by adjusting the task demands on the basis of
self-ratings by the participants (Bauer et al., 2016b).

BRAIN-FUNCTION INTERACTION

While the progression of sensorimotor self-regulation is
a necessary requirement for restorative BMI, such local
modulation would not be sufficient by itself. Such an intervention
would necessitate more global network effects as well to bring
about behavioral gains. But how would BMI feedback training

translate self-regulated modulation of local oscillations into
changes of distant functional networks? In other words, how is
such a brain-function interaction physiologically mediated?

Imaging studies based on multi-channel
electroencephalography revealed that sensorimotor brain
self-regulation and BMI feedback entrained an extended cortical
motor network that includes frontal and parietal brain areas
(Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a) with
distributed, but spatially selective frequency-specific effects on
cortico-cortical connectivity that last beyond the intervention
period (Vukelić and Gharabaghi, 2015b). This motor network
modulation is critically linked to the proprioceptive feedback
provided by the BMI (Vukelić and Gharabaghi, 2015a). Notably,
those subjects who were particularly capable of performing
sensorimotor brain self-regulation could be predicted by a
distributed alpha-band resting state network measured before
the intervention (Bauer et al., 2015). Similarly, the resting
state functional connectivity of the motor cortex seems to
be related to motor learning (Mottaz et al., 2015) and to the
prediction of functional improvement after stroke (Nicolo et al.,
2015). Moreover, functional coupling of coherent theta-band
oscillations during the BMI task correlated with the skill of
sensorimotor modulation, thus indicating a motor learning-
related network (Vukelić and Gharabaghi, 2015a). These
findings match well with the neurophysiological concepts that
link these various frequency domains to working memory and
sensorimotor integration (Fell et al., 2011; Cruikshank et al.,
2012), sensory processing and multi-modal integration (Palva
and Palva, 2007; Weisz et al., 2014), and the retrieval of stored
motor schemata and bottom-up integration of sensory and
motor information (Caplan et al., 2003; Cruikshank et al., 2012;
Vukelić and Gharabaghi, 2015a).

With regard to the intended behavioral improvements, the
modulation of corticospinal connectivity by BMI feedback
may represent the even more important functional network
effect. Neurofeedback interventions have already been shown
to increase the effective corticospinal connectivity, i.e., the
sensorimotor excitability evaluated by transcranial magnetic
stimulation (TMS) and motor evoked potentials (MEP)
(Pichiorri et al., 2011; Shindo et al., 2011; Mokienko et al.,
2013). However, until very recently, these measurements did
not provide a specific link between the modulated brain activity
and the changed connectivity to the periphery. Methodological
improvements with refined TMS maps (Kraus and Gharabaghi,
2015, 2016) closed this gap by demonstrating robust changes
of corticospinal connectivity for the BMI-trained muscle, but
not for the control muscle. The largest MEP gains were found
in those cortical areas that were most strongly modulated by
the intervention (Kraus et al., 2016a). Furthermore, this target
selectivity and topographic specificity were paralleled by a
functional correlation between the modulated brain activity and
the increased connectivity to the periphery, i.e., the largest MEP
gains were observed in the subjects with the biggest modulation
range (Kraus et al., 2016a).

Future studies are required to evaluate whether these
functional network changes of corticocortical and corticospinal
connectivity during the intervention and in the following resting

Frontiers in Neuroscience | www.frontiersin.org 3 October 2016 | Volume 10 | Article 456

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Gharabaghi From Assistive to Restorative Brain-Machine Interfaces

state persist during behavioral tasks after the intervention,
and to what extent they influence the respective performance.
Furthermore, different feedback modalities, such as functional
electrical stimulation and/or closed-loop TMS (Gharabaghi et al.,
2014a; Raco et al., 2016; Royter and Gharabaghi, 2016), may
be explored in conjunction with BMI technology to compare
their differential impact on network modulations with that one
of proprioceptive feedback provided by the robotic orthoses
in earlier studies. It will be particularly important to explore
these brain-function interactions for the whole upper extremity
so as to translate them to activities of daily living. This might
also entail studying the impact of brain-machine interfaces
connected to multi-joint exoskeletons (Grimm and Gharabaghi,
2016; Grimm et al., 2016a,b) for three-dimensional reach-to-
grasp movements (Brauchle et al., 2015) on the corticospinal
excitability of different muscle groups, including synergetic and
antagonistic interactions.

