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Biologically plausible modeling of behavioral reinforcement learning tasks has seen great

improvements over the past decades. Less work has been dedicated to tasks involving

contingency reversals, i.e., tasks in which the original behavioral goal is reversed one

or multiple times. The ability to adjust to such reversals is a key element of behavioral

flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal

tasks. We first conduct experiments with humans and gerbils to demonstrate memory

effects, including multiple reversals in which subjects (humans and animals) show a

faster learning rate when a previously learned contingency re-appears. Motivated by

recurrent mechanisms of learning and memory for object categories, we propose a

network architecture which involves reinforcement learning to steer an orienting system

that monitors the success in reward acquisition. We suggest that a model sensory

system provides feature representations which are further processed by category-related

subnetworks which constitute a neural analog of expert networks. Categories are

selected dynamically in a competitive field and predict the expected reward. Learning

occurs in sequentialized phases to selectively focus the weight adaptation to synapses

in the hierarchical network and modulate their weight changes by a global modulator

signal. The orienting subsystem itself learns to bias the competition in the presence

of continuous monotonic reward accumulation. In case of sudden changes in the

discrepancy of predicted and acquired reward the activated motor category can be

switched. We suggest that this subsystem is composed of a hierarchically organized

network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which

resembles components of the basal ganglia. The DCN selectively activates an expert

network, corresponding to the current behavioral strategy. The trace of the accumulated

reward is monitored such that large sudden deviations from the monotonicity of its

evolution trigger a reset after which another expert subnetwork can be activated—if it

has already been established before—or new categories can be recruited and associated

with novel behavioral patterns.

Keywords: reversal learning, expert networks, recurrent neural networks, reinforcement learning, adaptive
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1. INTRODUCTION

Agents, be they biological or technical systems, which operate
and behave in changing environments require cognitive and
behavioral flexibility. Such behavioral flexibility is essential for
survival and represents a unique component of intelligence,
in particular the ability to switch flexibly between different
behaviors and to reuse strategies that have been established
previously and used selectively in different circumstances
(Kinoshita et al., 2008; Kangas and Bergman, 2014). The neural
correlates of behavioral flexibility of humans and animals are
often measured using reversal learning experiments (Pubols,
1957; Xue et al., 2013). In such experimental settings, a subject
first learns to map a complex input stimulus of a certain
category onto a behavioral response. Subsequently, in a second
phase, the subject learns to overrule the previously established
stimulus-response mapping based on changing reinforcement
contingencies. Now the input stimulus is mapped onto a
behavioral response that opposes the previously established
output category. During serial reversal learning the agent
and its cognitive system are exposed to multiple changes of
contingencies. After acquisition of a reversed contingency, the
mapping rules reverse again such that the initial mapping
conditions are re-established.

Humans and animals are able to learn such serial reversals
and their efficiency gradually increases with multiple switches
(Robbins and Roberts, 2007). This increased efficiency of
performance in serial reversal tasks cannot be explained by
learning mechanisms which are solely based on the initially
formed associations of complex stimulus features to categorical
responses, since this leads to decreased efficiency due to
interference effects from the previously learned contingencies
(Pubols, 1957; Clayton, 1962; Gossette and Inman, 1966;
Feldman, 1968; Gossette and Hood, 1968; Kulig and Calhoun,
1972; Garner et al., 1996; Bathellier et al., 2013; Kangas and
Bergman, 2014).

In order to model serial reversal learning tasks some authors
(Graybiel, 1998; Frank and Badre, 2012) proposed the inclusion
of expert networks in which independent reinforcement learners,
e.g., standard neural networks, are trained for each sub-task or
contingency condition to perform complex cognitive functions.
These experts are then selectively activated by a gating network
(Jacobs et al., 1991a,b; Graybiel, 1998) or in a hierarchically
organized structure (Frank and Badre, 2012). Such a processing
scheme suggests that a rich set of behavioral “templates” is
established to build a repertoire for generating appropriate
behavioral responses given the specific contextual conditions.
Thus, one expert network would acquire the stimulus-to-motor
mapping that is optimal in the first experimental phase. After
the first reversal, another expert takes over and acquires the new
mapping, preserving the learned weight in the first expert. Thus,
when a second reversal takes place, the original motor mapping
is still present in expert one and can be applied quickly.

