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Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS) patients

into four clinical profiles using structural connectivity information. For the first time, we try

to solve this question in a fully automated way using a computer-basedmethod. Themain

goal is to show how the combination of graph-derived metrics with machine learning

techniques constitutes a powerful tool for a better characterization and classification of

MS clinical profiles.

Materials and Methods: Sixty-four MS patients [12 Clinical Isolated Syndrome (CIS),

24 Relapsing Remitting (RR), 24 Secondary Progressive (SP), and 17 Primary Progressive

(PP)] along with 26 healthy controls (HC) underwent MR examination. T1 and diffusion

tensor imaging (DTI) were used to obtain structural connectivity matrices for each subject.

Global graph metrics, such as density and modularity, were estimated and compared

between subjects’ groups. These metrics were further used to classify patients using

tuned Support Vector Machine (SVM) combined with Radial Basic Function (RBF) kernel.

Results: When comparingMS patients to HC subjects, a greater assortativity, transitivity,

and characteristic path length as well as a lower global efficiency were found. Using

all graph metrics, the best F-Measures (91.8, 91.8, 75.6, and 70.6%) were obtained

for binary (HC-CIS, CIS-RR, RR-PP) and multi-class (CIS-RR-SP) classification tasks,

respectively. When using only one graph metric, the best F-Measures (83.6, 88.9, and

70.7%) were achieved for modularity with previous binary classification tasks.

Conclusion: Based on a simple DTI acquisition associated with structural brain

connectivity analysis, this automaticmethod allowed an accurate classification of different

MS patients’ clinical profiles.

Keywords: MRI, multiple sclerosis, diffusion tensor imaging, structural connectivity, graph theory, classification,

SVM
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INTRODUCTION

Multiple Sclerosis (MS) is a chronic disease of the central
nervous system. It constitutes the leading cause of non-
traumatic disability in young adults. While demyelination
and inflammation are considered as initial and prominent
mechanisms in relapsing-remitting (RR) MS, neurodegeneration
is more present in progressive phases of MS, and probably
constitutes the main cause of permanent disability accumulation
(Mahad et al., 2015). Patients usually experience a first
neurological episode known as a clinically isolated syndrome
(CIS). This event evolves either into a relapsing-remitting course
(85%) or a primary progressive (PP) course (15%). RR patients
will evolve into a secondary progressive (SP) course after a period
that could vary between 10 and 20 years.

MS diagnosis has been revolutionized in the last 30 years
by the introduction of magnetic resonance imaging (MRI). In
vivo detection of T2-weighted lesions and the assessment of
their spatial and temporal distribution dominated the diagnostic
criteria (Polman et al., 2015). However, the poor correlation
of lesion load measurements with patients’ disability remained
an issue (Barkhof, 2002). The identification of this so-called
“clinico-radiological paradox” has led to several studies utilizing
a multitude of MRI strategies such as magnetization transfer,
spectroscopy, and diffusion tensor imaging (DTI; Rovira et al.,
2013). These techniques were successful in detecting alterations
outside visible T2-lesions and contributed to our understanding
of the pathological mechanisms occurring in normal appearing
white matter (NAWM). To this end, DTI has been widely used
to assess white matter damage in terms of myelin and axonal
integrity. Both mean diffusivity (MD) and fractional anisotropy
(FA) measurements have been shown to be mainly affected
by myelin loss and/or decreased neuronal integrity (Hannoun
et al., 2012). In addition, DTI offers the possibility to extract the
trajectories of white matter pathways through the application of
complex geometrical models (Tournier et al., 2012).

Based on the analysis of WM fibers networks, a simple
description of structural brain connectivity was introduced
through the application of a geometrical graph representation
(Shuman et al., 2013). This graph theory approach has become
a sensitive tool to detect alterations in brain pathologies
by providing both local and global characterization of WM
connections (Achard et al., 2012). Recently applied to MS
patients, these methods demonstrated several alterations in brain
connectivity (He et al., 2009; Richiardi et al., 2012; Li et al., 2013;
Nigro et al., 2015; Romascano et al., 2015). Indeed, a negative
correlation was reported between network efficiency and WM
lesion load (He et al., 2009). Also, an increased local path length
was highlighted in the hippocampus and the amygdala of MS
patients with major depression (Nigro et al., 2015). Nonetheless,
these few reports only focused on RR-MS patients.

In the present study, we propose to first characterize the
structural connectivity in every clinical profile of MS patients
by estimating global network metrics. Second, we describe a
classification method to identify patient’s clinical course using
structural brain connectivity information. To our knowledge, this
is the first attempt to solve this question in a fully automated

manner. This attempt is based on the combination of graph-
derived metrics with machine learning techniques using binary
and multi-class classification tasks. Moreover, we introduce a
non-empirical procedure to compute the best threshold for graph
binarization.

In the first part of this paper, we describe our processing
pipeline to generate graphs representing structural brain
connectivity of each subject. Additionally, we provide a new
approach to optimize the parameters in graph generation and
binarization. In the second part, we describe several graph
metrics to characterize brain network properties in the different
MS clinical profiles. Finally, we describe our classification
pipeline based on tuned support vector machine (SVM) with
radial basic function (RBF) kernel.