BRAIN-BEHAVIOR INTERACTION

Unlike in the cognitive domain (Zoefel et al., 2011), a brain-
behavior interaction in the motor domain, i.e., a direct link
between the brain state/dynamics modulated by BMI feedback
and subsequent improvements in an actual motor task, was
not demonstrated until very recently. In addition to the factors
mentioned in earlier paragraphs, the targeted brain state might
be one of the major reasons for this lack; this has already
been outlined in detail elsewhere and resonates here (Naros
et al., 2016): Despite the eligibility of beta-ERD as a control
signal in brain interfaces (Bai et al., 2008) the majority of
BMI studies up to now preferred to use alpha-ERD (Naros
and Gharabaghi, 2015). This was due to the fact that, in
stroke patients, alpha-ERD was more effective than beta-ERD in
classifying brain states related to movement (Gomez-Rodriguez
et al., 2011). Although, these two frequency bands are modulated
by motor execution and MI in much the same way (Van Wijk
et al., 2012; Kilavik et al., 2013; Brinkman et al., 2014), it is
becoming clearer that they perform different tasks. The function
of alpha-ERD is to gate the inhibition of regions which are
irrelevant for the task (Pineda, 2005; Mazaheri and Jensen,
2010; Sabate et al., 2011), whereas beta-ERD is responsible
for mediating sensorimotor cortex disinhibition (Siegel et al.,
2012; Kilavik et al., 2013) and muscular proprioceptive feedback
(Salmelin et al., 1995; Mima et al., 2000; Riddle and Baker,
2006; Kristeva et al., 2007; Aumann and Prut, 2014). On the
basis of these differences in function, we postulated that, of
the two frequency bands, beta-oscillations constitute the better
therapeutic option for BMI therapy in patients suffering from
motor impairment following stroke (Brauchle et al., 2015; Naros
and Gharabaghi, 2015). This approach thus allowed the first
demonstration of a frequency-specific correlation between the
modulation of cortical physiology with MI-based BMI training
and later motor performance (Naros et al., 2016). Such a
correlation was, however, not observed between alpha-activity
and motor performance. Promoting the ability to voluntarily
control beta-oscillations on the basis of proprioceptive feedback

might, therefore, facilitate the communication between the
motor cortex and muscles in the same frequency band (Brown,
2007; Darvishi et al., under review), thereby resulting in
improved motor control in behavioral tasks (Naros et al.,
2016).

The next step will be to draw a direct comparison between the
operant conditioning of different frequency bands, for example
between alpha- and beta-band ERD, to ascertain which particular
oscillatory pattern is responsible for this improvement. Further
interventions may also be required to gain maximal exploitation
and consolidation of the patients’ remaining ability for motor
learning and brain self-regulation. One such additional input
during robot-assisted training may be activity-dependent brain
stimulation (Gharabaghi, 2015; Massie et al., 2015). During BMI
training, for example, concurrent state-dependent transcranial
magnetic stimulation is capable of unmasking latent corticospinal
connectivity following stroke (Gharabaghi et al., 2014a). On
the basis of Hebbian-like plasticity, state-dependent stimulation
synchronized to maximum ERD may serve to stabilize the
corticospinal circuits involved (Kraus et al., 2016b).

