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Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists

through clinical assessment and their evaluation of patient’s self-reported experiences as

the illness emerges. There is great interest in identifying biological markers of prognosis

at the onset of illness, rather than relying on the evolution of symptoms across time.

Functional network connectivity, which indicates a subject’s overall level of “synchronicity”

of activity between brain regions, demonstrates promise in providing individual subject

predictive power. Many previous studies reported functional connectivity changes during

resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless,

exclusive reliance on fMRI to generate such networks may limit the inference of the

underlying dysfunctional connectivity, which is hypothesized to be a factor in patient

symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of

connectivity assessments using fMRI and magnetoencephalography (MEG), which more

directly measures neuronal activity, may provide improved classification of schizophrenia

than either modality alone. Moreover, recent evidence indicates that metrics of dynamic

connectivity may also be critical for understanding pathology in schizophrenia. In this

work, we propose a new framework for extraction of important disease related features

and classification of patients with schizophrenia based on using both fMRI and MEG

to investigate functional network components in the resting state. Results of this study

show that the integration of fMRI and MEG provides important information that captures

fundamental characteristics of functional network connectivity in schizophrenia and is

helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG

methods, using static functional network connectivity analyses, improved classification

accuracy relative to use of fMRI or MEGmethods alone (by 15 and 12.45%, respectively),

while combined fMRI/MEG methods using dynamic functional network connectivity

analyses improved classification up to 5.12% relative to use of fMRI alone and up to

17.21% relative to use of MEG alone.
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INTRODUCTION

While brain function is highly complex at the microscopic
scale, brain imaging data itself is also high dimensional and
complex. High dimensional, complex data challenge our ability
to identify patterns using standard observational approaches
whereas sophisticated classification algorithms may more easily
reveal patterns that improve patient classification accuracy.
Functional brain imaging provides an opportunity to assess brain
function noninvasively and new knowledge is being gained as
additional data mining methods are developed. In addition to
providing insights into normal functioning of the healthy brain,
new approaches are needed to further elucidate into complex
mental illnesses such as schizophrenia which is a heterogeneous
disorder characterized by positive and negative symptoms as well
as cognitive impairments. Research studies have identified gray
andwhitematter abnormalities and disrupted connectivity across
large-scale brain networks in schizophrenia (Mohamed et al.,
1999; Kubicki et al., 2007). Such dysconnectivity may be driven
by aberrant synaptic plasticity (Stephan et al., 2009) though
the underlying mechanisms of the disorder are still unclear.
Characterizing functional connectivity provides an opportunity
to help understand schizophrenia at the macro scale and
may help us better understand how various brain regions are
impacted.

The majority of previous classification studies have
primarily focused on a single neuroimaging method such
as functional magnetic resonance imaging (fMRI) or
magnetoencephalography (MEG). It has been shown that
exclusive reliance on a single method has some limitations
(Calhoun and Sui, 2016). Also multiple previous studies used
very small numbers of subjects for training classifiers combined
with high-dimensional datasets limiting the ability to design
robust and accurate classifiers for schizophrenia.

To overcome the limitations imposed by exclusive reliance
on a single method and by small training datasets, some studies
have increased the variety of data types. In a recent study
(Silva et al., 2014), researchers were asked to automatically
diagnose schizophrenia using both structural and functional MRI
data. The results showed that investigators who used both MRI
data types achieved better accuracy relative to those who used
only one. Similarly, previous work (Sui et al., 2011) aiming to
highlight differences between schizophrenia and bipolar disorder
by combining fMRI and diffusion tensor imaging (DTI) data,
linked function–structure networks by investigating the joint
components with strong links between DTI and fMRI. They
achieved higher estimation accuracy than by using a single
imaging modality. The combination of multiple data types
has also been extended to three modalities in the application
of multi-set canonical correlation analysis to combine data
of resting state fMRI and EEG with structural MRI (sMRI)
(Sui et al., 2014). Results showed that ensemble features from
these methods improve the classification accuracy between
patients and controls significantly. Similarly, Dai et al. (2012)
introduced an automatic classification framework for attention
deficit/hyperactivity disorder by combining fMRI and sMRI.
Results of their experiments showed that using multimodal

features from fMRI and sMRI yielded better classification results
for attention deficit/hyperactivity disorder patients. Another
study (Cetin et al., 2015a) used a sensory loaded task hierarchy
to increase the data variety and pointed out the importance of
multitask information (in this case sensory loading) to discover
effective features to classify schizophrenia patients (SZs) and
healthy controls (HCs). Wang et al. (2012) examined the spatial
concordance between MEG and fMRI for a verb generation
task. MEG and fMRI data showed spatial convergence in the
same anatomical regions. Also, Ingalhalikar et al. (2014) aimed
to classify autism spectrum disorder using MEG based auditory
tasks and fractional anisotropy and diffusivity measures from
DTI. They also achieved higher accuracy then single modality
classifiers. Bridwell and Calhoun (2014) performed a review of
studies using fMRI or EEG or the combination of both. The
conclusions of this review as well as other work on the topic
have quite consistently demonstrated that the combination of
EEG-fMRI networks show combining information frommultiple
modalities provides an improved ability to isolate brain networks,
and may help clarify their potentially distinct roles in assessing
cognition and behavior when using EEG or fMRI alone.

Previous studies showed that increasing the variety of data
types helps researchers to gain a broader understanding of mental
disorders. Specifically, MEG and fMRI which are two well-known
neuroimaging approaches have become very popular in recent
years. fMRI andMEG provide complementary information, both
of which provide a vast amount of data that are not easily
modeled or summarized without the loss of potentially critical
information. For instance; whilst the blood oxygenation-level
dependent (BOLD) response measured by fMRI allows better
visualization of the extent or distribution of the activated area, it
is limited by measuring an indirect and slow physiological signal
(Kim et al., 1997). On the other hand, neural oscillatory activity,
which comprises rhythmic electrical activity in cell assemblies,
is thought to underlie BOLD responses. Neural oscillations
measured with MEG occur in the ∼1–900 Hz band (Cohen,
1968; Xiang et al., 2009); such rapid electrical signals cannot be
directly assessed using fMRI. Therefore, using both fMRI and
MEG, within a common sample of subjects, would combine
the strengths of each modality by allowing comparison of both
hemodynamic and electrophysiological effects.