MATERIALS AND METHODS

Subjects
Seventy-seven MS patients (24 RR, 24 SP, 17 SP, and 12 CIS;
29 men, 48 women; mean age 38.3 years, range 21.5–48.7) were
recruited from the MS clinic of Lyon Neurological Hospital.
Diagnosis and disease course were established according to the
McDonald’s criteria (Lublin and Reingold, 1996; McDonald et al.,
2001). Disability was assessed with the Extended Disability Status
Scale (median EDSS 4, range 0–7). Twenty-six healthy controls
(HC) subjects, age and sex matched with the MS patients, were
included in this study (9 men, 15 women; mean age 35.7 years,
range 21.6–56.5). Demographics and clinical data are reported
in Table 1 for each subjects’ group. This prospective study was
approved by the local ethics committee (CPP Sud-Est IV) and
the French national agency for medicine and health products
safety (ANSM). Written informed consent was obtained from all
subjects.

MRI Acquisition
MS patients and HC subjects underwent an MR examination
on a 1.5T Siemens Sonata system (Siemens Medical Solution,
Erlangen, Germany) using an 8-channel head-coil. The MR
protocol consisted in the acquisition of a sagittal 3D-T1 sequence
(1 × 1 × 1mm3, TE/TR = 4/2000ms) and an axial 2D-spin-
echo DTI sequence (TE/TR = 86/6900ms; 2 × 24 directions

TABLE 1 | Demographic information of MS patients of different clinical

profiles (CIS, RR, SP, PP) and healthy controls (HC).

n W/M Age (years) DD (years) Median EDSS

HC 24 15/9 35.7 ± 10.1 – –

CIS 12 7/5 33.5 ± 6.4 2.8 ± 1.6 1.0 (0.0–3.0)

RR 24 20/4 35.1 ± 7.4 6.8 ± 4.1 2.5 (0.0–4.0)

SP 24 10/14 42.3 ± 4.4 13.8 ± 5.2 5.0 (4.0–7.0)

PP 17 11/6 40.9 ± 5.8 6.7 ± 3.2 4.0 (2.5–6.0)

Age and Disease Duration (DD) are expressed as mean ± standard deviation. Median

Expanded Disability Status Scale (EDSS) along with its min and max values is also

reported.
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of gradient diffusion; b = 1000 s.mm−2, spatial resolution of
2.5× 2.5× 2.5mm3) oriented in the AC-PC plane.

Graphs Generation
Cortical and sub-cortical gray matter (GM) segmentation was
performed on 3D T1-weighted images using the Freesurfer image
analysis suite (Reuter et al., 2012). The resulting segmentation
was then used, first to define the graph nodes (q = 84), and
second, to classify voxels in four classes [white matter (WM),
cortical GM, sub-cortical GM, cerebro-spinal fluid (CSF)] for
tractography.

Diffusion pre-processing steps consisted in Eddy current
correction and non-brain voxels stripping using the FMRIB
Software Library (FSL; Jenkinson et al., 2012). Themain diffusion
directions were then estimated in each voxel using diffusion
orientation distribution function (dODF) computed withMRtrix
(Tournier et al., 2012). Maximum spherical harmonics order h,

defined as (h+1)(h+2)
2 < d with d the number of acquisition

diffusion directions, was set to h = 4 to match with the
acquisition protocol. Based on the four tissue-class segmentation,
anatomically constrained probabilistic streamline tractography
(ACT) was performed from dODF using the ACT package of
MRtrix (Smith et al., 2012; Tournier et al., 2012). Connectivity
matrices A ∈ N

q×q were generated for each subject summing
the number of streamline connecting each pair of nodes. Let
ai,j1 ≤ i, j ≤ q be an element of A, then ai,j = 9(i, j), where
9:N

2 → N is the number of fibers connecting the node iwith the
node j. The connectivity matrix represent the adjacency matrix of
the weighted undirected graph G = (V,E,ω) where V (|V| = q)
is the node set containing the segmented GM brain regions, and
E (|E| = l) is the graph edges set defined as:

E =
{{

i, j
}

9(i, j) > 0∀ 1 ≤ i, j ≤ q
}

and ω : E → 9(E) is the weighted function that assigns at each
edge e ∈ E its weight. Roughly speaking, this function is the
same as 9 but is defined only from the elements of the edges
set E. In order to remove the weakest connections generated

by the tractography, a threshold 0 ≤ τ ≤ 1 is applied on
weighted graphG, generating an unweighted graphG′ =

(

V ′,E′
)

(
∣

∣V ′
∣

∣ = q,
∣

∣E′
∣

∣ = l′). As this threshold will affect network
topology and density, it must be carefully chosen (Bullmore and
Sporns, 2009; Simpson et al., 2013). From the two common
methods used in brain network studies, namely absolute and
proportional thresholding (Garrison et al., 2015), we choose to
apply a proportional threshold function 9 : G → G′ performing
the following transformation:

ϒ :

{

V
′
= V

E
′
= L (1,. . .,T) ,T =

(q2−q)τ
2

where L is the list of graph edges (E) sorted in ascending
order of weight. In other words, this thresholding function only
conserves the τ % of the strongest connections in the graph. For
a better description a scheme of the graph generation pipeline is
represented in Figure 1.

Graph Metrics Estimation
Several graph metrics can be estimated to measure brain network
properties (Rubinov and Sporns, 2010). In order to compute
global graphs metrics, we first need to define three local
properties of the graphs, including the degree ki (number of
connection) of the node i, the shortest path dij between the nodes
i and j (Dijkstra, 1959), and finally the number of triangles1 ti
around the node i. In this work, the following six global graph
metrics were computed:

Graph density (D) defined as the ratio between the numbers
of effective connections in the graph to the number of possible
connections.

D =
l

q2−q
2

1In graph theory a triangle is a sub-graph composed by three vertices and three

edges.