Future studies will explore whether the behavioral gains
resulting from beta-ERD modification also lend themselves to
other motor tasks. This would be instrumental in transforming
such an approach into a clinical application. Some patients
may, however, be unable to gain volitional control of this
technique using beta-modulation in a standard EEG-based
setting on account of an extended cortical lesion and/or distorted
physiology. In such instances, the detection and neurofeedback
training may be accomplished by epidural recordings of field
potentials (Gharabaghi et al., 2014b). This alternative approach,
which is nearer to the neural signal source, may not only
require a shorter period of therapy to induce clinical gains than
is customary using the standard EEG technique (Gharabaghi
et al., 2014c), but may also act as a bi-directional interface for
concurrent brain stimulation (Gharabaghi et al., 2014d).

In summary, BMIs may be referred to as restorative tools
when demonstrating subsequently (i) operant learning and
progressive evolution of specific brain states/dynamics, (ii)
correlated modulations of functional networks related to the
therapeutic goal, (iii) subsequent improvement in a specific task,
and (iv) an explicit correlation between the modulated brain
dynamics and the achieved behavioral gains. Such findings would
provide the rationale for translating BMI-based interventions
into clinical settings for reinforcement learning and motor
rehabilitation following stroke.
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Brauchle, D., Vukelić, M., Bauer, R., and Gharabaghi, A. (2015). Brain state-

dependent robotic reaching movement with a multi-joint arm exoskeleton:

combining brain-machine interfacing and robotic rehabilitation. Front. Hum.

Neurosci. 9:564. doi: 10.3389/fnhum.2015.00564

Brinkman, L., Stolk, A., Dijkerman, H. C., de Lange, F. P., and Toni, I.

(2014). Distinct roles for Alpha- and Beta-band oscillations during mental

simulation of goal-directed actions. J. Neurosci. 34, 14783–14792. doi: 10.1523/

JNEUROSCI.2039-14.2014

Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads

to impaired movement. Curr. Opin. Neurobiol. 17, 656–664. doi: 10.1016/

j.conb.2007.12.001

Carmena, J. M. (2013). Advances in neuroprosthetic learning and control. PLoS

Biol. 11:e1001561. doi: 10.1371/journal.pbio.1001561

Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R.,

Newman, E. L., and Kahana, M. J. (2003). Human theta oscillations related to

sensorimotor integration and spatial learning. J. Neurosci. 23, 4726–4736.

Cruikshank, L. C., Singhal, A., Hueppelsheuser, M., and Caplan, J. B. (2012).

Theta oscillations reflect a putative neural mechanism for human sensorimotor

integration. J. Neurophysiol. 107, 65–77. doi: 10.1152/jn.00893.2010

Dobkin, B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurol. 3,

528–536. doi: 10.1016/S1474-4422(04)00851-8

Doyon, J., and Benali, H. (2005). Reorganization and plasticity in the adult brain

during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167. doi:

10.1016/j.conb.2005.03.004

Feigin, V. L., Barker-Collo, S., McNaughton, H., Brown, P., and Kerse, N. (2008).

Long-term neuropsychological and functional outcomes in stroke survivors:

current evidence and perspectives for new research. Int. J. Stroke 3, 33–40. doi:

10.1111/j.1747-4949.2008.00177.x

Fell, J., Ludowig, E., Staresina, B. P., Wagner, T., Kranz, T., Elger, C. E. et al. (2011).

Medial temporal theta/alpha power enhancement precedes successful memory

encoding: evidence based on intracranial EEG. J. Neurosci. 31, 5392–5397. doi:

10.1523/JNEUROSCI.3668-10.2011

Fels, M., Bauer, R., and Gharabaghi, A. (2015). Predicting workload profiles

of brain-robot interface and electromygraphic neurofeedback with cortical

resting-state networks: personal trait or task-specific challenge? J. Neural Eng.

12:046029. doi: 10.1088/1741-2560/12/4/046029

Gao, Q., Duan, X., and Chen, H. (2011). Evaluation of effective connectivity

of motor areas during motor imagery and execution using conditional

Granger causality.Neuroimage 54, 1280–1288. doi: 10.1016/j.neuroimage.2010.