Significant progress toward integrating fMRI and MEG
has been made in the past decade. A recent study (Brookes
et al., 2011a) estimated intrinsic connectivity networks (ICNs)
in MEG in a similar way to that typically used in fMRI
(that is extracting coherent patterns from source space data;
Calhoun et al., 2001). Also, our recent study (Houck et al.,
in press) used a method based on spatial group independent
component analysis (Sg-ICA), for the first time estimating
functional network connectivity (FNC) from both MEG and
fMRI. Spatial group independent components resulting from Sg-
ICA aremaximally spatially independent but their corresponding
time-courses can provide a significant amount of temporal
dependency. ICA based FNC is a data-driven approach that
measures the functional connectivity (cross-correlation) among
brain functional networks (Jafri et al., 2008; Çetin et al., 2014).
The results suggest that the combination of these two methods
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provides complementary information that captures essential
characteristics of functional network connectivity.

The ability to extract important disease related features from
MEG and fMRI imaging data is an extremely important topic.
We used a Sg-ICA approach (Erhardt et al., 2011a; Calhoun
and Adali, 2012), excluded artifactual brain networks (Jafri et al.,
2008) from fMRI and MEG methods by using FNC, and then
conducted a classification study of schizophrenia which is a
common psychiatric condition characterized by gray and white
matter abnormalities and disrupted connectivity across large-
scale brain networks. Such dysconnectivity includes disruption
of both structural (Kubicki et al., 2007) and FNC (Calhoun et al.,
2008; Jafri et al., 2008; Çetin et al., 2014; Rashid et al., 2015; Houck
et al., in press) thatmay be related to clinical symptoms, including
cognitive dysfunction.

Previous studies showed that classification accuracy between
patients and controls is improved by combining data from
different modalities or incorporating dynamic data. Using
multimodal data and a dynamic analysis pipeline may provide
us with unique disease related features. There have been a few
classification paper which have shown the promise of such data
(Silva et al., 2014; Arbabshirani et al., 2016). However, to our
knowledge no work looking directly at MEG and fMRI in the
context of both static and dynamic connectivity.

In this study, we used the same resting state data set analyzed
in Houck et al. (in press). Resting state data is particularly
advantageous for the study of disease states where patients may
have difficulty responding or performing behavioral tasks due to
compromised cognitive and/or physiological function. Also, we
recruited a relatively large number of subjects (91) with almost
equal distribution across disease group (47 SZ, and 44 HC).
Hence this data set well suited for a classification analysis.

Different than the previous study, which described the group
level differences in networks obtained with Sg-ICA using both
MEG and fMRI, this study now uses this large fMRI/MEG data
set to examine the usefulness of combining fMRI and MEG
for performing single-subject classification. We hypothesized
that the combination of fMRI and MEG modalities would
identify unique trait-based information that can be used for
individual prediction of mental illness such as schizophrenia at
the single-subject level. Also we used static (traditional approach)
and dynamic (newer approach) FNC pipelines to show that
improvement of classification accuracy is not dependent on
a specific FNC pipeline. The purpose of the present study
was to use both fMRI and band limited envelope correlation
metrics from MEG to interrogate static and dynamic functional
connectivity in the resting state in a sample of HCs and SZs to
improve the classification accuracy of SZs.

MATERIALS AND METHODS

Participants
The data used in this study were from 91 subjects (46 SPs
and 45 HCs). Informed consent was obtained from all subjects
according to institutional guidelines at the University of New
Mexico Human Research Protections Office, and all data were
anonymized prior to group analysis. All participants were

compensated for their participation with cash following each
study visit. All participants were between the ages of 18–65 years.

HCs were recruited from the same geographic location and
completed the Structured Clinical Interview for DSM-IV Axis
I Disorders—Non-Patient Edition to rule out Axis I conditions
(First et al., 2002). Additional exclusion criteria for HCs included
a current or past psychiatric disorder (with the exception of one
lifetime depressive episode), depression or antidepressant use
within the past 6 months, lifetime antidepressant use of more
than 1 year, and history of a psychotic disorder in a first-degree
relative. Exclusion criteria for both groups included a history of
neurological disorder, head trauma with loss of consciousness
>5min, mental retardation, active substance dependence or
misuse within the past year and lifetime history of dependence or
use within the last 12 months of phencyclidine, amphetamines,
or cocaine.

Schizophrenia patients were recruited from the University of
New Mexico (UNM) Hospitals and the Albuquerque Veterans
Administration Medical Center. Inclusion criteria for patients
with schizophrenia included a diagnosis of schizophrenia
based on the Structured Clinical Interview for DSM-IV-
TR. The inclusion criteria for patients was a diagnosis of
schizophrenia or schizoaffective disorder. Participants with a
history of neurological disorders including head trauma (loss
of consciousness >5min), mental retardation, alcohol, drug
dependence, or abuse (except for nicotine) within the past year
were excluded. Each SZ patient completed the Structured Clinical
Interview for DSM-IV Axis I Disorders (First et al., 2002) for
diagnostic confirmation and evaluation for co-morbidities. The
clinical core (COBRE Stability Clinic—Dr. Bustillo) affiliated
with this project determined retrospective stability from relevant
psychiatric records documenting no change in symptomatology
or type/dose of psychotropic medications were recorded for these
patients in the 3 months prior to either scan. The clinical core
assessed prospective stability during three consecutive weekly
visits and during each imaging assessment. SZ patients were
considered prospectively stable if they demonstrated no change
in clinical symptoms >2 points in the positive symptom items
on the positive and negative syndrome scale (PANSS: Kay et al.,
1987), no score of “worse” or “much worse” on the clinical global
impression scale (Guy, 1976), expressed no suicidal or violent
ideation, and had no psychiatric or medical hospitalizations.
Doses of antipsychotic medications were converted to olanzapine
equivalents (OE) (Gardner et al., 2010). We ran two-sample t-
test between OE scores and loading factors for fMRI and all MEG
frequencies. The results showed not significant effect (p > 0.05)
of OE scores on the loading parameters. All SZ patients had a
negative toxicology screen for drugs of abuse at the start of the
study. All participant smokers were instructed not to use tobacco
during the 2 h prior to each scan to minimize acute effects.
This was confirmed via a breath carbon monoxide measure of
<8 ppm. SZs and HCs were matched on parental educational
level (p > 0.05), a less biased estimate of pre-morbid educational
attainment potential (Saykin et al., 1991). We assessed symptom
severity among the SZs group with the PANSS. Table 1 provides
demographic characteristics of the participants. Each participant
completed resting MEG and MRI scans. Each imaging session
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TABLE 1 | Demographic and clinical variables for SZs and HCs.