FIGURE 1 | Schematic representation of graph generation pipeline. Graph nodes are generated through anatomical parcellation on T1 image (1) and

probabilistic anatomically constrained streamline tractography is generated from diffusion images (2). Then, the numbers of streamlines connecting each pair of nodes

are used to define edges in the weighted graph and generate the connectivity matrices. (3) Finally, a threshold τ is applied to the connectivity matrices to generate

adjacency matrices (4).
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Assortativity (r) (Newman, 2002) is the correlation coefficient
between the degrees of two nodes at the extremities of an edge,

r =
1/l

′ ∑

(i,j) kikj − [1/l
′ ∑

(i,j)∈E′
1
2 (ki+kj)]

2

1/l
′ ∑

(i,j)
1
2 (k

2
i+k2j )− [1/l

′ ∑

(i,j)∈E′
1
2 (ki+kj)]

2

Transitivity (T) is the ratio between the number of triangles
and the number of triplets in the graph,

T =

∑

i∈V
′ 2ti

∑

i∈V
′ ki(ki − 1)

Global efficiency (E)g is themean of the inverse of the shortest
paths in the graph,

Eg =
1

q

∑

i∈V
′

Ei =
1

q

∑

i∈V
′

∑

j∈V
′
,j 6=i d

−1
ij

n−1

Modularity (Q) is the capability of a network to be separated
into modules.

Q =
∑

u∈M



euu −

(

∑

v∈M

euv

)2




where M represent the number of non-overlapping modules
in the network, and euv the proportion of links connecting
nodes u and v inside the module.
Characteristic path length (CPL) is the mean of the shortest
paths in the graph

CPL =
1

q

∑

i∈V
′

Li =
1

q

∑

i∈V
′

∑

j∈V
′
,j 6=i dij

q−1

where Li is the average distance between node i and all other
nodes.

All the metrics, except graph density, were computed based on
the binarized graph G′ using the brain connectivity toolbox on
MATLAB (Rubinov and Sporns, 2010).

Classification Using Support Vector
Machine (SVM)
Support Vector Machines (SVM) is a family of supervised
classification algorithms (Cortes and Vapnik, 1995). The idea
behind SVM classifier is to find the best hyperplane to separate
data belonging to two different classes. More in detail, let S =
{(

x1, y1
)

, . . . , (xn, yn)
}

be a set of instances where xi ∈ R
m and

yi ∈ {−1, 1}m, a “soft margin” SVM classifier is based on the
solution of the following optimization problem:

minw,b
1
2‖w‖

2 + C
∑n

i=1 ǫi
subject to yi

(

wTφ (xi)+ b
)

≥ 1− ǫi, i= 1,. . ., n
ǫi ≥ 0 i= 1,. . ., n

Where ǫ is a relaxation variable of the optimization problem
and C is the error penalization constant. The function φ (xi) is

a mapping function that maps the feature vector xi to a higher
dimensional space.

The Lagrangian duality formulation of this problem is:

maxα

n
∑

i=1
αi −

1
2

n
∑

i,j=1
yiyjαiαj

〈

φ (xi) , φ
(

xj
)〉

subject to 0 ≤ αi ≤ C,i = 1, . . ., n
n
∑

i
αiyi = 0

where αi are Lagrange multipliers. We can rewrite the inner
product

〈

φ (xi) ,φ
(

xj
)〉

as a function K
(

x, y
)

= (φ (x)Tφ
(

y
)

)
called kernel.

Different kernel functions, mapping input space in higher
dimensional space, are described in literature: polynomial, RBF,
sigmoid functional, and others (Gärtner, 2003). In this work, we
used RBF kernel defined as:

K
(

x, y
)

= exp
(

−
∥

∥x−y
∥

∥

2
∗ γ

)

RBF kernel was selected due to its good performances. Indeed,
the analysis reported in Keerthi and Lin (2003), indicates that
if complete parameters selection using the Gaussian kernel has
been conducted, there is no need to consider linear SVM.
Moreover, since the number of feature is not large, mapping to
a higher dimensional space helps to improve the performances,
as reported in Hsu et al. (2008). In order to find the optimal input
parameters of SVM, namely C and γ, grid search was performed
using growing sequences of C and γ. More in detail, we used
the range [2−5, 215] for C and [2−15, 23] for γ. Generalization
of classification performances was ensured by K-Fold cross
validation using 10-folds. Finally, each feature was standardized
in order to improve the quality of the classification.

Performance measurements used in this work are based
on the analysis of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) instances classified
during the testing phase. Precision, recall, and F-Measure
were used to measure the classification performances. More
in details, precision reflects the fraction of retrieved instances
that are correctly classified, and it is defined as TP

TP+ FP . Recall
represents the portion of positive instances that are correctly
identified and it is defined as TP

TP+ FN . Finally, F-Measure was
obtained combining precision and recall and is defined as

2∗
(precision∗recall)
(precision+ recall)

.

Statistical Analysis
In order to detect if graph metrics are suitable to differentiate
MS clinical profiles, classic statistical analyses were performed
using R (R Developement Core Team, 2015). Dependence of
global graph metrics with patient’s age and gender was assessed,
by fitting a general linear model (GLM) to the data and by
estimating the relative importance of clinical course age and
gender in these models. Normality of the residues was checked
for each fit. Wilcoxon-Mann-Whitney test was conducted to test
the differences between the global metrics measured between
the subject’s groups. The tests were computed with a level of
significance of 5%. Numerical results are presented as mean
± SD.
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RESULTS

Number of Fibers and Threshold Definition
In graph generation, the definition of two parameters (f, the
number of fibers and τ, the threshold value of binarization)
is crucial since no consensus has been reported yet in the
literature. To this end, variability studies were performed
in order to measure these two parameters’ effects on graph
metrics.