08.071

Gharabaghi, A. (2015). Activity-dependent brain stimulation and robot-

assisted movements for use-dependent plasticity. Clin. Neurophysiol. 126,

853–854.

Gharabaghi, A., Kraus, D., Leγo, M. T., Spüler, M., Walter, A., Bogdan, M.,

et al. (2014a). Coupling brain-machine interfaces with cortical stimulation

for brain-state dependent stimulation: enhancing motor cortex excitability for

neurorehabilitation. Front. Hum. Neurosci. 8:122. doi: 10.3389/fnhum.2014.

00122

Gharabaghi, A., Naros, G., Khademi, F., Jesser, J., Spüler, M., Walter,

A., et al. (2014b). Learned self-regulation of the lesioned brain with

epidural electrocorticography. Front. Behav. Neurosci. 8:429. doi:

10.3389/fnbeh.2014.00429

Gharabaghi, A., Naros, G., Walter, A., Grimm, F., Schuermeyer, M., Roth, A., et al.

(2014c). From assistance towards restoration with epidural brain-computer

interfacing. Restor. Neurol. Neurosci. 32, 517–525. doi: 10.3233/RNN-140387

Gharabaghi, A., Naros, G., Walter, A., Roth, A., Bogdan, M., Rosenstiel, W.,

et al. (2014d). Epidural electrocorticography of phantom hand movement

following long-term upper-limb amputation. Front. Hum. Neurosci. 8: 285. doi:

10.3389/fnhum.2014.00285

Gomez-Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A.,

and Grosse-Wentrup, M. (2011). Closing the sensorimotor loop: haptic

feedback facilitates decoding of motor imagery. J. Neural Eng. 8:036005. doi:

10.1088/1741-2560/8/3/036005

Grimm, F., and Gharabaghi, A. (2016). Closed-loop neuroprosthesis for

Reach-to-Grasp assistance: combining adaptive multi-channel neuromuscular

stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10:284. doi:

10.3389/fnins.2016.00284

Grimm, F., Naros, G., and Gharabaghi, A. (2016a). Compensation or restoration:

closed-loop feedback of movement quality for assisted Reach-to-Grasp

exercises with a multi-joint arm, Exoskeleton. Front. Neurosci. 10:280. doi:

10.3389/fnins.2016.00280

Grimm, F., Walter, A., Spüler, M., Naros, G., Rosenstiel, W., and Gharabaghi,

A. (2016b). Hybrid neuroprosthesis for the upper limb: combining brain-

controlled neuromuscular stimulation with a multi-joint arm exoskeleton.

Front. Neurosci. 10:367. doi: 10.3389/fnins.2016.00367

Halsband, U., and Lange, R. K. (2006). Motor learning in man: a review

of functional and clinical studies. J. Physiol. Paris 99, 414–424. doi:

10.1016/j.jphysparis.2006.03.007

Jackson, A., and Fetz, E. E. (2011). Interfacing with the computational brain.

IEEE Trans. Neural Syst. Rehabil. Eng. 19, 534–541. doi: 10.1109/TNSRE.2011.

2158586

Jørgensen, H. S., Nakayama, H., Raaschou, H. O., and Olsen, T. S. (1999).

Neurologic and functional recovery the Copenhagen stroke study. Phys. Med.

Rehabil. Clin. N. Am. 10, 887–906.

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., and Riehle, A. (2013). The

ups and downs of β oscillations in sensorimotor cortex. Exp. Neurol. 245, 15–26.

doi: 10.1016/j.expneurol.2012.09.014

Kraus, D., and Gharabaghi, A. (2015). Projecting navigated TMS sites on the

gyral anatomy decreases inter-subject variability of Cortical Motor Maps. Brain

Stimul. 8, 831–837. doi: 10.1016/j.brs.2015.03.006

Kraus, D., and Gharabaghi, A. (2016). Neuromuscular plasticity: disentangling

stable and variablemotormaps in the human sensorimotor cortex.Neural Plast.