In order to incorporate this idea in a full, biologically plausible
reinforcement learning architecture, the relationship between the
different experts has to be clarified. Cortical anatomy suggests
that they are not completely autonomous modules which can be
switched on or off depending on certain sensory or behavioral

state conditions. Instead, a conjoint sensory processing stream
is accessible and read out by different brain areas, e.g., the
ventrolateral prefrontal cortex and the lateral orbitofrontal
cortex, to perform more complex cognitive functions (Fellows
and Farah, 2003; Clark et al., 2004; Hornak et al., 2004;
Boulougouris et al., 2007; Kinoshita et al., 2008; Rygula et al.,
2010). In addition, distinct areas, e.g., nucleus basalis, are capable
of modulating cortical processing such that a more continuous
activation and deactivation of functionalities emerges (instead
of the activation of mutually exclusive programs) (Roberts
et al., 1990). We address this issue by extending a learning
algorithm for recurrent neural networks (Brosch et al., 2015)
to a hierarchical network architecture, in which multiple expert
sub-networks receive input from the same sensory driven basis
network and are modulated by a common dynamic control
mechanism.

Secondly, a biologically plausible mechanism has to be
proposed for selecting among the expert networks. This
mechanism has to explain how a single expert is selected and how
the responses of the other expert networks are suppressed. Many
of the selection mechanisms proposed in previous work have not
been formulated in a biologically plausible manner (e.g., Jacobs
et al., 1991b). Here, we propose a dynamic control network
that steers the selection of the experts using a competitive
release-from-inhibition mechanism. Such a scheme of neural
dis-inhibition structurally resembles a subdivision of the basal
ganglia (Gurney et al., 2001a).

Finally, one needs to explain how the same expert network
can be selected repeatedly while the reward contingencies
remain constant, but a different network can be selected
once contingencies reverse. We propose an adaptive biasing
mechanism for the dynamic control network, which resembles
a stabilized Hebbian outstar learning scheme (Grossberg, 1980)
which is further extended by a monitoring of the reward
prediction error. This approach enables the network to select
expert networks solely based on the prediction error. In contrast,
many other proposals rely on additional contextual cues (Jacobs
et al., 1991a; Frank and Badre, 2012; Collins and Frank, 2013) or
task instructions (Niv et al., 2015) to switch between strategies.

We use this hierarchical, dynamically controlled
reinforcement learning architecture to model behavioral data
from humans and gerbils in serial reversal learning tasks. The
extended architecture is compared to a monolithic architecture
without dynamic control. We find that both human participants
and gerbils learn faster after the second compared to the first
reversal and that only the extended network with dynamic
control replicates such behavior.

2. MATERIALS AND METHODS

2.1. Experimental Setups and Protocols for
Behavioral Studies—Animal and Human
Human Experiments

Participants
21 subjects participated in the experiment that took place inside
a 3 Tesla MR scanner (11 female, 10 male, age range between
18 and 34 years, all right handed, with normal hearing). All
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subjects gave written informed consent to the study, which
was approved by the ethics committee of the University of
Magdeburg, Germany.

Experimental design
240 frequency-modulated (FM) tones served as experimental
stimuli. The tones differed in duration (short, 400ms, vs. long,
800ms), intensity (low intensity, 76–81 dB, vs. high intensity,
86–91 dB), frequency range (low, 500–831Hz, vs. high, 1630–
2639Hz), direction of frequency modulation (rising vs. falling)
and speed of frequency modulation (slow, 0.25 octaves/s, vs.
fast, 0.5 octaves/s). The relevant stimulus properties for the
categorization task were duration and modulation direction,
resulting in four basic tone categories: short/rising, short/falling,
long/rising, and long/falling. For each participant, one of these
categories constituted the target sounds (25%), while the other
three categories served as non-targets (75%).

Participants were instructed to listen to each sound while
looking at a fixation cross and to select target category sounds via
a left button press with the index finger and to reject sounds via
a right button press with their middle finger. Immediately after
each of the 240 trials subjects received verbal feedback depending
on whether they made the right choice. Participants were not
told that contingencies might change. They were informed that
the experiment would last about 30 min and that two resting
periods of 20 s duration each would be introduced indicating that
they finished the first and the second third of the experiment,
respectively.