First, the optimal number of streamlines generated by
tractography was chosen in a range in which the variability

of graphs’ density is stable. In order to compute the optimal
range, several graphs were generated on HC data using different
numbers of fibers (f ) (from 1000 to 10,000 every 1000, from
10,000 to 100,000 every 10,000, and from 100,000 to 1,000,000
every 100,000). Figure 2A represents the evolution of the mean
graph densities, along with their respective standard deviations,
with respect to the number of fibers f. From 1000 to 90,000
fibers, the graph density varies from 0.08 to 0.43. In contrast, for
higher number of fibers (100,000 to 1,000,000), the graph density
becomes stable. Thus, we chose to generate 500,000 fibers per
patient, corresponding to a mean density of 0.58 for HC graphs.

FIGURE 2 | Evolution of the mean density, estimated on weighted graphs, respect to the number of generated streamlines f (A). Evolution of the

coefficients of variations of the global networks metrics [Assortativity (B), Transitivity (C), Global Efficiency (D), Modularity (E), and Characteristic Path Length (F)]

respect to the applied threshold τ.
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Second, the optimal threshold value τ applied to weighted
graphs was chosen following two criteria: (1) the inter-subject
variability of all the estimated global metrics is as low as
possible and (2) the metric variability is stable over the threshold
range. Coefficients of variation (CV) of five global graph
metrics (assortativity, efficiency, transitivity, modularity, and
characteristic path length) were estimated on HC graphs for
different threshold values (from τ = 0.05 to τ = 1 with a
0.05 step). As shown in Figures 2B–F, the highest CVs were
found for the smallest values of τ (from 0.05 to 0.2). τ values
varying from 0.65 to 1 were rejected since they are higher
than graph density (0.58). This behavior is also confirmed
by the plots in Figures 2B–F where the CV is stabilized for
a threshold τ > 0.65, and does not modify the topology
of the graph. Thus, we chose to apply a threshold τ of
0.35 (35%) corresponding to a mean CV of 0.90% on HC
graphs.

Global Graph Metrics
As shown in Figure 3, significant differences were found in
several graph metrics when comparing MS and HC groups. As
reported in Tables 2, 3, density was decreased in SP patients
(p < 0.01). Assortativity was increased in SP (p < 0.001) and PP
patients (p < 0.001). Transitivity was increased in RR (p < 0.01)
and SP patients (p < 0.05). Global efficiency was decreased
in CIS (p < 0.05), RR (p < 0.05), SP (p < 0.001), and PP
patients (p < 0.05). Characteristic path length was increased in
CIS (p < 0.01), RR (p < 0.01), and SP patients (p < 0.05).
Finally, modularity was decreased in CIS patients (p < 0.01) and
increased in RR patients (p < 0.01).

Significant differences were also foundwhen comparing global
graph metrics in between MS patients’ groups. Density was lower
in SP group compared to CIS and RR groups (p < 0.05).
Assortativity was higher in SP group compared to CIS (p < 0.01)
and RR (p < 0.001) groups, and in PP compared to RR groups
(p < 0.05). Modularity was lower in CIS group compared to RR
(p < 0.001), SP (p < 0.01), and PP groups (p < 0.01), and
higher in RR group compared to SP (p < 0.05) and PP groups
(p < 0.001). No significant changes were identified between PP
and SP groups.

Effects of disease course, age, and gender on graph metrics
were estimated using General linear models. The relative
importance of these predictors was estimated for each graph
metric, as reported in Table 4. A mean value of 86.26, 9.55,
and 4.19% was obtained for the disease course, patient age,
and gender predictors, respectively. These results showed
that global graph metrics are not significantly dependent on
age and gender. Moreover, head patient movements were
estimated from the transformation matrices generated during
the Eddy current correction. For each subject, Root Mean
Square deviation was computed. Mean displacement values
(mean ± SD) were the following for each group: HC 1.32
± 0.51mm; CIS: 2.04 ± 0.72mm; RR: 1.91 ± 0.93mm; SP:
2.04 ± 0.69mm; PP: 1.80 ± 0.57mm. No difference was
found when comparing head displacements between subjects’
groups.

SVM Classification
The SVM classifier described in the Materials and Methods
Section was applied on graph metrics. Different binary
classification (HC-CIS, CIS-RR, RR-PP, RR-SP, and SP-PP) and
a multi-class classification (CIS-RR-SP) tasks were performed.
Each classification task was tested using either only one metric
or all the metrics at the same time. Results on classification tasks
are reported in Table 5.

Highest classification performances were achieved using all
the graph metrics as feature vector. The following classification
tasks: HC-CIS, CIS-RR, RR-PP, and CIS-RR-SP, obtained the
best F-Measures of 91.8, 91.8, 75.6, and 70.6%, respectively.
Using only one graph metric, the best performances of the
previous binary classification tasks were achieved for the
modularity metric, reaching F-Measures of 83.6, 88.9, and 70.7%,
respectively. For the multi-class classification task, the best
performances were achieved for the assortativity metric, reaching
a F-Measure of 61.7%.

For the classification tasks RR-SP and SP-PP, the highest
classification performances were achieved for the modularity
metric, with F-Measures of 85.4 and 66.7%, respectively.
For this two tasks, low but still acceptable classification
performances were reached using all the graph metrics
as feature vector, with F-Measures of 68.8 and 60.3%
respectively.

