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Today, increasing attention is being paid to research into spike-based neural computation
both to gain a better understanding of the brain and to explore biologically-inspired
computation. Within this field, the primate visual pathway and its hierarchical organization
have been extensively studied. Spiking Neural Networks (SNNSs), inspired by the
understanding of observed biological structure and function, have been successfully
applied to visual recognition and classification tasks. In addition, implementations on
neuromorphic hardware have enabled large-scale networks to run in (or even faster than)
real time, making spike-based neural vision processing accessible on mobile robots.
Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with
real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing
are now needed to measure progress quantitatively within this rapidly advancing field.
We propose that a large dataset of spike-based visual stimuli is needed to provide
meaningful comparisons between different systems, and a corresponding evaluation
methodology is also required to measure the performance of SNN models and their
hardware implementations. In this paper we first propose an initial NE (Neuromorphic
Engineering) dataset based on standard computer vision benchmarksand that uses digits
from the MNIST database. This dataset is compatible with the state of current research
on spike-based image recognition. The corresponding spike trains are produced using
a range of techniques: rate-based Poisson spike generation, rank order encoding,
and recorded output from a silicon retina with both flashing and oscillating input
stimuli. In addition, a complementary evaluation methodology is presented to assess
both model-level and hardware-level performance. Finally, we demonstrate the use of
the dataset and the evaluation methodology using two SNN models to validate the
performance of the models and their hardware implementations. With this dataset we
hope to (1) promote meaningful comparison between algorithms in the field of neural
computation, (2) allow comparison with conventional image recognition methods, (3)
provide an assessment of the state of the art in spike-based visual recognition, and (4)
help researchers identify future directions and advance the field.
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1. INTRODUCTION

Researchers are using the capabilities created by rapid
developments in neuromorphic engineering to address the
dual aims of understanding brain functions and building
brain-like machines (Furber and Temple, 2007). Neuromorphic
engineering has delivered biologically-inspired sensors such as
DVS (Dynamic Vision Sensor) silicon retinas (Delbruck, 2008;
Serrano-Gotarredona and Linares-Barranco, 2013; Posch et al.,
2014; Yang et al., 2015), which offer the prospect of low-cost
visual processing thanks to their event-driven and redundancy-
reducing style of information representation. Moreover, SNN
simulation tools (Gewaltig and Diesmann, 2007; Davison et al.,
2008; Goodman and Brette, 2008) and neuromorphic hardware
platforms (Schemmel et al., 2010; Benjamin et al., 2014; Furber
et al, 2014; Merolla et al., 2014) have been developed to
allow exploration of the brain by mimicking its functions and
developing large-scale practical applications (Eliasmith et al.,
2012). Achieving the brain’s energy efficiency motivates the
development of neuromorphic hardware, since the human brain
consumes only about 20 W of power (Drubach, 2000). In the case
of visual processing, the brain can accurately recognize objects
remarkably quickly, e.g., in 200 ms in monkeys (Fabre-Thorpe
et al., 1998), even with short presentations (less than 100 ms) of
the target objects (Keysers et al., 2001). Such rapid and highly
accurate recognition is the target of modeling spike-based visual
recognition.

Inspired by biological studies of the visual ventral pathway,
SNN models have successfully been adapted to visual recognition.
Riesenhuber and Poggio (1999) proposed a quantitative
modeling framework for object recognition with position-,
scale- and view-invariance. Their cortex-like model has been
analyzed on several datasets (Serre et al., 2007). Recently Fu
et al. (2012) reported that their SNN implementation was
capable of recognizing facial expressions with a classification
accuracy (CA) of 97.35% on the JAFFE dataset (Lyons et al.,
1998) which contains 213 images of 7 facial expressions posed
by 10 individuals. According to Van Rullen and Thorpe (2002),
the first wave of spikes carry explicit information through
the ventral stream and in each stage meaningful information
is extracted and spikes are regenerated. Using one spike per
neuron, similar to the first spiking wave in biology, Delorme
and Thorpe (2001) reported 100% and 97.5% accuracies on
the face identification task over training (40 individuals x 8
images) and testing data (40 individuals x 2 images). Hubel
and Wiesel (1962) first discovered the model of orientation
selectivity (simple cells) and pooling mechanism (complex cells)
in the primary cortex in cats, which lay the foundation of the
Convolutional Neural Network (CNN) (LeCun et al., 1998). An
early Convolutional Spiking Neural Network (CSNN) model
identified the faces of 35 persons with a CA of 98.3% exploiting
simple integrate and fire neurons (Matsugu et al., 2002). Another
CSNN model (Zhao et al., 2015) was trained and tested both
with DVS raw data and Leaky Integrate-and-Fire (LIF) neurons.
It was capable of recognizing three moving postures with a CA
of about 99.48% and classifying hand-written digits with 88.14%
accuracy on the MNIST-DVS dataset (see Section 2.2). In a

further step forward, Camunas-Mesa et al. (2012) implemented
a convolution processor module in hardware which could
be combined with a DVS for high-speed recognition tasks.
The inputs of the ConvNet were continuous spike events
instead of static images or frame-based videos. The chip was
capable of detecting the four suits in a 52-card deck which was
browsed rapidly in only 410 ms. Similarly, a real-time gesture
recognition model (Liu and Furber, 2015) was implemented
on a neuromorphic system with a DVS as a front-end and a
SpiNNaker (Furber et al., 2014) machine as the back-end, where
LIF neurons built up the ConvNet configured with biological
parameters. In this study’s largest configuration, a network of
74,210 neurons and 15,216,512 synapses used 290 SpiNNaker
cores in parallel and reached 93.0% accuracy. Spike-Timing-
Dependent Plasticity (STDP) as a learning mechanism based on
biological observations has been applied to vision tasks. Bichler
et al. (2012) demonstrated an unsupervised STDP learning
model to classify car trajectories captured with a DVS retina. A
similar model was tested on a Poissonian spike presentation of
the MNIST dataset achieving a performance of 95.0% (Diehl and
Cook, 2015). Theoretical analysis (Nessler et al., 2013) showed
that unsupervised STDP was able to approximate a stochastic
version of Expectation Maximization, a powerful learning
algorithm in machine learning. A computer simulation achieved
2 93.3% CA on MNIST and had the potential to be implemented
using memristors (Bill and Legenstein, 2014).

Deep Neural Networks (DNNs) have exceeded human-level
performance on image classification tasks (He et al., 2015), but
mainstream DNN research is focussed on continuous rather
than spiking neural networks. The spiking deep network has
great potential to combine remarkable performance with energy-
efficient training and operation. Early research into spiking deep
networks focussed on converting off-line trained deep network
into SNNs (O’Connor et al., 2013). The network was initially
implemented on an FPGA and achieved a CA of 92.0% (Neil
and Liu, 2014), while a later implementation on SpiNNaker
scored 95.0% (Stromatias et al., 2015b). Recent advances have
contributed to better translation by using modified units in
a ConvNet (Cao et al, 2015) and tuning the weights and
thresholds (Diehl et al., 2015). The latter paper claims a state-of-
the-art performance (99.1% on the MNIST dataset) compared to
the original ConvNet. The current trend toward training Spiking
DNNs on line using biologically-plausible learning methods is
also promising. An event-driven Contrastive Divergence (CD)
training algorithm for Restricted Boltzmann Machines (RBMs)
was proposed for Deep Belief Networks (DBNs) using LIF
neurons with STDP synapses and verified on MNIST with a CA
0f 91.9% (Neftci et al., 2013).