HC (n = 44)

Mean (SD)

SZ (n = 47)

Mean (SD)

t or x2

(p-value)

DEMOGRAPHICS

Age 37. 28 (13.86) 35.18 (11.83) 0.78 (0.44)

Gender (M/F) 37/7 34/13 0.27 (0.78)

Ethnicity (H/NH) 23/21 26/21

RACE

American Indian/

Alaska Native

2 2

Asian 2 0

African American 1 4

Native Hawaiian or Other

Pacific Islander

1 0

White 38 41

Age of onset of psychosis 20.04 (8.03)

Illness duration 16.22 (12.91)

Calgary depression 3.25 (1.01)

SOCIOECONOMIC STATUS

PCEL

CODEM-6 4.24 (2.11) 4.53 (1.18) 0.85 (0.15)

CODEM-7 4.72 (1.83) 4.72 (1.84) 0.75 (0.35)

Nicotine 0.51 (1.24) 0.91 (1.73) 0.79 (0.2)

Motion (mean framewise

displacement in mm)

0.210 (0.124) 0.275 (0.192) 1.87 (0.07)

PANSS

Positive 15.13 (5.14)

Negative 15.15 (5.01)

General 29.79 (8.108)

MEDICATIONS

OE (mg/day) 14.02 (12.39)

Ethnicity: H, Hispanic; NH, Non Hispanic; PANSS, Positive and Negative Syndrome

Scale. PCEL, Primary caregiver education level. CODEM-6, Highest Level of Education for

Primary Caretaker until 18 years old. CODEM-7, Highest Level of Education for Secondary

Caretaker until subject was 18 years old. Educational levels as follows: 1, grade 6 or less;

2, grade 7–12; 3, graduated high school; 4, part college; 5, graduated 2 year college;

6, graduated 4 year college; 7, graduate or professional school; 8, completed graduate

or professional school. Calgary, Calgary Depression Scale. Nicotine, Nicotine use across

groups. OE, Olanzapine Equivalence.

was between 1 and 2 h. Scans were collected in counterbalanced
order, with a median time between scans of∼22 days.

Functional MRI Analysis
fMRI Data Acquisition
fMRI data were collected on a 3-Tesla Siemens Trio scanner at
the Mind Research Network with a 12-channel radio frequency
coil with a repetition time of 2 s. High-resolution T1-weighted
structural images were acquired with a five-echo MPRAGE
sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s,
TI = 1.2 s, flip angle = 7◦, number of excitations = 1, slice
thickness = 1 mm, number of slices = 27, field of view = 256
mm, resolution = 256 × 256. The RMS average of these echoes
was used as the final T1 image. T2∗-weighted functional images
were acquired using a gradient-echo EPI sequence with TE = 29
ms, TR= 2 s, flip angle= 75◦, slice thickness= 3.5 mm, slice gap

= 1.05 mm, field of view 240 mm, matrix size = 64 × 64, voxel
size= 3.75× 3.75× 4.55 mm, number of slices= 29,210 frames
and ascending acquisition (Allen et al., 2011a; Mayer et al., 2012).
Resting-state scans consisted of 149 volumes.

fMRI Data Preprocessing
Resting fMRI data were preprocessed using an automated
preprocessing pipeline (Bockholt et al., 2009) based on the
SPM toolbox (http://www.fil.ion.ucl.ac.uk/spm/) implemented in
MATLAB (www.mathworks.com). The first six volumes were
discarded to remove T1 equilibration effects. Next, to realign the
images, the INRIalign algorithm (Freire et al., 2002) was used,
and slice-timing correction was applied using the middle slice as
the reference frame in the functional data pipeline. The data were
then spatially normalized to the standard Montreal Neurological
Institute (MNI) space (Friston et al., 1995) using a nonlinear
(affine + low frequency direct cosine transform basis functions)
registration, resampled to 3 × 3 × 3 mm voxels, and smoothed
using a Gaussian kernel with a full-width at half-maximum
(FWHM) of 10mm. The preprocessed time series data was scaled
to a mean of 100. This intensity normalization improves the test-
retest reliability of the group independent component analysis
(GICA; Allen et al., 2011b).

fMRI Spatial Group Independent Component

Analysis (Sg-ICA)
We used the MATLAB-based (www.mathworks.com) GIFT
Toolbox (http://mialab.mrn.org/software/gift/) and infomax
algorithm (Bell and Sejnowski, 1995) for Sg-ICA. The Sg-ICA
approach was selected over temporal group ICA for three
reasons: (1) Because components produced by Sg-ICA are not
temporally independent, relations among network timecourses
can be evaluated; (2) temporal group ICA of participant
timecourses carries the assumption of temporal consistency,
limiting its utility in group analysis of resting data; and (3)
Sg-ICA is more robust to motion than seed based approaches
(Damaraju et al., 2014a).

The subject-specific data reduction principal component
analysis was performed and 100 principal components retained
by using a standard economy-size decomposition (Allen et al.,
2011b). The relatively large number of subject-specific principal
components has been shown to stabilize subsequent back-
reconstruction (Erhardt et al., 2011b). Then reduced data
from all subjects and all sessions were concatenated together
and put through another PCA reduction step. Further group
data reduction was performed to use memory more efficiently
by using an expectation maximization (EM) PCA algorithm
(Roweis, 1998) and 75 PCs were retained.

We used a relatively high model order ICA (number
of components, C = 75), since such models yield refined
components that correspond to known anatomical and
functional segmentation (Kiviniemi et al., 2009; Abou-
Elseoud et al., 2010). In order to estimate the reliability of
the decomposition, the Infomax ICA algorithm was applied
repeatedly (20 times) in ICASSO (http://research.ics.aalto.
fi/ica/icasso/). Best estimated runs were selected by using
the quality of component clusters that reflects the difference
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between intra-cluster and extra-cluster similarity and resulting
components were clustered (Himberg et al., 2004).