DISCUSSION

Graph theory analysis offers new opportunities to identify
potential biomarkers for the characterization of global as well
as local effects of pathological mechanisms on brain networks.
This is particularly of great interest in MS patients, who are
subject to inflammatory and demyelinating processes leading
to detectable local WM lesions, but also to global microscopic
neurodegenerative damage. In this work, we used global graph-
derived markers first, to characterize the four standard MS
clinical profile and second, to automatically classify MS patients
accordingly. A previous study attempted to characterize graph
metrics changes in MS patients, and furthermore classify patients
using these metrics (Muthuraman et al., 2016). While this study
reached good classification performances, it was limited by the
consideration of only two clinical profiles of MS patients (CIS
and RR MS patients). To our knowledge, the present study is the
first to characterize and classify patients from all the MS clinical
courses.

In this work, we described a fully automated pipeline
to generate structural connectivity graphs from T1-weighted
and diffusion images. Two major parameters for tractography
(number of fibers f ) and graph generation (binarization
threshold τ), were optimized and set as follows: f = 500,000
and τ = 0.35. Six global graph metrics were then computed and
analyzed to characterize tissue damages in the four MS clinical
profile. The resulting graph metrics were used to automatically
classify MS patients using SVM combined with RBF kernel.
Again, an accurate parameter selection was performed using grid
search on the two SVM parameters (C and γ).
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FIGURE 3 | Box-plots of the global network metrics [Density (A), Assortativity (B), Transitivity (C), Global Efficiency (D), Modularity (E), and

Characteristic Path Length (F)] estimated on unweighted graphs (except for graph density). Differences between the different clinical groups were tested

using a Wilcoxon Mann-Whitney test (*p < 0.05; **p < 0.01; ***p < 0.001).
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TABLE 2 | Mean (±SD) values of global metrics [density (D), assortativity (r), transitivity (T), efficiency (Eg), Modularity (Q), and characteristic path length

(CPL)] were calculated on unweighted graphs (except for graph density).

D r T Eg Q CPL

HC 0.58 ± 0.06 −0.07± 0.028 0.61 ± 0.01 0.67 ± 0.00 0.29 ± 0.02 1.68 ± 0.01

CIS 0.58 ± 0.06 −0.05± 0.025 0.61 ± 0.01 0.66 ± 0.00 0.26 ± 0.03 1.70 ± 0.01

RR 0.56 ± 0.06 −0.06± 0.028 0.62 ± 0.01 0.66 ± 0.00 0.32 ± 0.03 1.69 ± 0.01

SP 0.52 ± 0.05 −0.02± 0.034 0.61 ± 0.01 0.66 ± 0.00 0.30 ± 0.03 1.70 ± 0.01

PP 0.53 ± 0.08 0.02 ± 0.058 0.61 ± 0.01 0.66 ± 0.01 0.29 ± 0.02 1.69 ± 0.02

TABLE 3 | Statistical significances (p-values) when comparing the global graph metrics [density (D), assortativity (r), transitivity (T), efficiency (Eg),

Modularity (Q), and characteristic path length (CPL)] between different clinical profiles of MS patients and Healthy Controls (HC).

p-value D r T Eg Q CPL

HC-CIS – – – 0.01279 0.007523 0.003987

HC-RR – – 0.005906 0.01406 0.003158 0.003519

HC-SP 0.002123 0.0000001043 0.01188 0.0003185 – 0.0001363

HC-PP – 0.000511 – 0.01023 – –

CIS-RR – – – – 0.00008845 –

CIS-SP 0.02294 0.005575 – – 0.003997 –

CIS-PP – – – – 0.009331 –

RR-SP 0.02269 0.00008197 – – 0.03941 –

RR-PP – 0.01546 – – 0.0007993 –

SP-PP – – – – – –

TABLE 4 | Relative importance (%) of the clinical course, age, and gender

predictors in the general linear models with as response, density (D),

assortativity (r), transitivity (T), global efficiency (E), modularity (Q), and

characteristic path length (L).

Predictors D r T E Q L Mean

Course 71.05 79.18 93.91 92.69 95.41 85.34 86.26

Age 9.76 19.07 5.47 6.40 2.96 13.63 9.55

Gender 19.19 1.75 0.61 0.91 1.63 1.04 4.19

First, we showed significant differences in graph metrics
between MS clinical profiles and HC, and to highlight
the sensitivity of this approach to characterize pathological
alterations. Indeed, global efficiency was decreased while
transitivity, assortativity, and characteristic path length were
increased in brain networks of MS patients compared to HC
subjects. These changes in the measure of node integration
(decreased global efficiency and increased characteristic path
length; Achard and Bullmore, 2007), observed in all MS patients,
may correspond to transient damages caused by inflammatory
and demyelinating processes. This result is in agreement with
a previous study (Shu et al., 2011), reporting decreased global
and local efficiencies correlated with EDSS, patients disease
duration, and WM lesion load. Moreover, transitivity, a measure
of network redundancy, was increased in RR patients, reflecting
the ability of RR patients to compensate for transitory myelin
damages and recruit new pathways. This observation tends to
disappear in SP patients who showed in contrast a density
decrease, probably due to the accumulation of successive attacks