Despite the promising research on SNN-based vision
recognition, there is no commonly-used database in the format
of spike stimuli. In the studies listed above, all of the vision
data used are in one of the following formats: (1) raw gray-
scale images data; (2) pixel-intensity-driven rate-based Poisson
spike trains; (3) unpublished spike-based videos recorded from
DVS silicon retinas. However, in the field of conventional
non-spiking computer vision, there are a number of datasets
playing important roles at different times and with various
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objectives (LeCun et al., 1998; Blank et al., 2005; Deng et al.,
2009; Liu et al,, 2009). In consequence, a new set of spike-
based vision datasets is now needed to quantitatively measure
progress within the rapidly advancing field of spike-based visual
recognition and to provide resources to support fair competition
between researchers.

Apart from using spikes instead of the frame-based data
used in conventional computer vision, new concerns arise
when evaluating neuromorphic vision, such as latency and
energy consumption, in addition to recognition accuracy. These
concerns naturally derive from the goal of spike-based visual
recognition: mimicking the fast recognition with low-energy
processing in the brain. Therefore a set of common metrics
for performance evaluation in spike-based vision is required to
assess SNN models and their hardware implementations. In this
paper we propose a large dataset of spike-based visual stimuli
and a complementary evaluation methodology. Just as research
in this field is an expanding and evolving activity, the dataset will
be adapted and extended to fit new requirements presented by
advances in the field.

The rest of this paper is structured as follows: Section 2
elaborates the purpose and protocols of the proposed dataset
and describes the sub-datasets and the methods employed to
generate them; it also demonstrates the suggested evaluation
methodology for use with the dataset. Section 3 presents
two SNNs as demonstrations of using the dataset to assess
model performance and benchmark hardware platforms. Finally,
Section 4 summarizes the paper and discusses future work.

2. MATERIALS AND METHODS
2.1. Guiding Principles

The NE database we propose here is a developing and evolving
dataset consisting of various spike-based representations of
images and videos. The spikes are either generated from
spike encoding methods which convert images or frames
of videos into spike trains, or recorded from DVS silicon
retinas. The spike trains are in the format of Address-Event
Representation (AER) (Mahowald, 1992) data, which are suitable
for both event-driven computer simulations and neuromorphic
systems. AER was originally proposed as a time-multiplexed
spike communication protocol where each time a neuron
produces a spike an event is generated that codes the spiking
neuron’s address on a fast time-multiplexed digital bus. The
recorded AER data consists of a list of events, each one containing
the time stamp of a spike and the address of the neuron which
generated the spike. With the NE dataset we hope:

e to promote meaningful comparisons of algorithms in the field
of spiking neural computation. The NE dataset provides a
unified format of AER data to meet the demands of spike-
based visual stimuli. It also encourages researchers to publish
and contribute their data to build up the NE dataset.

e to allow comparison with conventional image recognition
methods. We expect the dataset to support this comparison
using spiking versions of existing vision datasets. Thus,
conversion methods are required to transform datasets

of images and frame-based videos into spike stimuli.
More biologically-accurate and better information preserving
schemes are welcome.

e to provide an assessment of the state of the art in spike-
based visual recognition on neuromorphic hardware. To
reveal the accuracy, speed, and energy-efficient recognition of
neuromorphic approaches, we need not only a spike-based
dataset but also an appropriate evaluation methodology. The
evaluation methodology will be constantly improving along
with the evolution of the dataset.

e to help researchers identify future directions and advance the
field. The development of the dataset and its evaluation
methodology will introduce new challenges for the
neuromorphic engineering community. However, these
must represent an appropriate degree of difficulty: a too-
easily-solved problem turns into a tuning competition, while
a problem that is too difficult will not yield meaningful
assessment. So suitable problems should continuously be
added to promote future research.

2.2. The Dataset: NE15-MNIST

The first proposed dataset in the benchmarking system is
NE15-MNIST (Neuromorphic Engineering 2015 on MNIST).
NE15-MNIST is the spiking version of an original non-spiking
dataset which was downloaded from the MNIST Database of
Handwritten Digits (LeCun et al., 1998) website!. Due to its
straightforward target of classifying real-world images, the plain
format of the binary data and simple patterns, MNIST has been
one of the most popular datasets in computer vision for over 20
years. MNIST is a popular task among the neuromorphic vision
research community as stated in Section 1. The converted MNIST
dataset consists of four subsets which were generated for different
purposes:

e Poissonian, which encodes each pixel as a Poisson spike train
and is intended for benchmarking existing rate-based SNN
models.

e FoCal (Filter Overlap Correction ALgorithm), to promote the
study of spatio-temporal algorithms applied to recognition
tasks using small numbers of input spikes.

e DVS recorded flashing input, to encourage research into fast
recognition methods to mimic the rapid and accurate “core
recognition” in the primate ventral visual pathway (DiCarlo
etal., 2012).

e DVS recorded moving input, to trigger the study of algorithms
targeting continuous input from real-world sensors for
implementation, for example, on mobile neuromorphic
robots.

The dataset can be found in the GitHub repository at: https://
github.com/NEvision/NE15.

2.3. Data Description

Two file formats are supported in the dataset: the jAER
format (Delbruck, 2008) (.dat or .aedat), and binary files in
NumPy (van der Walt et al., 2011) (.npy) format. The spikes in
JAER format, whether recorded from a DVS retina or artificially

'http://yann.lecun.com/exdb/mnist/
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generated, can be displayed by the jJAER software. Figure 1A is
a snapshot of the software displaying a .aedat file which was
recorded from a DVS retina (Serrano-Gotarredona and Linares-
Barranco, 2013). The resolution of the DVS recorded data is
128 x 128. The second spike-based format used is a list of
spike source arrays in PyNN (Davison et al., 2008), a description
language for building spiking neuronal network models. Python
code is provided for converting from either file format to the
other. The duration of the artificially-generated data can be
configured using the Python code provided, while the recorded
data varies in duration: 1 s for the flashing input, and 3.2-34 s
for the moving input.

2.3.1. Poissonian
The timing of spikes in the cortex is highly irregular (Squire and
Kosslyn, 1998). An interpretation is that the inter-spike interval
reflects a random process driven by the instantaneous firing rate.
If the generation of each spike is assumed to be independent of
all other spikes, the spike train is seen as a Poisson process. The
spike rate can be estimated by averaging the pooled responses of
the neurons.