The ICA results, once estimated and fixed, can be considered
as a set of weighted seed maps (Joel et al., 2011). The ICA
algorithm identifies maximally statistically-independent sets of
maps (which can overlap) each of which are represented by
a strongly coherent (correlated) time-course. A major strength
of multivariate approaches like ICA is that in the case of a
distributed set of regions, there are multiple locations, which are
highly correlated to one another, and thus can be considered
a node in this sense. Indeed, as one knows that all the voxels
with strong weights in a given component are highly correlated,
and thus it makes sense to consider them a node and use FNC
to evaluate the relationship among these nodes (Erhardt et al.,
2011a).

fMRI Non-artifactual Components Identification
Out of the 75 components returned by the Sg-ICA, 39
were labeled (see Figure 1) as non-artifactual independent
components (IC) using a combination of two methods (Allen
et al., 2011a; Çetin et al., 2014) for fMRI (see Table 2). In the
first method, the power spectra were examined with two criteria
in mind: dynamic range and low frequency/high frequency
ratio. Dynamic range refers to the difference between the
peak power and minimum power at frequencies to the right
of the peak in the power spectra. Low frequency to high
frequency power ratio is the ratio of the integral of spectral
power below 0.10 Hz to the integral of power between 0.15
and 0.25 Hz. To verify the results, reviewers evaluated the
components for functional relevance. In this evaluation, the three
expert reviewers investigated if a component exhibited (1) peak
activation in gray matter, (2) low spatial overlap with vasculature
and ventricles, (3) low motion and susceptibility artifacts, and
(4) timecourses (TCs) dominated by low frequency fluctuations,
it was classified as a non-artifactual component. We primarily
used the peak functional region for anatomical labeling of non-
artifactual ICs.

MEG Analysis
MEG Data Acquisition
MEG data were collected in a magnetically shielded room (VAC
Series Ak3B, Vacuumschmelze GmbH) using a whole-cortex
306-channel MEG array (Elekta NeuromagTM) at the Mind
Research Network. Before positioning the participant in the
MEG, four head position indicator (HPI) coils were affixed to
the participant’s head: two on the forehead and one behind
each ear. These coils allow determination of the position of
the participant’s head relative to the position and orientation
of the MEG sensors. Additional positioning data were collected
using a head position device (Polhemus Fastrak) to permit co-
localization of MEG activity with each participant’s anatomical
MRI. Two channels of electro-oculogram (EOG), one vertical
and one horizontal, and one channel of electrocardiogram
(ECG) were collected simultaneously with MEG. MEG data
were sampled at a rate of 1000Hz, with a bandpass filter
of 0.10–330 Hz. Head position was monitored continuously
throughout the MEG session using the four HPI coils

that were energized continuously during the scan at known
frequencies (293, 307, 314, and 321 Hz, respectively). Raw
data were collected and stored. Participants were instructed
to keep their eyes open and maintain fixation during the 6-
min scan to minimize occipital alpha rhythm (Kim et al.,
1997).

MEG Data Preprocessing
Artifact removal, correction for head movement, and down
sampling to 250 Hz were conducted offline using Elekta Maxfilter
software, with 123 basis vectors, a spatiotemporal buffer of 10 s,
and a correlation limit of 0.95. To facilitate comparison with
previous research (Brookes et al., 2011b), data were bandpass
filtered into four frequency ranges of interest: delta (1–4Hz),
theta (5–9Hz), alpha (10–15Hz), beta (16–29Hz), and gamma
(30–50Hz).

The MaxMove function of the Maxfilter software (http://
imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter) for MEG eliminates
the confound of head motion for MEG data by transforming the
MEG data to the same head position across each participant’s
scan using the head position information collected throughout
the scan (Taulu and Kajola, 2005). Motion was detected using the
correlation of spatial patterns between each time instance and the
last known head position. Head position fits were estimated once
per second when no motion was detected or more often when
the correlation dropped below r = 0.98. Complete details of the
method can be found elsewhere (Taulu and Kajola, 2005; Taulu
and Simola, 2006).

As a part of MEG beamformer projection, covariance matrices
were generated independently for each subject and frequency
band, using all recorded data. Covariance matrices were
regularized using a value of 4 times the minimum singular value
of the unregularized matrix. Voxels were placed on a regular 6-
mm grid spanning the brain image. Source orientation at each
voxel was based on a nonlinear search for maximum projected
signal-to-noise ratio. The forward solution was based on a
dipole model (Sarvas, 1987) and a single-shell boundary element
model (Hämäläinen and Sarvas, 1989). Beamformer projection
was performed separately for each subject and frequency range.
Then source-space signals were normalized by an estimate of
projected noise (Hall et al., 2013) and transformed to standard
MNI space using FLIRT in FSL. A Hilbert transform was applied
to the timecourse at each voxel to derive the analytic signal. The
Hilbert envelope at each voxel was down sampled to an effective
sampling rate of 1 Hz (Brookes et al., 2011b). Thus, resting-
state scans consisted of 300 volumes for each MEG frequency
band. Source space envelope data were smoothed spatially (6 mm
at full-width half-maximum), and the voxel size was resampled
to 3 × 3 × 3 mm to facilitate comparison with the fMRI
data.

MEG Spatial Group Independent Component

Analysis (Sg-ICA)
Sg-ICA was applied to the individual subject data using the GIFT
toolbox (http://mialab.mrn.org/software/gift). Each frequency
range was treated as a session in GIFT to permit analysis of each
band, as well as the mean across bands.
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FIGURE 1 | Non-artifactual ICA components for fMRI and MEG. Non-artifactual components are divided into groups based on their anatomical and functional

properties and include auditory networks (Aud), sensory motor network (SM), visual network (Visual), default mode network (DMN), attentional network (Att_Cg),

frontal network (Frontal), cerebellar network (Cer), and subcortical network (SbCor). ICA component numbers are listed for each functional networks. The same color

used for component picture and component number (Houck et al., in press).
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TABLE 2 | Anatomical labels (based on the peak functional region) of

non-artifactual independent components from the fMRI analysis.