and Wallerian degeneration. Assortativity was increased in
progressive courses, SP and PP, compared to HC. This result
may reflect the neurodegenerative mechanisms leading to the
segregation of two sub-networks, composed either by high or
low degree nodes. One should notice that assortativity in HC
networks is negative, reflecting the existence of connections
between nodes with different degrees, as previously reported
as a characteristic of biological networks (Newman, 2002).
Modularity, which reflects the integration and segregation levels
between graph sub-networks, was significantly higher in RR
patients compared to HC. This increase is probably related to
active focal inflammatory mechanisms, as shown by the presence
of gadolinium-enhancing lesions. In contrast, modularity was
significantly lower in CIS patients compared to HC. This
decrease is probably related to early diffuse inflammation. These
findings lead to the hypothesis that an increased modularity is a

consequence of focal disconnections due to WM lesions, while

a decreased modularity is resulting from a global and diffuse

inflammation. If this result is further confirmed, it means that

modularity could represent a sensitive and specific marker of the

initial inflammatory phase occurring in CIS patients. However,

the small number of CIS patients does not allow us to further

emphases this finding.
Second, we showed the high capability of SVM methods

in combination with graph-derived metrics, to automatically

classify MS patients according to their clinical profile. The high

levels of accuracy and F-Measure confirmed the potential of our

method to accurately classify MS patients. Moreover, the good

classification results, obtained using all graph-derived metrics as
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TABLE 5 | Precision, Recall, and F-Measure (%) for classification tasks with different global metrics [density (D), assortativity (r), efficiency (Eg),

transitivity (T), modularity (Q), and characteristic path length (CPL)] and with all the six global metrics at the same time (All).

D r T Eg Q CPL All

HC—CIS Precision 44.0 80.2 67.3 64.3 83.9 76.1 92.0

Recall 66.7 80.6 69.4 66.7 83.3 75.0 91.7

F-Measure 53.0 80.4 68.3 65.5 83.6 75.5 91.8

CIS—RR Precision 53.6 72.9 67.3 67.3 89.0 55.6 92.0

Recall 55.6 72.2 69.4 69.4 88.9 61.1 91.7

F-Measure 54.6 72.5 68.3 68.3 88.9 58.2 91.8

RR—PP Precision 67.5 73.0 40.8 66.1 70.7 63.2 75.6

Recall 65.9 68.3 51.2 65.9 70.7 63.4 75.6

F-Measure 66.7 70.6 45.4 66.0 70.7 63.3 75.6

RR—SP Precision 66.8 85.5 41.6 54.3 68.8 62.9 68.8

Recall 66.7 85.4 41.7 54.2 68.8 62.5 68.8

F-Measure 66.7 85.4 41.6 54.2 68.8 62.7 68.8

SP—PP Precision 54.0 67.5 65.4 56.2 65.4 55.5 59.6

Recall 56.1 65.9 65.9 58.5 65.9 58.5 61.0

F-Measure 55.0 66.7 65.6 57.3 65.6 57.0 60.3

Precision 42.5 61.7 38.3 38.9 55.9 42.7 71.3

CIS-RR-SP Recall 53.3 61.7 38.3 48.3 55.0 53.3 70.0

F-Measure 47.3 61.7 38.3 43.1 55.4 47.4 70.6

Best performances in bold.

feature vectors, showed the complementarity of these metrics
to better characterize MS pathological alterations and better
differentiate MS clinical profile.

In this study, we focalized our classification analysis on the
following tasks: HC-CIS, CIS-RR, RR-PP, RR-SP, SP-PP, and
CIS-RR-SP, due to their strong clinical interest. First, the main
challenge of the neurologist is to differentiate CIS patients from
HC subjects. Second, CIS-RR and RR-SP classification tasks were
performed to test the capability of ourmethod to differentiate two
“successive” clinical courses of the disease. These classification
tasks are of great clinical interest, as the clinician needs to identify
a patient conversion from CIS to RR, and from RR to SP in
order to start or adapt the medical treatment. While CIS-RR
classification task reached excellent performances (F-Measure
of 91.8%), probably due to the few WM alterations usually
observed in CIS patients compared to RR patients, the RR-SP
task only reached modest, but still reasonable, performances
(F-Measure of 68.8% with all graph metrics). The difficulty to
differentiate RR to SP patients may be a consequence of the
comparableWM alterations in those two clinical profiles. Indeed,
the difference between RR and SP patients mainly resides in
the progression and the accumulation of disability caused by
WM damages in the progressive form. A longitudinal study may
help to take this aspect into account and increase classification
performances. Third, the differentiation of SP-PP was realized to
test the sensitivity of this method to discriminate two progressive
profiles, as proposed by the new MS phenotype classification
(Lublin et al., 2014). This concept may explain the relatively
weak performances obtained during the classification task (F-
measure of 60.3% with all graph metrics). In the future, we
plan to distinguish progressive patients by the presence or not

of inflammation. Moreover, we plan to increase our sensitivity
by classifying SP and PP courses based on MS longitudinal
data. Finally, the classification of RR-PP was tested to evaluate
our method’s capability to separate the two starting MS profile,
sharing a similar mean disease duration (6.8 years for RR
and 6.7 years for PP). Furthermore, we performed a multi-
class classification, CIS-RR-SP, between three successive clinical
profiles. Considering the difficulty to obtain good performances
withmulti-class classification, this F-Measure (70.6%) constitutes
a relative satisfactory result, which confirms the capability of this
approach to discriminate MS clinical courses.