As stated above, rate coding is generally used in presenting
images as spike trains. The spike rate of each neuron accords with

the intensity of the corresponding pixel. Instead of providing
exact spike arrays, we share the Python code for generating
the spikes. Each recognition system may require different spike
rates and durations. The generated Poisson spike trains can
be in both jAER and PyNN spike source array formats. Thus,
it is easy to visualize the digits and also to couple the spike
trains into spiking neural networks. Because different simulators
generate random Poisson spike trains with different mechanisms,
languages and codes, using the same dataset enables performance
evaluation on different simulators without the confusion created
by differences in input. The same digit displayed in Figure 1A
can be converted into Poisson spike trains, see Figure 1B.
A raster plot of the Poisson spike trains is shown in
Figure 1C.

2.3.2. Rank Order Encoding

A different way of encoding spikes is to use a rank order code;
this means keeping just the order in which the spikes fired
and disregarding their exact timing. Rank-ordered spike trains
have been used in vision tasks under a biological plausibility
constraint, making them a viable way of encoding images for
neural applications (Van Rullen and Thorpe, 2001; Sen and
Furber, 2009; Masmoudi et al., 2010).

DVS recording.

Poisson spike trains.

Neuron ID

0 200 400

600 800 1000

and (B) Poisson generation. (C) A raster plot of the Poisson spike trains.

Time (ms)

The raster plot of the Poisson spike trains.

FIGURE 1 | Snapshots of the JAER software displaying spike-encoded videos. The same image of digit “0” is transformed into spikes by (A) DVS recording
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Rank order coding (ROC) can be performed using an
algorithm known as the FoCal algorithm (Sen and Furber,
2009). This algorithm models the foveola, the highest resolution
area of the retina, with four ganglion cell layers each with a
different scale of center-surround receptive field (Kolb, 2003). To
simulate these layers two steps are required: the first consists of
four discrete 2D convolutions; the second removes redundant
information produced in the first step. During the first step, the
center-surround behavior of the ganglion cells is modeled using
Difference of Gaussians (DoG) kernel for convolution.

~(2+%)
e 203‘,’5 ( 1)

—(24y%) 1

e 2‘7‘%,1: :F

DoGy(x,y) = £
0Gw(%.9) 2no}

2
Wic 2oy

where o, and o0y, 5 are the standard deviation of the center and
surround components of the DoG at layer w. The signs will be
(—,+) if the ganglion cell has an OFF-center behavior and (4,—)
if it has an ON-center one. Supplementary Table 1 shows the
parameters (described in Sen and Furber, 2009) used to compute
the convolution kernels at each scale w.

Every  pixel value in the convolved image
(Supplementary Figure 1) is inversely proportional to the
spike emission time relative to the presentation of the image (i.e.,
the higher the pixel value, the sooner the spike will fire.)

Since DoGs are used as the means to encode the image,
and they do not form an orthogonal set of basis functions, the
algorithm also performs a redundancy correction step. It does so
by adjusting the convolved images pixel values according to the
correlation between convolution kernels (Algorithm 1).

Algorithm 1 FoCal, redundancy correction

procedure CORRECTION(coeffs C, correlations Q)

N« > Corrected coeflicients
repeat
m < max(C) > Obtain maximum from C
M« MUm > Add maximum to M
C<«C\m > Remove maximum from C

forall c € Cdo
if Q(m, ¢) # 0 then

> Adjust all remaining ¢
> Adjust only spatially near
coefficients
c<c—mx Q(m,c)
end if
end for
until C = ¢
return M
end procedure

After the correction step, the most important information
can be recovered using only the first 30% of the spikes (Sen
and Furber, 2009). These most significant spikes are shown in
Figure 2, which shows the spikes firing at 1 ms intervals. Neurons
in Layer 1 emit spikes faster and in larger quantities than any
other layer, making it the most important layer. Layers 2 and
3 have few spikes due to the large convolution kernels used to
simulate the ganglion cells. One of the main advantages of ROC

is that a neuron will only spike once, as can be seen particularly
clearly in these two layers. Layers 0 and 1 encode fine detail which
can be used to identify what is in the image, while layers 2 and 3
result in blob-like features that should prove useful to location
problems.

Figure 3 shows the reconstruction results for the two stages
of the algorithm. In Figure 3B the reconstruction was applied
after the convolution but without the FoCal correction; a blurry
image is the result of redundancy in the spike representation. A
better reconstruction can be obtained after Algorithm 1 has been
applied; the result is shown in Figure 3C.

The source Python scripts to transform images to ROC spike
trains, and to convert the results into AER and PyNN spike source
arrays, can be found in the dataset website.

2.3.3. DVS Sensor Output with Flashing Input
The purpose of including the subset with DVS-recorded
flashing digits is to promote research into rapid and accurate
“core recognition,” thus to encourage applying non-rate-based
algorithms, for example ROC, to short DVS output spike trains.
Each digit was shown alternating with a blank image and
each display lasted one second. The digits were displayed on an
LCD monitor in front of the DVS retina (Serrano-Gotarredona
and Linares-Barranco, 2013) and were placed in the center
of the visual field of the camera. Since there are two spike
polarities—“ON” indicating an increase in the intensity while
“OFF” indicates a decrease—there are “ON” and “OFF” flashing
recordings respectively per digit. In Figure 4, the burstiness of
the spikes is illustrated where most of the spikes occur in a 30 ms
time slot. In total, this subset of the database contains 2x60, 000
recordings for training and 2x 10, 000 for testing.

2.3.4. DVS Sensor Output with Moving Input

The subset with DVS recorded moving digits is presented to
address the challenges of position- and scale- invariance in
computer vision.

MNIST digits were scaled to three different sizes, using
smooth interpolation algorithms to increase their size from the
original 28 x 28 pixels, and displayed on the monitor with
slow motion. The same DVS (Serrano-Gotarredona and Linares-
Barranco, 2013) used in Section 2.3.3 captured the movements of
the digits and generated spike trains for each pixel in its 128 x
128 resolution. A total of 30, 000 recordings were made: 10 digits,
at 3 different scales, 1000 different handwritten samples for each.

2.4. Performance Evaluation

As a result of the spike-based processing used in SNN models,
new concerns about the latency and energy cost arise over
performance assessment. Therefore, we propose corresponding
evaluation metrics and suggest a sufficient description of SNN
models in this section. Once a model is implemented on
a neuromorphic platform, the hardware performance can be
evaluated by running the particular model. This model-specific
assessment provides more robust comparisons between hardware
platforms by using the same network topology, neuron and
synaptic models, and learning rules. A complementary evaluation
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FIGURE 2 | Raster plot showing the first 30% of the rank-order encoded spikes produced using FoCal at 1 ms intervals.

Original image

No correction

FIGURE 3 | Reconstruction result comparison. (A) The original image. (B) Reconstruction without overlap correction. (C) Reconstruction with overlap correction.

FoCal

methodology is essential to provide common metrics and assess
both the model-level and hardware-level performance.

2.4.1. Model-Level Evaluation
A suggested description of an SNN model is shown in Table 1
where the performance evaluation metrics are in bold and the
SNN specific description is in italics.