No. Anatomical labels

fMRI COMPONENTS

1 Left anterior cingulate cortex

2 Right cerebellum

3 Left cerebellum

4 Middle occipital gyrus

7 Right fusiform gyrus and left cerebellum

10 Left heschl’s gyrus

12 Middle temporal gyrus

14 Right lingual gyrus

15 Putamen

18 Postcentral gyrus

20 Left (SMA + Precentral gyrus)

22 Left angular gyrus

25 Right inferior frontal gyrus

26 Left thalamus

29 Left precuneus

31 Right precuneus

32 Cerebellar vermis

35 Angular gyrus

36 Middle cingulate cortex

39 Left postcentral gyrus

40 Right postcentral gyrus

41 Supramarginal gyrus

44 Insula lobe

46 Middle temporal gyrus

48 Middle occipital gyrus

49 Right heschl’s gyrus + Left superior temporal gyrus

50 Left posterior cingulate cortex

52 Right precuneus + Right inferior frontal gyrus

53 Right Inferior occipital gyrus

54 Left cuneus

55 Right angular gyrus + Left inferior parietal lobule

56 Left inferior frontal gyrus

59 Right precuneus

61 Left angular gyrus + Right precuneus

66 Right precuneus + Left paracentral lobule

67 Left lingual gyrus

71 Left anterior cingulate cortex

74 Right angular gyrus

MEG ICA processing generally followed the procedures
applied to the fMRI data. Reduction steps were applied
using principal component analysis. First, subject-specific data
reduction was applied, retaining 100 principal components.
Next, group level data reduction was applied to reduce the
dataset to 75 principal components. Infomax ICA was applied 20
times in ICASSO and the resulting components were clustered.
Spatial maps were generated by decomposing the mixed MEG
timecourses to yield a set of spatially independent and temporally
coherent networks. As with fMRI, FNC was computed as the
zero-lag cross-correlations among reconstructed timecourses.

TABLE 3 | Anatomical labels (based on the peak functional region) of

non-artifactual independent components for MEG method.

No. Anatomical labels

MEG COMPONENTS

1 Left rectal gyrus

2 Right middle orbital gyrus

3 Left middle frontal gyrus

4 Right putamen

8 Left superior frontal gyrus

9 Right cerebellum (IV-V)

10 Left inferior frontal gyrus

11 Left paracentral lobule

14 Right inferior frontal gyrus

15 Superior medial gyrus

17 Right superior frontal gyrus

20 Left superior frontal gyrus

21 Left inferior frontal gyrus

23 Right superior occipital gyrus

24 Left temporal pole

27 Right inferior frontal gyrus

28 Left superior temporal gyrus

29 Right rolandic operculum

30 Left lingual gyrus

32 Right superior temporal gyrus

36 Right Middle Frontal Gyrus

39 Middle occipital gyrus

42 Left superior medial gyrus

50 Left posterior cingulate cortex

52 Right precuneus

53 Left middle occipital gyrus

62 Left angular gyrus

66 Right postcentral gyrus

69 Right precuneus

71 Left heschl’s gyrus

74 Left inferior occipital gyrus

75 Right lingual gyrus

MEG Non-artifactual Components Identification
For MEG ICA processing and non-artifactual components
selection, we follow the procedures that are applied to the fMRI
as mentioned in the previous section. Of the 75 components
obtained from the group ICA, 32 were retained as non-artifactual
components for MEG (see Table 3).

Functional Network Connectivity Analysis
The FNC information was obtained from fMRI and MEG scans
performed on a set of SZs and HCs, using Sg-ICA. The Sg-ICA
decomposition of the preprocessed fMRI and MEG data resulted
in a set of brain maps, and corresponding timecourses. These
timecourses indicated the activity level of the corresponding
brain map at each point in time. The FNC features are the pair-
wise correlations between these timecourses, for each subject.
FNC indicates a subject’s overall level of “synchronicity” between
brain network components (Erhardt et al., 2011a). Also, the FNC
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timecourses are despiked (this is the default in GIFT) which is the
largest contributor to minimize motion effects (Damaraju et al.,
2014a).

In this study, we used static and dynamic FNC pipelines
(see Figure 2). While static FNC matrices (traditional FNC
pipeline) is based on correlation of full length of non-
artifactual component timecourses, dynamic FNC (newer FNC
pipeline) is based on smaller segment (windowed timecourses)
of the correlation of non-artifactual component timecourses
that captures repetitive patterns of interactions among intrinsic
networks for non-artifactual component timecourses.

Static Functional Network Connectivity Analysis
Independent component analysis based functional connectivity
is considered a high-level functional connectivity measure.
Static functional network connectivity (static FNC) is a
correlation value that measures the functional connectivity
(cross-correlation) among brain functional networks (Jafri et al.,
2008; Çetin et al., 2014) by using the full length of non-artifactual
component timecourses (see Figure 2). Therefore, the static FNC
feature gives a picture of the average connectivity pattern between
independent components (average correlation matrix) for each
group.

Dynamic Functional Network Connectivity Analysis
While static FNC is based on correlation of the full length
non-artifactual component timecourses, dynamic FNC is
based on correlation of windowed, non-artifactual component
timecourses (see Figure 2). Recent work (Sakoğlu et al., 2010;
Allen et al., 2012; Calhoun et al., 2014; Damaraju et al., 2014b;
Rashid et al., 2014) suggests that connectivity dynamics can

capture repetitive patterns of interactions among intrinsic
networks by using a sliding window approach for non-artifactual
component timecourses. These repetitive patterns of interactions
during rest or task related experiments contain valuable
information for individual prediction of group membership for
SZs relative to HCs (Sakoğlu et al., 2010; Rashid et al., 2015).
Obtaining these connectivity dynamics is named “dynamic
functional network connectivity (dynamic FNC).”

Classification and Feature Selection
Static FNC and dynamic FNC were used to extract reliable
features for fMRI and MEG methods. We used a leave-one-out
cross validation method. One subject’s data was used for testing
and the rest of the data (90 subjects) were used as a training data
set. This process is repeated for each subject.

To examine the classification performance of the described
method, three well-known classification algorithms: linear
discriminant classifier (LDC), Naïve Bayes classifier (NBC), and
non-linear SVM (nSVM) with Gaussian radial bases function
kernel were used to test the hypothesis.

Static Functional Network Connectivity and Feature

Selection
First, we evaluated the performance of static FNC. To find most
significant features, timecourse correlation of non-artifactual
components were transformed to z-scores using Fisher’s
transformation [z = arctanh(r)] for each group and method.
Then, robustness of maximum lagged correlation between each
pair of timecourses was tested separately using t-tests. Finally,
to determine the significant differences between the HCs and

FIGURE 2 | Schematic description of static and dynamic FNC for fMRI and MEG data.
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SZs from the training set paired t-tests were used. The cut-off p-
value for all of the tests was set to p < 0.05 and was corrected
for multiple comparisons using the false discovery rate (FDR)
method (Genovese et al., 2002).