2016:7365609. doi: 10.1155/2016/7365609

Kraus, D., Naros, G., Bauer, R., Leão, M. T., Ziemann, U., and Gharabaghi,

A. (2016a). Brain-robot interface driven plasticity: distributed

modulation of corticospinal excitability. Neuroimage 125, 522–532. doi:

10.1016/j.neuroimage.2015.09.074

Kraus, D., Naros, G., Bauer, R., Khademi, F., Leão, M. T., Ziemann,

U., et al. (2016b). Brain state-dependent transcranial magnetic closed-

loop stimulation controlled by sensorimotor desynchronization induces

robust increase of corticospinal excitability. Brain Stimul. 9, 415–424. doi:

10.1016/j.brs.2016.02.007

Kristeva, R., Patino, L., and Omlor, W. (2007). Beta-range cortical motor

spectral power and corticomuscular coherence as a mechanism for effective

corticospinal interaction during steady-state motor output. Neuroimage 36,

785–792. doi: 10.1016/j.neuroimage.2007.03.025

Frontiers in Neuroscience | www.frontiersin.org 5 October 2016 | Volume 10 | Article 456

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Gharabaghi From Assistive to Restorative Brain-Machine Interfaces

Massie, C. L., Kantak, S. S., Narayanan, P., and Wittenberg, G. F. (2015). Timing

of motor cortical stimulation during planar robotic training differentially

impacts neuroplasticity in older adults.Clin. Neurophysiol. 126, 1024–1032. doi:

10.1016/j.clinph.2014.06.053

Mazaheri, A., and Jensen, O. (2010). Rhythmic pulsing: linking ongoing

brain activity with evoked responses. Front. Hum. Neurosci. 4:177. doi:

10.3389/fnhum.2010.00177

Mima, T., Steger, J., Schulman, A. E., Gerloff, C., and Hallett, M. (2000).

Electroencephalographic measurement of motor cortex control of muscle

activity in humans. Clin. Neurophysiol. 111, 326–337. doi: 10.1016/S1388-

2457(99)00229-1

Mokienko, O. A., Chervyakov, A. V., Kulikova, S. N., Bobrov, P. D., Chernikova,

L. A., Frolov, A. A., et al. (2013). Increased motor cortex excitability during

motor imagery in brain-computer interface trained subjects. Front. Computat.

Neurosci. 7:168. doi: 10.3389/fncom.2013.00168

Mottaz, A., Solca, M., Magnin, C., Corbet, T., Schnider, A., Guggisberg, A.

G., et al. (2015) Neurofeedback training of alpha-band coherence enhances

motor performance. Clin. Neurophysiol. 126, 1754–1760. doi: 10.1016/j.clinph.

2014.11.023

Naros, G., and Gharabaghi, A. (2015). Reinforcement learning of self-regulated

β-oscillations for motor restoration in chronic stroke. Front. Hum. Neurosci.

9:391. doi: 10.3389/fnhum.2015.00391

Naros, G., Naros, I., Grimm, F., Ziemann, U., and Gharabaghi, A.

(2016). Reinforcement learning of self-regulated sensorimotor β-

oscillations improves motor performance. Neuroimage. 134, 142–152.

doi: 10.1016/j.neuroimage.2016.03.016

Nicolo, P., Rizk, S., Magnin, C., Pietro, M. D., Schnider, A., and Guggisberg,

A. G. (2015). Coherent neural oscillations predict future motor and language

improvement after stroke. Brain 138, 3048–3060. doi: 10.1093/brain/awv200

Palva, S., and Palva, J. M. (2007). New vistas for alpha-frequency band oscillations.

Trends Neurosci. 30, 150–158.