Because SNNs introduce the time dimension and spike-based
processing, additional performance metrics become relevant in
addition to classification accuracy: recognition latency and the
number of synaptic events. Recognition latency measures how
fast spikes are conveyed through the layers of network to trigger
the recognition neurons. DiCarlo et al. (2012) considers the rapid
(<200 ms) and accurate vision recognition in the brain as the
essential problem of object recognition. For real-time systems
with live visual inputs, such as robotic systems, a short response
latency helps make fast decisions and take rapid action. The

latency is measured as the time difference between the first spike
generated by the output layer and the first spike from the input
layer. A small number of total synaptic events generated by a
recognition task indicates the efficiency of the SNN model. A
spike event is a synaptic operation evoked when one action
potential is transmitted through one synapse (Sharp et al., 2012).
Fewer spike events imply lower overall neural activity and lower
energy consumption. The number of synaptic events can be
measured as “Sopbs,” synaptic operations per biological second.
Alongside the SNN evaluation metrics, a sufficient description
of a network model is required so that other researchers can
reproduce it and compare it with other models. First of all, the
input of an SNN model is specified. The description includes the
transformation method for converting raw images to spike trains,
and the preprocessing either to images or spikes. Filtering the raw
image may ease the classification/recognition task while adding
noise may require more robustness in the model. Secondly, as
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FIGURE 4 | DVS sensor with flashing input. Blue is used for “ON” events and green for “OFF” events. (A) The raster plot shows spikes generated by individual
neurons over time. It is hard to recognize the total number of spikes due to the large number of neurons involved in the figure. Thus all the spikes are ordered in time,
and displayed in the figure below. (B) The raster plot shows ordered spike sequence over time. The total number of spikes are around 7000 for both “ON” and “OFF”
events. The bursty nature of the resulting spikes is illustrated, where most of the spikes occur in a 30 ms time slot.

TABLE 1 | SNN descriptions at the model level.

Input Network Training Recognition
- converting methods - topology - supervised or not - classification accuracy
- preprocessing - neuron and synaptic type - learning rule - response latency
- biological training time - number of synaptic events

- biological testing time
- input spiking rate
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with the evaluation of conventional artificial neural networks,
a description of the network characteristics provides the basis
for the overall performance evaluation. Sharing the designs not
only makes the model reproducible but also inspires fellow
scientists to bring new points of view to the problem, generating
a positive feedback loop where everybody wins. The main
characteristics include the network topology and the neural and
synaptic models. The network topology defines the number of
neurons used for each layer and the connections between layers
and neurons. It is essential to state the types of neural and
synaptic model (e.g., current-based LIF neuron) utilized in the
network and the parameters configuring them, because neural
activities differ significantly between configurations. Any non-
neural classifier, sometimes added to aid the design or enhance
the output of the network, must also be specified. Thirdly,
the training procedure determines the recognition capability
of a network model. Specifying the learning algorithm with
its mechanism (supervised, semi-supervised and unsupervised)
helps the reader understand the core features of the model. A
detailed description of new spike-based learning rules will be
a great contribution to the field due to the present paucity of
spatio-temporal learning algorithms. Most publications reflect
the use of adaptations to existing learning rules; details on these
modifications should be clear and unambiguous. In conventional
computer vision, the number of iterations of training images
presented to the network play an important role. Similarly, the
biological training time determines the amount of information
provided for training an SNN. Finally in the testing phase, as
well as the performance evaluation metrics stated above, specific
configurations of the input spikes are also essential. This includes
details of the way samples are presented to the network: spiking
rates, and biological time per test sample. The combination of
these two factors determines how much information is presented
to the network. Following to the formatted evaluation as in
Tables 1, 2 lists a few SNN models of MNIST classification,
although some details are missing.

2.4.2. Hardware-Level Evaluation

Neuromorphic systems can be categorized as analog, digital,
or mixed-mode analog/digital, depending on how neurons,
synapses and spike transmission are implemented. Some analog
implementations exploit sub-threshold transistor dynamics to
emulate neurons and synapses directly in hardware (Indiveri
et al, 2011) and are more energy-efficient while requiring
less area than their digital counterparts (Joubert et al,
2012). However, the behavior of analog circuits is hard to
control through the fabrication process due to transistor
mismatch (Linares-Barranco et al., 2003; Pedram and Nazarian,
2006; Indiveri et al., 2011), and achievable wiring densities
render direct point-to-point connections impractical for
large-scale systems. The majority of mixed-mode analog/digital
neuromorphic platforms, such as the High Input Count
Analog Neural Network (HI-CANN) (Schemmel et al., 2010),
Neurogrid (Benjamin et al., 2014), HIAER-IFAT (Yu et al,
2012), use analog circuits to emulate neurons and digital
packet-based technology to communicate spikes as AER events.
This enables reconfigurable connectivity patterns, while spike

timing is expressed implicitly since typically a spike reaches
its destination in less than a millisecond, thus fulfilling the
real-time requirement. Digital neuromorphic platforms such
as TrueNorth (Merolla et al,, 2014) use digital circuits with
finite precision to simulate neurons in an event-driven manner
to minimize the active power dissipation. Such systems suffer
from limited model flexibility, since neurons and synapses are
fabricated directly in hardware with only a small subset of
parameters under the control of the researcher. The SpiNNaker
many-core neuromorphic architecture (Furber et al, 2014)
uses low-power programmable cores and scalable event-driven
communications hardware allowing neural and synaptic
models to be implemented in software. While software modeling
provides great flexibility, digital platforms generally have reduced
precision (due to the inherent discretisation) and higher energy
consumption when compared to analog platforms. Furthermore,
the processing cores used in SpiNNaker chips perform better
when using integer or fixed-point arithmetic (Hopkins and
Furber, 2015). Moreover, the requirement for the models to run
in real time leads to constraints on the complexity of model that
can be supported.

A direct comparison between neuromorphic platforms is a
non-trivial task due to the different hardware implementation
technologies as mentioned above. Table 3 attempts to describe
the neuromorphic hardware platforms with reference to different
aspects of SNN simulation. The scalability of a hardware platform
determines the network size limit of a neural application
running on it. Considering the various neural and synaptic
models, plasticity learning rules and lengths of axonal delays,
a programmable platform offers flexibility to support diverse
SNNs while a hard-wired system supporting only specific models
is advantageous due to its energy-efficiency and simpler design
and implementation. The classification accuracy of an SNN
running on a hardware system can be different from the software
simulation, since hardware implementations may impose limits
on the precision used for the membrane potentials of neurons
(for the digital platforms) and the synaptic weights. Simulation
time is another important measure when running large-scale
networks on hardware. Real-time implementation is an essential
requirement for robotic systems because of the real-time input
from the neuromorphic sensors. Running faster than real time
is attractive for large and long simulations. It is interesting
to compare the performance of each platform in terms of
energy requirements, especially if the platform targets mobile
applications and robotics. Some researchers have suggested
the use of energy per synaptic event (J/SE) (Sharp et al,
2012; Stromatias et al, 2013) as an energy metric because
the large fan in and out of a neuron means that synaptic
processing tends to dominate the total energy dissipation during
a simulation. Merolla et al. (2014) proposed the number of
synaptic operations per second per Watt (Sops/W). These two
measures are equivalent, since J/SExSops/W = 1.