Also, we repeated the same feature selection method for fMRI
and each MEG frequency band: delta, theta, alpha, beta, and
gamma. Significant differences were observed between the HCs
and SZs from fMRI and MEG methods. For MEG method, only
delta, alpha, and beta bands showed significant group differences.
Therefore, for MEG we only used static FNCs observed from
these frequency bands.

Dynamic Functional Network Connectivity and

Feature Selection
In order to obtain connectivity dynamics for fMRI and MEG
data, (1) we computed correlations between non-artifactual
component’ timecourses using a sliding window approach with
a default setting from GICA which is a rectangular window of
31 TR (in steps of 1TR) convolved with a Gaussian of sigma 3
TRs to obtain tapering along the edges. To characterize the full
covariance matrix, we estimated covariance from the regularized
inverse covariance matrix (ICOV) (Smith et al., 2011) by using
the graphical LASSO framework (Friedman et al., 2008). Then we
placed a penalty on the L1 norm of the precisionmatrix to enforce
sparsity. The regularization parameter was optimized for each
subject separately by evaluating the log-likelihood of unseen data
of the subject in a cross-validation framework. (2) We selected
group centrotypes by using k-means clustering algorithm from
all of the dynamic windowed FNC matrices for each group in
the training set. Then for each FNC time point, we regressed out
the dynamic FNC matrix against these 2 × k states and obtained
the corresponding beta coefficients. We used the mean of these
beta coefficients and finalized 2 × k features. These features
were used for classification of test subjects. See Figure 3 for
schematic description of dynamic FNC, clustering and regression
of dynamic FNC matrices.

In order to compute the optimal accuracy score, we define
the most efficient cluster number by using elbow criterion of the
cluster validity index, which is computed as the ratio between
within-cluster distances to between-cluster distance.

In each cross-validation run, we obtained 5 cluster centroids
(k = 5) for each group and regressed out the dynamic FNC
matrix against these 10 centroids (5 centroids for each group)
and computed the corresponding beta coefficients for all dynamic
FNC obtained from training data set. Then, we used the mean of
these beta coefficients across the subjects and finalized 10 features
for classification of test subject.

To examine the combination of fMRI and MEG, the feature
selection method (mentioned above) was applied to fMRI and
MEG separately then features were concatenated. For each
condition (fMRI, MEG, and fMRI+MEG), features were used as
input data for the classification algorithms.

Ensemble
To investigate how much improvement we achieved by
combining fMRI and MEG data we used an ensemble method
(Dietterich, 2000; Cetin et al., 2015b). It is used to improve the

FIGURE 3 | Schematic description of dynamic FNC for fMRI and MEG

data, clustering, and regression of dynamic FNC matrices.

performance in classification accuracy by using the predictive
power of sub samples from the original data. It has been
extensively studied and has been shown to be successful in
improving the performance in classification accuracy for diverse
applications.

In our study, fMRI and MEG are used as sub samples of
the all data. We used a simple majority voting as an ensemble
method where each model in the ensemble vote has equal weight.
Finally, the class that gains the majority of votes becomes the final
prediction.
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After we combined the features from fMRI and each MEG
frequency band, we applied classification algorithms. For static
FNC classification, we had three predictions that were obtained
from the combination of fMRI and MEG-delta, fMRI and MEG-
alpha, fMRI and MEG-beta features. Also, for dynamic FNC
classification we had five predictions that were obtained from
the combination of fMRI and MEG-delta, fMRI and MEG-
theta, fMRI and MEG-alpha, fMRI and MEG-beta, fMRI and
MEG-gamma features.

Final prediction is decided by applying the ensemble method
for each FNC. Similarly, ensemble method can be used for
different classification algorithms but it is not the goal of this
paper.

RESULTS

Our main focus was to investigate the classification accuracy
of fMRI, MEG and the combination of these two methods.
First, the classification performance of the fMRI and MEG
features was investigated individually. Then these two feature
sets were combined and change in classification performance
was examined. Also, the variance between the classification
algorithms was reported; we used the average classification
accuracy scores of these three algorithms.

Static FNC Classification
Static FNC results and significant differences for HCs and SZs
are reported in Figure 4 for each method. These significant
differences capture some interesting characteristics of brain
network connectivity in patients with schizophrenia (for age
range 18–65).

Seven hundred and three correlation scores for fMRI and,
496 correlation scores for MEG were obtained with static FNC.
To determine which component pairs were significantly different
between HC and SZ, two-sample t-tests were performed. The
threshold for all of the tests is set at p< 0.05 and was corrected for
multiple comparisons using the FDR method. The component
pairs that showed significant group differences (see Figure 4)
were used as features for the classification algorithms.

Two-sample t-tests revealed significant group differences in 12
features for fMRI, 9 features for MEG-Delta, 4 features for MEG-
Alpha, 22 features for MEG-Beta, and none for theta and gamma
(see Figure 4). These results point out that fMRI, MEG-Delta,
MEG-Alpha, and MEG-Beta data show existence of significant
difference of brain network connectivity between the HCs and
SZs groups.

To compute classification accuracy scores, features were
obtained from the training dataset as explained above and used
for group estimation of test data. Classification accuracy scores
are reported in Table 4 for fMRI, MEG-Delta, MEG-Alpha, and
MEG-Beta and the combination of MEG frequencies by using
ensemble method.

Ensemble results of MEG frequency bands (Delta, Alpha, and
Beta) improve the classification accuracy compared to individual
MEG frequency bands. Ensemble of MEG frequency bands
gives the best classification accuracy score (75.09%, Average
accuracy scores of classification algorithm) and outperforms

fMRI. Comparison of internal MEG frequency bands for static
FNC shows that MEG—Delta frequency (72.9%) has better
performance than other frequency bands.

Table 5 reports the classification accuracy results for
combined features from fMRI and all MEG frequency bands.
Combination of features obtained from static FNC of fMRI
and each MEG frequency and then these features used for each
classification algorithm. Results showed that the framework with
combined features provided better classification accuracy results
for all methods (fMRI and all MEG frequency bands). The best
performance is obtained by the combination of all by using
ensemble method (85.35%).

Combination of fMRI and MEG—Delta provided the
best classification performance (81.69%) than that of other
combinations. Figure 5 summarizes the average classification
accuracy improvement with static FNC.

Dynamic FNC Classification
We evaluated the performance improvement of classification
based on dynamic FNC and the combination of estimated
networks from both MEG and fMRI methods. Our main focus
was to extract reliable features from the dynamic FNC matrices
as described in the “Dynamic Functional Network Connectivity
and Feature Selection” section and combine these features
(beta coefficients) from the training dataset to achieve the best
classification results.