Methodological Limitations
From the methodological perspective, this study may suffer
from several limitations. The first one consists in the arbitrary
choice of parcellation method for graph nodes definition. Indeed,
organizational network parameters are influenced by the spatial
scale (number of nodes) of the network (Zalesky et al., 2010).
However, this study showed that comparisons can be performed
between graphs of same spatial scale, which is the case in
the present study. Second, the small number of patients could
cause biases such as over fitting. However, we minimized these
potential biases by carefully selecting the parameters of the
SVM classifier and using K-Fold cross-validation to generalize
classification results. Further, the small number of each patient
profile may not reflect the general population and induce biases
in graph metrics results. Third, the diffusion acquisition was
performed using 24 directions, which is relatively low compared
to current standards in diffusion imaging. Hence, we tried to
minimize crossing-fibers error by using spherical deconvolution
instead of classical diffusion tensor model. In future, we plan to
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improve the robustness of the proposed method by enlarging
the sample size of patients with a new dataset acquired using
high angular resolution diffusion imaging (HARDI) at 3T. It
should be noted that tractography can be severely modified
by the lesions occurring in MS patients WM. Indeed, WM
damages (MRI detectable lesion and MRI undetectable damage
in NAWM) lead to changes in diffusion. These alterations
induce modifications in the dODF and thus in the reconstructed
streamlines. As consequence, the graphs measurements obtained
from tractography are modified byWM lesions as well as by MRI
undetectable alterations. In a future study, in order to measure
the effects of such MRI undetectable tissue alterations we plan
to mask WM lesions. Moreover, we performed only a binary
class and a multi-class classification tasks in certain sub-groups
without classifying all the groups together. This choice was first
led by clinical interests. Indeed, only certain clinical profiles need
to be classified, such as successive clinical courses of the disease
(i.e., CIS-RR-SP) or differential diagnosis (i.e., RR-PP). Second,
from amethodological point of view, the patients’ sample was too
small for a five multi-class classification task.

CONCLUSION

We proposed a graph-based method, to first, characterize brain
WM damages in MS patients using graph metrics of structural
brain connectivity, providing a great potential for MS patient
discrimination. Second, the use of “data-driven” methods such
as machine learning algorithm is suitable for the classification

of complex diseases like MS. As a major improvement, this
approach allowed to obtain excellent F-Measures that are
probably due to the high sensitivity of the six structural graph
metrics. However, these preliminary findings would need to be
confirmed on large database of MS patients such as the French
OFSEP project (Cotton et al., 2015). Therefore, these findings
demonstrated that the high performance of SVM classification
methods combined with the high sensitivity of global graph
metrics provided a sensitive and automated tool to classify MS
patients’ clinical profiles.

AUTHOR CONTRIBUTIONS

CS, GK developed the method and performed the classification,
the statistical analysis, and wrote the paper. SH helped to write
the paper. FD provided the data and helped in the interpretation
of the results. FC, SV, and DS helped to write the paper and
provided the clinical expertise in the interpretation of the results.

ACKNOWLEDGMENTS

GK is funded by the French government. CS is funded by an EU-
funded FP7-PEOPLE-2012-ITN project 316679 TRANSACT.
This work is supported by the French National Research
Agency (ANR) within the national program “Investissements
d’Avenir” through the OFSEP project (ANR-10-COHO-002).We
thank Delphine Maucort-Boulch for fruitful discussions on the
statistical analysis.

REFERENCES

Achard, S., and Bullmore, E. (2007). Efficiency and cost of economical

brain functional networks. PLoS Comput. Biol. 3:e17. doi: 10.1371/journal.

pcbi.0030017

Achard, S., Delon-Martin, C., Vértes, P. E., Renard, F., Schenck, M., Schneider,

F., et al. (2012). Hubs of brain functional networks are radically reorganized

in comatose patients. Proc. Natl. Acad. Sci. U.S.A 109, 20608–20613. doi:

10.1073/pnas.1208933109

Barkhof, F. (2002). The clinico-radiological paradox in multiple sclerosis revisited.

Curr. Opin. Neurol. 15, 239–245. doi: 10.1097/00019052-200206000-00003

Bullmore, E. T., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1023/A:1022627411411

Cotton, F., Kremer, S., Hannoun, S., Vukusic, S., Dousset, V., Roxana,

A., et al. (2015). OFSEP, a nationwide cohort of people with multiple

sclerosis: Consensus minimal MRI protocol. J. Neuroradiol. 42, 133–140. doi:

10.1016/j.neurad.2014.12.001

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer.

Math. 1, 269–271. doi: 10.1007/BF01386390

Garrison, K. A., Scheinost, D., Finn, E. S., Shen, X., and Constable, R. T. (2015).

The (in)stability of functional brain network measures across thresholds.

Neuroimage 118, 651–661. doi: 10.1016/j.neuroimage.2015.05.046

Gärtner, T. (2003). A survey of kernels for structured data. ACM SIGKDD Explor.

Newsl. 5:49. doi: 10.1145/959242.959248

Hannoun, S., Bagory, M., Durand-Dubief, F., Ibarrola, D., Comte, J. C.,

Confavreux, C., et al. (2012). Correlation of diffusion and metabolic alterations

in different clinical forms of multiple sclerosis. PLoS ONE 7:e32525. doi:

10.1371/journal.pone.0032525

He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., et al. (2009).

Impaired small-world efficiency in structural cortical networks in multiple

sclerosis associated with white matter lesion load. Brain 132, 3366–3379. doi:

10.1093/brain/awp089

Hsu, C.-W., Chang, C.-C., and Chih-Jen, L. (2008). A practical guide to support

vector classification. BJU Int. 101, 1396–1400. doi: 10.1177/02632760022050997

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S.