As feedback stimuli, four positive utterances (ja, “yes”; richtig,
“right”; ja, richtig, “yes, right”; stimmt, “correct”) and four
negative utterances (nein, “no”; falsch, “wrong”; nein, falsch,
“no, wrong”; stimmt nicht, “not correct”) as well as one time-
out utterance (zu spät, “too late”) were employed, all spoken in
standard German and with a motivational intonation taken from
the evaluated prosodic corpus MOTI (Wolff and Brechmann,
2012; see also Wolff and Brechmann, 2015). After 80 trials,
a pause of 20 s was introduced and from the next trial on
the contingencies were reversed such that the target stimulus
required a push of the right instead of the left button. After 160
trials and another pause of 20 s a re-reversal was introduced such
that the initial assignment of target sounds and button 1 was valid
again. Participants were divided into learners and non-learners
based on their individual performance averaged across 20 trials
per block. A subject is considered to be a learner if he/she has
obtained 80% correct responses in at least one block of the initial
learning and the reversal learning phase. Otherwise, the subject
is assigned to the group of non-learners. For the first and second
reversal phase, the time was determined for each participant as
the ordinate (blocks of 20 trials) of the first linear intersection
between the criterion level (80%) and performance rate.

Animal Experiments
All procedures were performed in accordance with the
European Communities Council Directive of November 24, 1986
(86/609/EEC), and according to the German guidelines for the
care and use of animals in laboratory research. Experiments were
approved by the Ethics Committee of the state Saxony-Anhalt.

Male Mongolian gerbils (n = 18) were trained in a two-
way active avoidance paradigm (Ohl et al., 1999) in a shuttlebox.
Specifically, the animal subjects were trained to discriminate
frequency modulation direction of tones (2–4 kHz and 4–2 kHz)
with their behavioral responses. In each experimental session,
one of these stimulus types serves as Go and the other as NoGo
stimulus. During Go trials, shuttling to the other compartment
within 6 s after stimulus onset was scored as a hit, while longer
latencies led to a miss score. In this case a mild foot shock
was delivered via the grid floor of the shuttlebox. During NoGo
trials animals were free to stay in the current compartment
or to shuttle and no shock was delivered. Shuttling behavior
during NoGo tone presentation was counted as a false alarm. In
both tone conditions the tone was switched off after shuttling
behavior. During Go trials tones were turned off either after
successful shuttling or with the delivery of the foot shock (miss
condition). Daily sessions consisted of 96 trials presented in a
pseudo-randomized order of Go andNoGo trials. Discrimination
performance was monitored on a daily basis by assessing
psychophysical detection performance values d′ for hit and false
alarm rates. If the animal subject reached the criterion of three
sequential sessions with d′ values ≥ 1 it advanced to the next
training phase with reversed stimulus contingencies.

For the analysis of the behavioral performance animals were
classified as learners if they reached a hit-rate above 70% in the
initial training and the two sequential contingency changes.Non-
learners did not reach the 70% level and were not considered
in the subsequent time-to-criterion analysis. For the time-to-
criterion analysis, “sessions to criterion” were determined as
the ordinate (session) of the first linear intersection between
criterion level and hit rate. Since we observed a high variability
in single-subject learning rates, an individual criterion level for
each gerbil-subject was calculated as 80% of the median hit rate
in all three training phases of that particular animal. Note that
the animals did not receive a shock in case of shuttling during
the NoGo tone (the former Go tone after stimulus contingencies
reversal). The next reversal was introduced only once the gerbils
received a discrimination performance of d′ ≥ 1 in two out of
three consecutive sessions. An increase in shuttling to the former
NoGo stimulus could only be observed if shuttling onNoGo trials
was relatively low prior to the contingency reversal.

The foot shock acts in a two-way active avoidance task (as
in this described Go/NoGo discrimination task) as a negative
reinforcer. A negative reinforcer leads to an increase of a
behavior, in this case the shuttling behavior in order to actively
avoid the foot shock. Already Mowrer (1956) interpreted in his
two-factor theory the emergence of the avoidance response to
a conditioning stimulus (tone) as a result of release of fear (the
CS becomes associated with UCS) after the avoidance response
and consequently the termination of the tone. In turn, the
release of fear might elicit similar neuronal mechanism as caused
by positive reinforcement. Recent measurements of dopamine
in the striatum during acquisition of avoidance behavior in a
shuttlebox showed an increased release of dopamine during the
first successful trials (Dombrowski et al., 2013). Similar release
of dopamine has been observed during learning with positive
reinforcers (Schultz, 2001). Therefore, we think the shuttlebox
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active avoidance paradigm is similar to and can be modeled like
learning reinforced by reward.