However, the typical reported simulation time and energy
use for the various platforms is under different SNN models,
making the comparisons problematic. Model-specific hardware
metrics would provide robust comparisons between platforms
and expose how different networks influence the metrics on
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TABLE 2 | Model-level comparison.

Input Network Training Recognition
Brader et al., 2007 Normalization Two layer, LIF neurons Semi-supervised, STDP, calcium 96.5%
LTP/LTD
Beyeler et al., Scaling, V1 (edge), V2 (orientation), and competitive Semi-supervised, STDP, 91.6%
2013 Poisson decision, Izhikevich neurons calcium LTP/LTD 300 ms per test
Neftci et al., 2013 Thresholding, Two layer RBM, Event-driven contrastive divergence 91.9%
Synaptic current LIF neurons (eCD), unsupervised 1 s per test
Neftci et al., 2016 Thresholding, Two layer RBM, Synaptic Sampling Machine + eCD, 95.8%
Synaptic current LIF neurons unsupervised 250 ms per test
Diehl and Cook, Poisson Two layers, LIF neurons, inhibitory Unsupervised, STDP, 95%
2015 feedback 200, 000 s per iteration
15 iterations
Diehl et al., 2015 Poisson ConvNet or Off-line trained with RelLU, weight 99.1% (ConvNet),
Fully connected, normalization 98.6% (Fully connected);
LIF neurons 0.5 s per test
Zhao et al., 2015 Thresholding Simple (Gabor), Tempotron, supervised 91.3% (Thresholding)
or DVS Complex (MAX) 11 s per test
and Tempotron 88.1% (DVS),
2 s per test
This paper Poisson Four layer RBM, Off-line trained, unsupervised 94.94%
LIF neurons 16 ms latency
1.44M Sopbs
This paper Poisson Fully connected decision layer, K-means clusters, 92.99%
LIF neurons Supervised STDP 1 s per test
18,000 s of training 0.2 s blank
13.82 ms latency
4.17M Sopbs

TABLE 3 | Hardware-level comparison.

System Neuron model Synaptic Precision Simulation time Energy usage
plasticity
SpiNNaker (Stromatias Digital, Programmable Programmable 11- to 14-bit synapses Real-time 8 nJ/SE
etal., 2013) Scalable Neuron and Synapse, learning rule Flexible time
Axonal delay resolution
TrueNorth (Merolla Digital, Fixed models, No plasticity 122 bits Real-time 26 pJ/SE
etal., 2014) Scalable Config params, params and states,
Axonal delay 4-bit/
4 values
synapses?
Neurogrid (Benjamin Mixed-mode, Fixed models, Fixed rule 13-bit shared Real-time 941 pJ/SE
etal., 2014) Scalable Config params synapses
HI-CANN (Schemmel Mixed-mode, Fixed models, Fixed rule 4-bit/ Faster than 7.41 nd/SE
etal., 2010) Scalable Config params 16 values real-timeP (network only)
synapses
HIAER-IFAT (Yu et al., Mixed-mode, Fixed models, No plasticity Analog neuron/synapse Real-time 22-pJ/SE
2012) Scalable Config params (Park et al., 2014)

@\We consider them 4-bit synapses because it is only possible to choose between 4 different signed integers and whether the synapse is active or not.

bA maximum speed-up of up to 10° times real time has been reported.

particular hardware. The proposed evaluation metrics consist
of the feasibility, classification accuracy, simulation time, and
energy use. A particular SNN model is feasible to run on a
particular hardware platform only when the network size is
under the platform’s limit, the neural and synaptic models are
supported, and the learning rule is implemented. CA also plays

a role in hardware evaluation because of the precision limits
that may be imposed by the platform. Due to the limited
hardware resources, simulation time may accelerate or slow down
according to the network topology and spike dynamics. Similarly,
energy costs vary with different networks and neural and synaptic
models.
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3. RESULTS

In this section, we present two recognition SNN models working
on the Poissonian subset of the NE15-MNIST dataset. The
network components, training and testing methods are described
along the lines set out in Section 2.4.1. The recognition result
is evaluated using the proposed metrics: classification accuracy,
response latency and number of synaptic events. As tentative
benchmarks the models are implemented on SpiNNaker to assess
the hardware-level performance against software simulators.
Presenting proper benchmarks for vision recognition systems
is still under investigation; the case studies only make a first
attempt.

3.1. Case Study |

The first case study is a simple two-layer network where the input
neurons receive Poisson spike trains from the dataset and form
a fully connected network with the decision neurons. There is
at least one decision neuron per digit to classify a test input.
The neuron with highest output firing rate classifies a test image
as the digit it represents. The model utilizes LIF neurons, and
the parameters are all biologically valid, see the listed values
in Supplementary Table 2. The LIF neuron model follows the
membrane potential dynamics:

dv
Tm—— = Viyest —

dt V + RmIsyn(t) >

(2)
where 7, is the membrane time constant, Vi is the resting
potential, R, is the membrane resistance and Iy, is the synaptic
input current. In PyNN, Ry, is presented by R, = 7,/ Cpy, Where
Cy is the membrane capacitance. A spike is generated when the
membrane potential goes beyond the threshold, Vi, and the
membrane potential then resets to Vies. In addition, a neuron
cannot fire within the refractory period, Ty, after generating a
spike.

The connections between the input neurons and the decision
neurons are plastic, so the connection weights can be modulated
during training with a standard STDP learning rule. The
model is described with PyNN and the code is published
in the Github repository with the dataset. As a potential
benchmark, this system is composed of simple neural models,
trained with standard learning rules and written in a standard
SNN description language. These characteristics allow the same
network to be tested on various simulators, both software- and
hardware-based.

Both training and testing use the Poissonian subset of the
NE15-MNIST dataset. This makes performance evaluation on
different simulators possible with the unified spike source array
provided by the dataset. In terms of this case study, the
performance of the model was evaluated with both software
simulation (on NEST, Gewaltig and Diesmann, 2007) and
hardware implementation (on SpiNNaker).

In order to fully assess the performance, different settings were
configured on the network, such as network size, input rate and
test image duration. For simplicity of describing the system, one
standard configuration is set as the example in the following
sections.

3.1.1. Training

There are two layers in the model: 28 x 28 input neurons fully
connect to 100 decision neurons. Each decision neuron responds
to a certain digit template. In the standard configuration,
there are 10 decision neurons responding to each digit with
slightly different templates. Those templates are embedded in the
connection weights between the two layers. Figure 5A shows how
the connections to a single decision neuron are tuned.