M. (2012). Fsl.Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Keerthi, S. S., and Lin, C.-J. (2003). Asymptotic behaviors of support vector

machines with Gaussian kernel. Neural Comput. 15, 1667–1689. doi: 10.1162/

089976603321891855

Li, Y., Jewells, V., Kim, M., Chen, Y., Moon, A., Armao, D., et al. (2013). Diffusion

tensor imaging based network analysis detects alterations of neuroconnectivity

in patients with clinically early relapsing-remitting multiple sclerosis. Hum.

Brain Mapp. 34, 3376–3391. doi: 10.1002/hbm.22158

Lublin, F. D., and Reingold, S. C. (1996). Defining the clinical course of multiple

sclerosis. Neurology 46, 907–912. doi: 10.1212/WNL.46.4.907

Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen P. S.,

Thompson, A. J., et al. (2014). Defining the clinical course of multiple sclerosis:

the 2013 revisions. Neurology 83, 278–286. doi: 10.1212/WNL.00000000000

00560

Mahad, D. H., Trapp, B. D., and Lassmann, H. (2015). Pathological mechanisms in

progressive multiple sclerosis. Lancet Neurol. 14, 183–193. doi: 10.1016/S1474-

4422(14)70256-X

McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin,

F. D., et al. (2001). Recommended diagnostic criteria for multiple sclerosis:

guidelines from the international panel on the diagnosis of multiple sclerosis.

Ann. Neurol. 50, 121–127. doi: 10.1002/ana.1032

Muthuraman, M., Fleischer, V., Kolber, P., Luessi, F., Zipp, F., and Groppa, S.

(2016). Structural brain network characteristics can differentiate CIS from early

RRMS. Front Neurosci. 10:14. doi: 10.3389/fnins.2016.00014

Frontiers in Neuroscience | www.frontiersin.org 10 October 2016 | Volume 10 | Article 478

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kocevar et al. MS Phenotype Classification Using Connectome

Newman, M. E. J. (2002). Assortative mixing in networks. Phys. Rev. Lett.

89:208701. doi: 10.1103/PhysRevLett.89.208701

Nigro, S., Passamonti, L., Riccelli, R., Toschi, N., Rocca, F., Valentino, P. et al.

(2015). Structural ‘connectomic’ alterations in the limbic system of multiple

sclerosis patients with major depression. Mult. Scler. 21, 1003–1012. doi:

10.1177/13524585145584744

Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M.,

et al. (2015). Diagnostic criteria for multiple sclerosis: 2010 Revisions to the

McDonald criteria. Ann. Neurol. 69, 292–302. doi: 10.1002/ana.22366

R Development Core Team (2015). R: A Language and Environment for

StatisticalComputing. Vienna: R Foundation for Statistical Computing, 409.

Reuter, M., Schmansky, N. J., Rosas, H. D., and Fischl, B. (2012). Within-subject

template estimation for unbiased longitudinal image analysis. Neuroimage 61,

1402–1418. doi: 10.1016/j.neuroimage.2012.02.084

Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Greco, B., Hagmann,

P., et al. (2012). Classifying minimally disabled multiple sclerosis patients

from resting state functional connectivity. Neuroimage 62, 2021–2033. doi:

10.1016/j.neuroimage.2012.05.078

Romascano, D., Meskaldji, D. E., Bonnier, G., Simioni, S., Rotzinger, D., Lin, Y.

C., et al. (2015). Multicontrast connectometry: a new tool to assess cerebellum

alterations in early relapsing-remitting multiple sclerosis. Hum. Brain Mapp.

36, 1609–1619. doi: 10.1002/hbm.22698

Rovira, A., Auger, C., and Alonso, J. (2013). Magnetic resonance monitoring of

lesion evolution in multiple sclerosis. Ther. Adv. Neurol. Disord. 6, 298–310.

doi: 10.1177/1756285613484079

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., et al. (2011). Diffusion

tensor tractography reveals disrupted topological efficiency in white matter

structural networks in multiple sclerosis. Cereb. Cortex 21, 2565–2577. doi:

10.1093/cercor/bhr039

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst,

P. (2013). The emerging field of signal processing on graphs: extending

high-dimensional data analysis to networks and other irregular domains.

IEEE Signal. Process. Mag. 30, 83–98. doi: 10.1109/MSP.2012.22

35192

Simpson, S. L., Bowman, F. D., and Laurienti, P. J. (2013). Analyzing

complex functional brain networks: fusing statistics and network

science to understand the brain. Stat Surv 7, 1–36. doi: 10.1214/13-

SS103

Smith, R. E., Tournier, J. D., Calamante, F., and Connelly, A. (2012). Anatomically-

constrained tractography: improved diffusion MRI streamlines tractography

through effective use of anatomical information. Neuroimage 62, 1924–1938.

doi: 10.1016/j.neuroimage.2012.06.005

Tournier, J. D., Calamante, F., and Connelly, A. (2012). MRtrix: diffusion

tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66.

doi: 10.1002/ima.22005

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis,

C., et al. (2010). Whole-brain anatomical networks: does the choice of

nodes matter? Neuroimage 50, 970–983. doi: 10.1016/j.neuroimage.2009.

12.027

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Kocevar, Stamile, Hannoun, Cotton, Vukusic, Durand-Dubief

and Sappey-Marinier. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 October 2016 | Volume 10 | Article 478

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses
	Introduction
	Materials and Methods
	Subjects
	MRI Acquisition
	Graphs Generation
	Graph Metrics Estimation
	Classification Using Support Vector Machine (SVM)
	Statistical Analysis

	Results
	Number of Fibers and Threshold Definition
	Global Graph Metrics
	SVM Classification

	Discussion
	Methodological Limitations

	Conclusion
	Author Contributions
	Acknowledgments
	References