Thus, both in human subjects and animals had to learn
a behavioral strategy based on reinforcement and to switch
strategies when reward contingencies change. The switch in
reward contingencies was not accompanied by an external signal
and were only able to be recognized based on a change in reward
prediction error.We examined whether participants could switch
strategies and reuse previously learned strategies under these
conditions. The goal of the model was to replicate this behavior.

2.2. Modeling
In this section, we briefly recapitulate the REinforcement
LEarning Algorithm for Recurrent Neural Networks
(RELEARNN) described in Brosch et al. (2015). For further
details about the algorithm, its motivation and biological
plausibility, the reader is referred to the previous paper. We
outline the network topology and the learning algorithm, and
then describe the extension by a dynamic control network.
RELEARNN serves as a generic framework for a biologically
realistic learning mechanism (Brosch et al., 2015) in which
sensory information serves as input to the network and each
output unit is associated with a possible action like pressing a
button or jumping over a hurdle. RELEARNN has been shown to
be a biologically plausible model able to explain behavior as well
as electrophysiological recordings in two challenging contour
grouping tasks. We reasoned that such a model architecture may
serve as a functional building block for modeling the mapping of
sensory input to actions in humans and gerbils.

RELEARNN: General Network Topology
The REinforcement LEarning Algorithm for Recurrent Neural
Networks (RELEARNN) is a learning algorithm for simultaneous
recurrent neural networks, i.e., networks that process static
inputs (not time series), aiming to compute the values of actions
as a consequence of the sensory input. Model units’ dynamics
follow an ordinary differential equation, which describes the
average membrane potential in a cortical column. Learning is
achieved by updates of (synaptic) weights, which are computed
after a stable state is reached. The model contains a number
of output units, each representing a possible motor action. The
magnitude of activity corresponds to the expected reward for
the associated action given the current sensory input. In other
words, these action values, dubbed Q-values (Sutton and Barto,
1998), are encoded by the activity of the output units. The model
usually chooses the action with the highest Q-value, but it will
occasionally also explore other actions to promote learning by
using a softmax output function (Roelfsema and van Ooyen,
2005). To find an appropriate balance between biological detail
and mathematical tractability we used model units with scalar
activation values assuming a rate coded activity pattern as output
from a neuron population (hence, we do not consider spiking
neurons in ourmodel). The activity of eachmodel unit represents
the average activity in a cortical column with mean membrane
potential p and mean firing rate g(p). As inputs, the model units
receive excitation, inhibition as well as modulatory influences
and the units, in turn, can inhibit, excite, or modulate other

model units. The role of themodulatory connections is to amplify
the influence of excitatory input, but they are unable to drive
the units (c.f. Shao and Burkhalter, 1996; Sherman and Guillery,
1998; Larkum et al., 2004; Bonin et al., 2005; Spratling, 2014).

The membrane potential p depends on the excitatory,
inhibitory, and modulatory inputs Iex, Iinh and Imod as follows
(Figure 1, right):

d

dt
p = −αp+ (β − p) · Iex · (1+ γ Imod)− (ζ + p) · Iinh . (1)

The decay rate of the activity of model units is controlled by
α > 0, the maximal activity by β > 0, the minimal activity
by ζ > 0, and the parameter γ > 0 determines the impact of
modulatory input. The mean spike rate r is calculated as:

r = g(p) =

{

a+ p , p ≥ 0 ,

a · exp(p/a) , p < 0 .
(2)

We consider a network of N dynamically interacting model
units with activities pi receiving excitatory input Iinp (see
Figure 1 for the general structure of such a network). Once the
input is provided, the activity circulates through the excitatory,
inhibitory andmodulatory connections until the network activity
stabilizes. The overall dynamics are described by the following
system of coupled differential equations (similar to Equation 1),
but now presented in vector notation).

d

dt
p = −αp+ (β − p) · Iex · (1+ γ Imod)− (ζ + p) · Iinh . (3)

FIGURE 1 | Left: Illustration of the general network structure as used in the

description of the learning algorithm. Each model unit ni can excite, inhibit or

modulate the activity of any other unit nj (non-directional black connections).

Units nI
i
of the input layer do not depend on the activity of other units. Right:

Each model unit corresponds to a cortical column and can be excited,

inhibited or modulated by other model units. Redrawn after Brosch et al.