The training set of 60,000 hand written digits are firstly
classified into 100 classes, 10 subclasses per digit, using K-means
clusters. K-means clustering separates a set of data points into
K subsets (clusters) according to the Euclidean distance between
them. Therefore, each cluster tends to form a boundary within
which the data points are near to each other. In this case, all the
images of the same digit (a class) are divided into 10 subclasses
by assigning K = 10. Then the images in a certain subclass are
used to train a template embedded in the synaptic weights to
the corresponding decision neuron. The firing rates of the input
neurons are assigned linearly according to their intensities and
the total firing rate of all the 28 x 28 input neurons is normalized
to 2000 Hz, that is, the sum of the firing rates of all of the input
neurons is 2000 Hz. All the images together are presented for
18,000 s (about 300 ms per image) during training and at the
same time a teaching signal of 50 Hz is conveyed to the decision
neuron to trigger STDP learning. The trained weights are plotted
in accordance with the positions of the decision neurons in
Figure 5B.

3.1.2. Testing

After training the weights of the plastic synapses are set to
static, keeping the state of the weights at the last moment of
training. However, during training the synaptic plasticity holds a
hard limit of 0 on the weight strength, thus excitatory synapses
cannot change into inhibitory. To investigate how inhibitory
connections influence the classification performance, the weak
weights were set to negative with identical strengths. Results
show that inhibitory synapses significantly reduced the output
firing rates while keeping a good classification ability. Thus,
the strategy of replacing weak weights to same negative values
was used throughout the case study. The feed-forward testing
network is shown in Figure 5B where Poisson spike trains are
generated the same way as in the training with a total firing rate
of 2000 Hz per image. The input neurons convey the same spike
trains to every decision neuron through its responding trained
synaptic weights. One test trial contains 10,000 images in total
and each image is presented once and lasts 1 s with a 0.2 s blank
period between consecutive images. The output neuron with the
highest firing rate determines which digit is recognized. With the
standard training configuration, we compared the CA of different
simulations of the same SNN model. Using the trained weights
from the NEST simulation, the accuracy of the recognition on
NEST reached 90.03%, and this accuracy was also achieved on
SpiNNaker. When the network was both trained and tested on
SpiNNaker the recognition accuracy was 87.41%. Using these
weights in NEST yielded a similar result (87.25%). The reduction
in CA using the SpiNNaker trained weights was due to precision
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FIGURE 5 | The (A) training and (B) testing model of the two-layered spiking neural network.
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loss caused by the limited fast memory and the necessity for fixed-
point arithmetic to ensure real-time operation. It is inevitable
that numerical precision will be below IEEE double precision
at various points in the processing chain from synaptic input
to membrane potential. The main bottleneck is currently in
the ring buffer where the total precision for accumulated spike
inputs is 16-bit, meaning that individual spikes are realistically
going to be limited to 11- to 14-bit depending upon the
probabilistic headroom calculated as necessary from the network
configuration and spike throughput (Hopkins and Furber, 2015).

3.1.3. Evaluation

Evaluation starts from the model-level, focusing on the spike-
based recognition analysis. As mentioned in Section 2.4.1,
CA, response time (latency) and the total number of synaptic
events are the main concerns when assessing the recognition
performance. In our experiment, two sets of weights were
applied: the original STDP trained weights, and scaled-up
weights which are 10 times stronger. The spike rates of the test
samples were also modified, ranging from 10 to 5000 Hz.

We found that accuracy depends largely on the time each
sample is exposed to the network and the sample spike rate
(Figure 6). Figure 6A shows that the CA is better as exposure
time increases. The longer an image is presented, the more
information is gathered by the network, so the accuracy climbs.
Classification accuracy also increases when input spike rates are
augmented (Figure 6B). Given that the spike trains injected into

the network are more intense, the decision neurons become
more active, and so does the output disparity between them.
Nonetheless, it is important to know that these increases in CA
have a limit, as is shown in the aforementioned figures. With
stronger weights, the accuracy is much higher when the input
firing rate is less than 2000 Hz.

The latency of an SNN model is the result of the input firing
rates and the synaptic weights. We measured the latency of each
test by getting the time difference of the first spike generated by
any decision neuron in the output layer and the first spike of
the input layer. As the input firing rates grow, there are more
spikes arriving at the decision neurons, triggering them to spike
sooner. A similar idea applies to the influence of synaptic weights.
If stronger weights are taken, then the membrane potential of
a neuron reaches its threshold earlier. Figure 6D indicates that
the latency is shortened with increasing input firing rates with
both the original and scaled-up weights. When the spiking rate is
less than 2000 Hz, the network with stronger weights has a much
shorter latency. As long as there are enough spikes to trigger the
decision neurons to spike, increasing the test time will not make
the network respond sooner (Figure 6C).

At the default configuration of the SNN model, each input
neuron connects to all of the 100 decision (output) neurons with
both excitatory and inhibitory projections. Thus, the synaptic
events happening in the inter-layer connections are 200 times the
total input firing rate. Figure 6E shows the stable Sopbs of the
entire network when the input firing rate is held at 2000 Hz and
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FIGURE 6 | Accuracy, response time (latency) and synaptic event rate (Sopbs) change over test time and input firing rate per test image. The test time is
the duration of the presence of a single test image, and the input firing rate is the summation of all the input neurons. Original trained weights are used (up-pointing
triangles with solid line) as well as the scaled up (x 10) weights (down-pointing triangles with dashed line). (A) Accuracy changes against test time, (B) accuracy
changes firing rate, (C) latency stabilizes against test time, (D) latency changes against firing rate, (E) event rate stabilizes against test time, (F) event rate changes

the test time increases. The firing rates of the output layer are
relatively small, and are 0.1% and 1.5% of the total Sopbs using
original and scaled-up weights respectively. The variations in the
total Sopbs lie in the firing rate of the output layers only, and
the stronger connections lead to the higher firing rates. Likewise,
the output neurons are more active with stronger connection
weights, and the gap widens as the input firing rate increases, see
Figure 6F. Although the variations in the Sopbs climbs to around
8 kHz, it is not obvious in the figure because the output firing
rates are relatively low and therefore so are the differences.

The network size not only influences the accuracy of a model
but also the time taken for simulation on specific platforms, thus
impacting the energy usage on the hardware. For the purpose
of comparing the accuracy, simulation time, number of synaptic
events and energy usage, different configurations have been
tested on NEST (working on a PC with CPU: i5-4570 and 8G
memory) and on SpiNNaker. The same experiment was run
4 times with different random seeds; the average performance
estimation is listed in Table 4. The input rates in all of the
tests are 5000 Hz, and each image is presented for 1 s with a

Frontiers in Neuroscience | www.frontiersin.org

12

November 2016 | Volume 10 | Article 496


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Liu et al.

Benchmarking Spike-Based Visual Recognition

TABLE 4 | Comparisons of NEST (N) on a PC and SpiNNaker (S) performance averaged over 10 trials.

Subclasses per digit 1 10 50 100 1000
Avg. responselatency (ms) 18.08 14.25 13.82 13.57 13.15

Avg. synapticevents (Sopbs) 83,691.48 835,274.98 4,173,392.03 8,343,559.69 83,385,785.67

Accuracy N 79.63+0.23 91.42+0.13 92.99+0.15 87.05+0.21 89.63+0.08

(%) S 79.57+£0.31 91.394+0.09 92.99+0.08 87.00+0.26 89.58+0.24

Avg. SIM N 445.09 503.21 767.67 1131.09 12,027.75

time (s) S 12,000

Power N 20 20 20 19 17

(W) S 0.38 0.38 0.41 0.44 1.50

Energy N 8.90 10.06 15.34 21.50 208.25

(KJ) S 4.56 4.56 4.92 5.28 18.00

0.2 s blank period between consecutive images during which the
model receives no input. The configurations only differ in the
number of templates (subclasses/clusters) per digit.