First, we used fMRI dynamic FNCmatrices andMEG dynamic
FNC matrices separately (for each frequency) for classification
(see Table 6) then we combined fMRI (subject × time × FNC
= 91 × 119 × 703) and MEG (frequency × subject × time ×

FNC= 5× 91× 270× 496) dynamic FNC matrices as a data set
for classification (seeTable 6). We then compared results to show
the improvement of combining beta coefficients from fMRI and
MEG methods for classification.

Although, static FNC results showed that there are no
significant group differences for MEG-gamma and MEG-theta
frequency bands, we used all dynamic FNC MEG frequency
bands to assess whether the property of dynamic FNC would
capture significant transient differences not measureable with
static FNC.

Table 6 provides the classification results that were obtained
from beta coefficients of fMRI and MEG data for each frequency
and combination of all MEG data frequency bands by using
a majority voting method. Results show that the classification
accuracy obtained from beta coefficients of fMRI data (82.79%,
Average accuracy scores of classification algorithm) provides
better classification performance than beta coefficients of MEG
data for all frequency bands considered independently and for
the combination of all MEG frequency bands, using a majority
voting method. Comparison of MEG frequency bands shows
that classification of beta and delta (70.7%) frequency performed
better than other frequency bands and the combination of
all MEG frequency bands. Similarly, FDR-corrected group
differences of MEG-beta and MEG-delta frequency bands show
more significant differences than other bands.

Table 7 summarizes the classification accuracy obtained from
the combination of beta coefficients from fMRI data and MEG
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FIGURE 4 | Average static functional network connectivity (FNC) for fMRI (top) and concatenation of MEG frequencies (bottom), for HCs (left column),

SZs (center column), and FDR-corrected group differences (right column). Significant differences between the HCs and SZs are signed with ⋆.
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TABLE 4 | Classification accuracy obtained from fMRI features,

MEG-Delta, MEG-Alpha and MEG-Beta features and combination of MEG

features by using an ensemble method.

Static FNC fMRI (%) MEG

Delta (%) Alpha (%) Beta (%) Ensemble (%)

NBC 72.53 72.53 70.33 68.13 74.73

nSVM 69.23 73.63 71.43 74.73 75.82

LDF 69.23 72.53 71.43 59.34 74.73

Average 70.33 72.90 71.06 67.40 75.09

(std) (1.91) (0.64) (0.64) (7.72) (0.63)

TABLE 5 | Classification accuracy obtained from static FNC for the

combination of fMRI features and MEG features for alpha, beta, and delta

frequency bands and the combination of all by using ensemble method.

Static FNC fMRI Ensemble (%)

MEG—Delta

(%)

MEG—Alpha

(%)

MEG—Beta

(%)

NBC 82.42 80.22 75.82 85.71

nSVM 83.52 82.42 70.33 85.71

LDF 79.12 80.22 70.33 84.62

Average 81.69 80.95 72.16 85.35

(std) (2.29) (1.27) (3.17) (0.63)

data for each frequency and the combination of all by using
a majority voting method. Combination of features obtained
from dynamic FNC of fMRI and MEG-Beta frequency provided
better results (85.71%) than other frequency bands. The best
performance is provided by the combination of all by using a
majority voting method (87.91%).

We repeated the clustering method by using different distance
functions such as Euclidian, correlation, and cosine similarities.
We did not find any performance differences.

Figure 6 summarizes the average improvement in
classification accuracy with dynamic FNC. fMRI showed better
individual classification accuracy performance (82.79%) than all
MEG frequency bands. Classification accuracy performance
of the combination of beta coefficients from fMRI and
individual MEG frequency bands are higher or equal to the
best individual classification accuracy (fMRI). When considering
the combination of beta coefficients from fMRI and MEG—Beta
(Average accuracy performance of classification algorithms)
provided the best classification performance (85.71%) relative to
other combinations. Similar to static FNC, the best classification
accuracy was achieved by the ensemble of fMRI and all MEG
frequency bands.

DISCUSSION

In this study, we present an initial effort to investigate the
classification performance of intrinsic connectivity networks
from group spatial ICA of fMRI and MEG data by using FNC

FIGURE 5 | Average classification accuracy improvement with static

FNC.

in a sample of SZs and HCs. Two types of FNC methods (static
and dynamic) were used to examine our initial hypothesis that
multimodal data (fMRI and MEG) improve the prediction of
mental illness, such as schizophrenia, in individuals.

The results of this study support our initial hypothesis. FNC
results suggest that the application of Sg-ICA to multimodal
neuroimaging using MEG and fMRI provides important
information about schizophrenia that represent fundamental
characteristics of brain network connectivity that would have
been missed otherwise. The combination of data from MEG
and fMRI, collected on different days, also allows us to rule
out multiple alternative explanations for the observed results,
including scanner noise.

Some interesting network patterns are seen in the MEG
(Delta, Alpha, and Beta frequency bands) FNC results (see
Figure 4). For instance, we see hyperconnectivity between DMN
and Frontal networks for SZ compared to HC (blue regions)
while within the Frontal networks, HCs show hyperconnectivity
compared to SZs (red, yellow, and orange regions). Also,
we see very similar pattern (hyperconnectivity pattern of
DMN and Frontal network) between Frontal networks and
Auditory network. Our results support the previous studies of
schizophrenia that similarly showed hyperconnectivity patterns
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TABLE 6 | Classification accuracy obtained from dynamic FNC for fMRI beta coefficients, MEG beta coefficients for each frequency, and combination of

all MEG beta coefficients frequency bands by using majority voting method.

Acc% fMRI MEG

Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%) Ensemble (%)

NBC 82.42 71.43 53.85 65.93 71.43 51.65 65.93

nSVM 83.52 69.23 58.24 69.23 72.53 51.65 69.23

LDF 82.42 71.43 53.85 65.93 68.13 52.75 65.93

Average 82.79 70.70 55.31 67.03 70.70 52.02 67.03

(std) (0.64) (1.27) (2.53) (1.91) (2.29) (0.64) (1.91)

TABLE 7 | Classification accuracy obtained from the dynamic FNC for the combination of fMRI data and MEG data for each frequency band and the

combination of all by using majority voting method.