(2015).
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The excitatory, inhibitory and modulatory inputs Iex, Iinh and
Imod depend on the presynaptic firing rates and the input into
the network Iinp:

Iex = (Wex)T · g(p)+ (Winp)
T
· Iinp , (4)

Iinh/mod = (Winh/mod)
T
· g(p) . (5)

Here, α,β , γ , ζ ≥ 0 and g(·) (applied element-wise) are defined
as in Equation (1) and p, Iinp ∈ R

N are column vectors of the

activations and inputs of each unit. The positive elementsW
(·)
kl

≥

0 of the weight matricesW(·) ∈ R
N×N determine the connection

strength from unit k to unit l andW
inp

kl
determines the excitatory

connection strength from feature k to input unit l (here products
of two column vectors like p · I ∈ R

N are defined element-wise).
When the activity in the network has converged to a stable state,
the network chooses one action based on the activation of the
output units that encode the action values (Q-values). We used
the softmax rule to determine the probability pi of an output unit
i to win the competition between actions based on their values:

pi =
exp(pi/τ )

∑

j∈O exp(pj/τ )
, (6)

where τ is called a temperature parameter (Sutton and Barto,
1998). We did not model here how the softmax action selection
process is implemented in the neural network, although this has
been addressed in previous work (Nowlan and Sejnowski, 1995).
Moreover, the choice of softmax as an action selection rule is not
critical. We expect that other action selection mechanisms used
in the reinforcement literature (e.g., ε-greedy Sutton and Barto,
1998, or max-Boltzmann Wiering and Schmidthuber, 1997) will
give qualitatively similar results.

RELEARNN: Weight Updates
The learning algorithm has been derived under constraints
of biological plausibility, particularly considering the local
mechanisms of synaptic weight adaptation. The model is best
described in three phases (cf. Roelfsema and van Ooyen, 2005;
Friedrich et al., 2011; Rombouts et al., 2012). Phase one starts
in response to the input and ends when the network converges
to a stable state p∞ and stochastically selects action a according
to Equation (6). In the second phase, the selected output unit a
causes an action feedback signal (AFB) that propagates through
the network through a separate set of units (one per column;
small circles in Figure 2) which change their response by 1p

during this phase so that their total activity becomes p∞ + 1p.
We call the network of units sensitive to the AFB the “accessory
network” (see below for details), which is important for the
guidance of the process of synaptic plasticity. The strength of the
connections between units in the accessory network is similar (or
proportional) to the strength of connections between the regular
units (larger circles in Figure 2). This reciprocity of regular and
accessory connections can emerge during the learning process
itself (see also Roelfsema and van Ooyen, 2005). In Brosch
et al. (2015) we have shown that the boost in the membrane
potential 1pl of the accessory unit l during the second phase is
proportional to the influence of a change in pl on the activity of
the current winning unit p∞a during the first phase. Therefore, the
sign and magnitude of 1pl can be used to guide plasticity once
learning is initiated in the third phase in response to the reward.
The output units of the network aim to represent the expected
reward value if their action is chosen in the current sensory
state:

Qa = Eπ {ρ|s, a} . (7)

When the network performs action a, it receives a reward ̺ and
the aim of the learning rule is to adjust the current estimate of

FIGURE 2 | Illustration of the learning phases. Each regular unit (large circles) is accompanied by an accessory unit (small circles), which are hypothesized to be

situated in the same cortical column. In phase 1, the sensory input leads to a stable state p∞ of the regular units (note that we only illustrated the excitatory

connections in this scheme) and the model represents estimates of the value of all the actions in the output layer. In phase 2, the winning output unit injects extra

activity into the accessory network. The strength of the connections of the accessory network is reciprocal to that of the regular network. Accessory units that are

paired with a regular unit that has a strong impact on the activity of the winning unit exhibit a strong increase in activity 1p during this phase. In phase 3 the changes

in synaptic strength depend on 1p and a neuromodulatory signal that encodes the reward-prediction error δ. Reproduced from Brosch et al. (2015).
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Qa, represented by the activity of the winning output unit p∞a .
To this aim, the network computes a reward prediction error δ

by comparing the outcome of the trial ̺ to the predictedQ-value,
i.e., a SARSA style prediction error for immediately rewarded
tasks (Sutton and Barto, 1998),

δ = ̺ − Qa = ̺ − p∞a . (8)

In accordance with previous studies of reinforcement learning
(Schultz et al., 1997) there is growing evidence that such a reward
prediction error is encoded by a non-specific neuromodulatory
signal that is globally released into the (sensory) network so
that it can influence the plasticity of all synapses (Figure 2,
right panel). Candidate mechanisms for such neuromodulatory
mechanisms are dopamine neurons (in the ventral tegmental
area and substantia nigra; Schultz, 2002; Montague et al., 2004;
Schultz, 2007) or acetylcholine (in the basal forebrain and
brainstem; Pennartz, 1995; Warburton et al., 2003).