As the network size grows there are more decision neurons
and synapses connecting to them, thus the simulation time
on NEST increases. On the other hand, SpiNNaker works in
(biologically) real time and the simulation time becomes shorter
than the NEST simulation when 1000 patterns per digit (1000
decision neurons per digit) are used. The NEST simulation
was run on a desktop PC, and the power use was measured
by a meter socket and estimated by subtracting the usage of
idle OS operation from the usage running the simulation. In
doing so, the power consumption of the resources needed to
run the simulation is better approximated. The SpiNNaker test
was run on a Spin4 board which has 48 chips and exposed
pins to measure electrical quantities. A built-in Arduino board
provided a measurement read out of the power usage of the
chips. For the same goal of estimating just the required resources,
only the active chips were measured. Even with the smallest
network, SpiNNaker wins in the energy cost comparison, see
Figure 7. Among different network configurations, the model
with 500 decision neurons (50 clusters per digit) reaches the
highest recognition rate of 92.99% on average having a latency
of 13.82 ms mean and 2.96 ms standard deviation. And there
are standard deviations of 2.57% on CA and of 1.17 ms on the
latency over 10 testing digits. The total number of synaptic events
is around 4.17M Sopbs, where only 7K spikes are generated in the
output layer. The NEST simulation costs 767.67 s on average for
the entire 12,000 s biological-time test, 20 W in power use on
the PC and 15.35 K] of energy, while SpiNNaker works in real
time using 4.92 KJ of energy at a power of 0.41 W (see Table 4).
This result provides a baseline for comparison with other SNN
models and neuromorphic hardwares, and no optimization is
applied.

3.2. Case Study Il

This section aims to review and reinterpret results from
previously published studies (Stromatias et al., 2015a,b,c), which
utilized the identical off-line trained? spiking DBN as presented
by O’Connor et al. (2013).

2https://github.com/dannyneil/edbn/

Deep learning architectures and, in particular, Convolutional
Networks (LeCun et al, 1998) and Deep Belief Networks
(DBNs) (Hinton et al., 2006) have been characterized as one of
the breakthrough technologies of the decade (Hof, 2013). One of
the advantages of these type of network is that their performance
can be increased by adding more layers (Hinton et al., 2006).

However, state-of-the-art deep networks comprise a large
number of layers, neurons and connections resulting in high
energy demands, communication overheads, and high response
latencies. This is a problem for mobile and robotic platforms
which may have limited computational and power resources but
require fast system responses.

O’Connor et al. (2013) proposed a method to map off-
line trained DBNs into a spiking neural network and take
advantage of the real-time performance and energy efficiency of
neuromorphic platforms. This led initially to an implementation
on an event-driven Field-Programmable Gate Array (FPGA)
called Minitaur (Neil and Liu, 2014) and then on the SpiNNaker
platform (Stromatias et al, 2015b). This particular DBN
comprises 784 neurons for the input layer, two hidden layers
with 500 neurons each, and an output layer with 10 neurons.
This is abbreviated as a 784-500-500-10 architecture. Simulations
take place on a software spiking neural network simulator,
Brian (Goodman and Brette, 2008), and results are verified on
the SpiNNaker platform.

3.2.1. Training

DBNs consist of stacked Restricted Boltzmann Machines (RBMs),
which are fully connected recurrent networks but without
any connections between neurons in the same layer. Training
is performed unsupervised using the standard Contrastive
Divergence (CD) rule (Hinton et al., 2006) and only the output
layer is trained in a supervised manner. The main difference
between spiking DBNs and traditional DBNs is the activation
function used for the neurons. O’Connor et al. (2013) proposed
the use of the Siegert approximation (Jug et al., 2012) as the
activation function, which returns the expected firing rate of
an LIF neuron (Equation 2) given the input firing rates, the
input weights, and standard neuron parameters. Further details
regarding the training process can be found in O’Connor et al.
(2013).
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FIGURE 7 | Energy usages of different network size both using NEST
(blue) on a PC and SpiNNaker (black).

3.2.2. Testing

After the training process the learnt synaptic weights can be
used in a spiking neural network which consists of LIF neurons
with delta-current synapses. Supplementary Table 3 shows the
LIF parameters used in the simulations. These parameters were
chosen by O’Connor et al. (2013) to train this spiking DBN
network. Using the same network and parameters allowed us
to have a direct comparison between the power requirements
and numerical precision, for different software and hardware
platforms (Matlab, Brian, Minitaur, SpiNNaker).

The pixels of each MNIST digit from the testing set are
converted into Poisson spike trains as described in Section 2.3.1.
The CA was chosen as the performance metric of the spiking
DBN, which is the percentage of the correctly classified digits over
the whole MNIST testing set.

3.2.3. Evaluation

Neuromorphic platforms may have limited hardware resources
to store the synaptic weights (Schemmel et al., 2010; Merolla
et al, 2014). In order to investigate how the precision of
the weights affects the CA of a spiking DBN the double-
precision floating-point weights of the offline-trained network
were converted to various fixed-point representations. The
following notation will be used throughout this paper, Qm.f,
where m signifies the number of bits for the integer part
(including the sign bit) and f the number of bits used for the
fractional part.

Figure 8 shows the effect of reduced weight bit precision on
the CA for different input firing rates on the Brian simulator.
Using the same weight precision of Q3.8, SpiNNaker achieved
a CA of 94.94% when 1500 Hz was used for the input
population (Stromatias et al., 2015b). With the same firing rates
and weight precision, Brian achieved a CA of 94.955%. Results are
summarized in Table 5. The slightly lower CA of the SpiNNaker
simulation indicates that not only the weight precision but
also the precision of the membrane potential affects the overall
classification performance. Stromatias et al. (2015¢) showed that

Classification accuracy (%)

» o
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3 3
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o

) oy
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FIGURE 8 | DBN classification accuracy (CA) as a function of the
weight bit precision for different input firing rates (Stromatias et al.,
2015c).

spiking DBNs are capable of maintaining a high CA even for
weight precisions down to Q3.3, while they are also remarkably
robust to high levels of input noise regardless of the weight
precision.

A similar experiment to the one presented for Case Study
I was performed; its purpose was to establish the relation that
input spike rates hold with latency and classification accuracy.
The input rates were varied from 500 Hz to 2000 Hz and the
results are summarized in Figure 9. Simulations ran in Brian
for all 10,000 MNIST digits of the testing set and for 4 trials.
Supplementary Figure 2 shows a histogram of the classification
latencies on SpiNNaker when the input rates are 1500 Hz. The
mean classification latency for the particular spiking DBN on
SpiNNaker is 16 ms which is identical to the Brian simulation
seen in Figure 9.