Acc % fMRI Ensemble (%)

MEG Delta (%) MEG Theta (%) MEG Alpha (%) MEG Beta (%) MEG Gamma (%)

NBC 86.81 85.71 83.52 87.91 83.52 90.11

nSVM 84.62 81.32 82.42 85.71 82.42 87.91

LDF 83.52 83.52 82.42 83.52 82.42 85.71

Average 84.98 83.52 82.79 85.71 82.79 87.91

(std) (1.67) (2.20) (0.64) (2.20) (0.64) (2.20)

for the same functional networks (DMN-Frontal network and
Frontal network—Auditory network) betweenHCs and SZs (Jafri
et al., 2008; Skudlarski et al., 2010).

In particular, we want to point out MEG within-frequency
band FNC (see Figure 2) which showed multiple group
differences in inter-regional connectivity in the beta (16–29Hz)
range also demonstrated high variability observed relative to
the other bands, particularly in the frontal-cerebellar, frontal-
DMN, and frontal-auditory networks. Nearly all FNC group
differences in the beta range suggested hyperconnectivity in
patients. Beta band has previously been implicated in long-
range cortical synchrony (von Stein et al., 1999; Tallon-Baudry
et al., 2004; Thatcher et al., 2008), notably in visual processing
(Sehatpour et al., 2008) and working memory (Piantoni et al.,
2015) networks observed in the present data. Consistent with
the present study, research in schizophrenia has indicated
abnormal synchronization in the beta band. Synchrony between
hippocampi, regions with particular relevance for schizophrenia
(Hanlon et al., 2011, 2012), has also been linked to altered beta
band activity (Lee et al., 2014).

For testing our hypothesis with static and dynamic FNC
data, we used fMRI data and all MEG frequency bands. MEG
outperformed fMRI with static FNC, fMRI outperformed MEG
with dynamic FNC but combined fMRI + MEG outperformed
either modality separately for both static and dynamic FNC. It is
important to note that theMEG data were down-sampled to 1 Hz
similar to Brookes et al. thereby limiting theMEG dynamics. This
is discussed in more detail in the limitations of the study below.
Classification accuracy of combined fMRI+MEG was improved
up to 15% relative to only the fMRI method and up to 12.45%
relative to only the MEG method by using static FNC and up

to 5.12% relative to only the fMRI method and up to 17.21%
relative to only the MEG method by using dynamic FNC. Also,
the present study is consistent with previous results (Bridwell and
Calhoun, 2014; Ingalhalikar et al., 2014; Silva et al., 2014; Sui et al.,
2014; Cetin et al., 2015b) suggesting that by increasing the variety
of data types, the classification accuracy is improved.

Comparison of dynamic and static FNC results for fMRI
showed that dynamic FNC pipeline provide better individual
prediction score (82.79%) for schizophrenia at the single-
subject level then statistic FNC (70.33%). These finding are
consistent with Rashid et al. (2015) where they compare
individual prediction performance of static and dynamic
FNC for schizophrenia, bipolar disorder, and healthy control.
Also, individual prediction performance of ensemble dynamic
FNC (87.91%) is higher than ensemble static FNC (85.35%).
Comparison of dynamic and static FNC results for MEG-Beta
band showed similar results with fMRI (67% for static FNC
and 70.7% for dynamic FNC). On the other hand, individual
prediction performance of static FNC (MEG-Delta 72.9%, MEG-
Alpha 71%) is higher than dynamic FNC (MEG-Delta 70.7%,
MEG-Alpha 67.03%) for MEG-Alpha and MEG-Beta bands.

Classification results obtained from static FNC show that
fMRI and MEG (alpha, beta, and delta frequency bands) have
relatively similar classification power for SZs and HCs. MEG-
beta frequency provided the highest number of significant
features which supports previous studies (Brookes et al., 2011b;
Luckhoo et al., 2012; Hall et al., 2013; Nugent et al., 2015).
Although, we achieved a high number of significant features from
MEG-beta frequency, performance on classification accuracy
is not significantly different from MEG-alpha and MEG-delta
frequency bands. For dynamic FNC, classification accuracy
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FIGURE 6 | Average improvement in classification accuracy with

dynamic FNC.

scores of fMRI were significantly higher than MEG frequency
bands. Classification accuracy scores for MEG frequency bands
were similar except for MEG-gamma and MEG-theta frequency
bands. These two frequency bands showed significantly lower
classification accuracy scores than the other frequency bands.
These results support our decision of not including these two
frequency bands with static FNC in this study.

We consider the current results a first step in developing more
sophisticated classification frameworks for mental disorders by
using a group ICA approach with FNC for fMRI and MEG
methods. The current study had some limitations such as (1)
Anatomical labeling of functional regions comes with limitations
as it is hard to provide an exhaustive list of all regions
included within a component, thus we label based primarily on
the peak region. (2) The higher temporal resolution of MEG
was not the focus of this study. It was therefore limited by
using the same down sampling rate (1 Hz) for all the MEG
frequency bands and informative dynamic information may

have been lost in the process, (3) for dynamic FNC analysis,
the same window length (default setting of GICA for fMRI)
was used for fMRI and MEG data. These limitations may
cause the loss of information for connectivity analysis and
poor classification accuracy, especially for MEG method. For
future studies, a higher classification accuracy score may be
achieved by using an optimal down sampling rate for each
MEG frequency and an optimal window size for dynamic
FNC.

Another limitation is that the leave one out method is applied
after a part of the parameter extraction (in sg-ICA process). That
could potentially bias the accuracy estimate. In order to address
this issue, we created a sub set of all data sets (Since computation
of all steps would take years to do with all data sets) with the
same distribution of original data sets and repeated through all
the processes with created dataset. Results (ICA components)
did not show any significant differences (in terms of parameter
extraction) to those we reported in the paper and do not show
evidence of bias. In our future work, we will use the benefits
of a super computer to apply parameter extraction (in sg-ICA
process) before separation of training and testing data.

CONCLUSION

Innovative feature extraction approaches from group level
networks obtained with Sg-ICA using both MEG and fMRI data
sets could be very effective for diagnosis of mental disorders. Our
results provide evidence that the combination of fMRI and MEG
modalities provides important information for classification that
is missed by using only one modality. This suggests that the
combination of these twomethods provides valuable information
that captures fundamental characteristics of brain network
connectivity in schizophrenia. These results may help guide the
design of an objective biological marker for the early diagnosis of
mental disorders such as schizophrenia.
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