Pichiorri, F., De Vico Fallani, F., Cincotti, F., Babiloni, F., Molinari, M., Kleih, S.

C., et al. (2011). Sensorimotor rhythm-based brain-computer interface training:

the impact on motor cortical responsiveness. J. Neural Eng. 8:025020. doi:

10.1088/1741-2560/8/2/025020

Pineda, J. A. (2005). The functional significance of mu rhythms: translating

“seeing” and “hearing” into “doing”. Brain Res. Brain Res. Rev. 50, 57–68. doi:

10.1016/j.brainresrev.2005.04.005

Raco, V., Bauer, R., Tharsan, S., and Gharabaghi, A. (2016). Combining TMS and

tACS for closed-loop phase-dependent modulation of corticospinal excitability:

a feasibility study. Front. Cell. Neurosci. 25:143. doi: 10.3389/fncel.2016.00143

Riddle, C. N., and Baker, S. N. (2006). Digit displacement, not object compliance,

underlies task dependent modulations in human corticomuscular coherence.

Neuroimage 33, 618–627. doi: 10.1016/j.neuroimage.2006.07.027

Rossiter, H. E., Boudrias, M.-H., and Ward, N. S. (2014). Do movement-related

beta oscillations change after stroke? J. Neurophysiol. 112, 2053–2058. doi:

10.1152/jn.00345.2014

Royter, V., and Gharabaghi, A. (2016). Brain state-dependent closed-loop

modulation of paired associative stimulation controlled by sensorimotor

desynchronization. Front. Cell. Neurosci. 10:115. doi: 10.3389/fncel.2016.00115

Sabate, M., Llanos, C., Enriquez, E., and Rodriguez, M. (2011). Mu rhythm,

visual processing and motor control. Clin. Neurophysiol. 123, 550–507. doi:

10.1016/j.clinph.2011.07.034

Salmelin, R., Hämäläinen, M., Kajola, M., and Hari, R. (1995). Functional

segregation of movement-related rhythmic activity in the human brain.

Neuroimage 2, 237–243.

Shindo, K., Kawashima, K., Ushiba, J., Ota, N., Ito, M., Ota, T., et al.

(2011). Effects of neurofeedback training with an electroencephalogram-

based brain-computer interface for hand paralysis in patients with chronic

stroke: a preliminary case series study. J. Rehabil. Med. 43, 951–957. doi:

10.2340/16501977-0859

Siegel, M., Donner, T. H., and Engel, A. K. (2012). Spectral fingerprints

of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134. doi:

10.1038/nrn3137

Spüler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N.,

Gharabaghi, A., et al. (2014). Decoding of motor intentions from epidural

EcoG recordings in severely paralyzed chronic stroke patients. J. Neural Eng.

11:066008. doi: 10.1088/1741-2560/11/6/066008

Szameitat, A. J., Shen, S., Conforto, A., and Sterr, A. (2012). Cortical activation

during executed, imagined, observed, and passive wrist movements in healthy

volunteers and stroke patients. Neuroimage 62, 266–280. doi: 10.1016/

j.neuroimage.2012.05.009

Theodoridis, S., and Koutroumbas, K. (2009). Pattern Recognition. Burlington,

MA: Academic Press.

Thomas, E., Dyson, M., and Clerc, M. (2013). An analysis of performance

evaluation for motor-imagery based BCI. J. Neural Eng. 10:031001. doi:

10.1088/1741-2560/10/3/031001

Thompson, D. E., Blain-Moraes, S., and Huggins, J. E. (2013). Performance

assessment in brain-computer interface-based augmentative and alternative

communication. Biomed. Eng. Online 12:43. doi: 10.1186/1475-925X-12-43

Van Wijk, B. C. M., Beek, P. J., and Daffertshofer, A. (2012). Neural synchrony

within the motor system: what have we learned so far? Front. Hum. Neurosci.

6:252. doi: 10.3389/fnhum.2012.00252
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