Finally, this particular spiking DBN ran on a single SpiNNaker
chip (16 ARM9 cores) and dissipated about 0.3 W when
1,500 spikes per second per digit were used. The number
of generated synaptic events was 1.88M Sopbs and less than
2.97 KJ of energy was consumed running the whole testing
set over 10,000 s, as seen in Figure 10. The identical network
executed on Minitaur (Neil and Liu, 2014), an event-driven
FPGA implementation, dissipated 1.5 W when 1000 spikes per
image were used, and achieved a CA of 92.0%.

4. DISCUSSION
4.1. Summary of the Work

This paper puts forward the NE dataset as a baseline for
comparisons of vision based SNN models and neuromorphic
platforms. It contains spike-based versions of existing widely-
used databases in the vision recognition field. Since new problems
will continue to arise before vision becomes a solved question,
the dataset will evolve as research progresses. The conversion
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TABLE 5 | Classification accuracy (CA) of the same DBN running on
different platforms.

Simulator CA (%) Weight precision
Matlab 96.06 Double floating point
Brian 95.00 Double floating point
Brian 94.955 Q3.8
SpiNNaker 94.94 Q3.8
40 95.2
T 35
£ 95.0%
> 30 =
= >
3 5
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FIGURE 9 | Mean classification latency (black) and classification
accuracy (blue) as a function of the input firing rate for the spiking
DBN. Results are averaged over 4 trials, error bars show standard deviations
(Stromatias et al., 2015b).

methods for transforming images and videos into spike trains
will advance. The number of vision datasets will increase and
the corresponding evaluation methodologies will evolve. The
dataset aims to provide unified spike-based vision benchmarks
and complementary evaluation methodologies to assess the
performance of SNN algorithms.

The first version of the dataset is published as NE15-
MNIST, which contains four different spike representations
of the MNIST stationary hand-written digit database. The
Poissonian subset is intended for benchmarking existing rate-
based recognition methods. The rank-order coded subset,
FoCal, encourages research into spatio-temporal algorithms on
recognition applications using only small numbers of input
spikes. Fast recognition can be verified on the DVS recorded
flashing input subset, since just 30 ms of useful spike trains are
recorded for each image. Looking forward, the continuous spike
trains captured from the DVS recorded moving input can be used
to test mobile neuromorphic robots. Orchard et al. (2015) have
presented a neuromorphic dataset using a similar approach, but
the spike trains were obtained with micro-saccades. This dataset
aims to convert static images to neuromorphic vision input, while
the recordings of moving input in our paper are intended to
promote position-invariant recognition. Therefore, the datasets
complement each other.

The proposed complementary evaluation methodology is
essential to assess both the model-level and hardware-level
performance of SNNs. In addition to classification accuracy,
response latency and the number of synaptic events are specific
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FIGURE 10 | Total energy consumption (black) and number of SE per
second (blue) of a spiking DBN running on a single SpiNNaker chip as
a function of the total input firing rate.

evaluation metrics for spike-based processing. Moreover, it is
important to describe an SNN model in sufficient detail to
share the network design, and relevant SNN characteristics were
highlighted in the paper. The network size of an SNN model
that can be built on a hardware platform will be constrained
by the scalability of the hardware. Neural and synaptic models
are limited to the ones that are physically implemented,
unless the hardware platform supports programmability. Any
attempt to implement an on-line learning algorithm on
neuromorphic hardware must be backed by synaptic plasticity
support. Therefore, running an identical SNN model on
different neuromorphic hardware exposes the capabilities of such
platforms. If the model runs smoothly on a hardware platform,
it then can be used to benchmark the performance of the
hardware simulator in terms of simulation time and energy usage.
Classification accuracy (CA) is also a useful metric for hardware
evaluation because of the limited precision of the membrane
potential and synaptic weights.

This dataset makes the comparison of SNNs with
conventional recognition methods possible by using converted
spike representations of the same vision databases. As far as we
know, this is the first attempt at benchmarking neuromorphic
vision recognition by providing public a spike-based dataset and
evaluation metrics. In accordance with the suggestions from Tan
et al. (2015), the evaluation metrics highlight the strengths of
spike-based vision tasks and the dataset design also promotes
the research into rapid and low energy recognition (e.g., flashing
digits). Two benchmark systems were evaluated using the
Poissonian subset of the NE15-MNIST dataset. These example
benchmarking systems demonstrated a recommended way of
using the dataset, describing the SNN models and evaluating
the system performance. The case studies provide baselines for
robust comparisons between SNN models and their hardware
implementations.

4.2. The Future Direction of an Evolving

Database
The database will be expanded by converting more popular vision
datasets to spike representations. As mentioned in Section 1,
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face recognition has become a hot topic in SNN approaches,
however there is no unified spike-based dataset to benchmark
these networks. Thus, the next development step for our dataset
is to include face recognition databases. While viewing an image,
saccades direct high-acuity visual analysis to a particular object or
aregion of interest and useful information is gathered during the
fixation of several saccades in a second. It is possible to measure
the scan path or trajectory of the eyeball and those trajectories
show particular interest in eyes, nose and mouth while viewing a
human face (Yarbus, 1967). Therefore, our plan is also to embed
modulated trajectory information to direct the recording using
DVS sensors to simulate human saccades.

There will be more methods and algorithms for converting
images to spikes. Although Poisson spikes are the most
commonly used external input to an SNN system, there are
several in-vivo recordings in different cortical areas showing that
the inter-spike intervals (ISI) are not Poissonian (Deger et al.,
2012). Thus Deger et al. (2012) proposed new algorithms to
generate superposition spike trains of Poisson processes with
dead-time (PPD) and of Gamma processes. Including novel spike
generation algorithms in the dataset is one aspect of future work
which will be carried out.

Each encounter of an object on the retina is unique, because
of the illumination (lighting condition), position (projection
location on the retina), scale (distance and size), pose (viewing
angle), and clutter (visual context) variabilities. But the brain
recognizes a huge number of objects rapidly and effortlessly even
in cluttered and natural scenes. In order to explore invariant
object recognition, the dataset will include the NORB (NYU
Object Recognition Benchmark) dataset (LeCun et al., 2004),
which contains images of objects that are first photographed in
ideal conditions and then moved and placed in front of natural
scene images.

Action recognition will be the first problem of video
processing to be introduced in the dataset. The initial plan is
to use the DVS retina to convert the KTH and Weizmann
benchmarks to spiking versions. Meanwhile, providing a software
DVS retina simulator to transform frames into spike trains is also
on the schedule. By doing this, a huge number of videos, such
as those in YouTube, can automatically be converted into spikes,
therefore providing researchers with more time to work on their
own applications.

Opverall, it is impossible for the dataset proposers to provide
enough datasets, converting methods and benchmarking results,
thus we encourage other researchers to contribute to the dataset.
Researchers can contribute their data to the dataset, allowing
future comparisons using the same data source. They can also
share their spike conversion algorithms by generating datasets to
promote the corresponding recognition methods. Neuromorphic
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