Once the network has received feedback about the chosen
action a, the learning rule changes the connections of the network
in order to decrease the reward prediction error for this action.
Plasticity of a specific connection wkl from unit k to unit l
depends on four factors: (1) the presynaptic activity g(p∞

k
), (2)

the postsynaptic membrane potential p∞
l
, (3) the activity of the

accessory unit l 1p∞
l
, which represents the influence of unit l on

the activity of a, and (4) the reward prediction error δ, leading to
the following synaptic learning rule:

1Wkl = η · δ · 1p∞l · fl(p
∞
l ) · g(p∞k ) , (9)

where η denotes the learning rate. Note that the signals that
determine plasticity are all available locally in the cortical column
l and that Equation (9) implements a form of Hebbian plasticity
because it depends on the product of presynaptic activity r∞

k
and a function f (·) of the postsynaptic activity p∞

l
. The form

of f (·) differs between excitatory, inhibitory and modulatory
connections projecting to column l and is determined by the core
equations that cover the dynamics of the cortical columns. We
get:

fexl (p∞l ) = (β − p∞l ) · (1+ γ · (Imod
∞ )l) , (10)

fmod
l (p∞l ) = γ · (β − p∞l ) · (Iex∞)l , (11)

finhl (p∞l ) = −(ζ + p∞l ) (12)

see Brosch et al., 2015, for further details and for the derivation
of this learning rule and its connection to the Almeida-Pineda
algorithm for recurrent backpropagation; Almeida, 1987; Pineda,
1987).

This model structure served as the central building block for
the learning of connectivity weights to maximize the predicted
reward for associated motor activities generated in behavioral
experiments.

Extended RELEARNN: Dynamic Control
In order to model serial reversal learning, we extend the basic
RELEARNN network to a hierarchical multi-expert architecture
inspired by ideas outlined in e.g., Jacobs et al. (1991a,b);

Pennartz (1997); Graybiel (1998). We divided the network
into several components organized in a hierarchical manner: a
basis network, which receives the input and achieves strategy-
independent sensory feature extraction, several expert networks,
which learn the sensory-to-motor mapping, and a dynamic
control network, which selects among the experts (see Figure 3).
Thus, the network solves the problem of serial reversal learning
by acquiring several behavioral strategies, optimally one per
reward contingency, each of which is instantiated by a different
expert network. These subdivisions are established by restricting
connectivity within the network. The units in each expert
network receive excitatory input from and send modulatory
feedback to the basis network, but there are no connections
between the experts. Thus, an important property of our network
design is that learning not only affects the currently active expert
network, consisting of 50 units each, but also the sensory basis
network consisting of 200 units1.

The basis and expert networks consist of recurrently
connected layers. The basis network consists of two layers. Units
in both layers can excite/inhibit and receive modulatory feedback
from every other unit in the next layer (c.f. Figure 3). Units in the
second layer of the basis network engage in a mutual competition
which—as any other connection—is subject to learning. The
expert networks consist of one association layer and two motor
units which are meant to encode the motor programs relevant
to the task, i.e., to shuttle or to remain (gerbils task) or to press
the left or right button (human experiment). Expert networks can
providemodulatory feedback to the last layer of the basis network
and receive feedforward excitation/inhibition. Thus, regardless
of which expert network currently determines the response, all
expert networks can influence the basis network.

The motor units of each expert network predict the reward
values of the associated actions. Therefore, interference effects
could easily arise, impairing the ability of each expert to learn
independently of the others. The dynamic control network
prevents this by inhibiting the output units of all expert networks
but one. This is achieved by a competitive field that controls the
motor units by release from inhibition (see Figure 4).

The units in the competitive field implement a winner-take-
all mechanism (WTA). The network can select expert networks
strategically by learning appropriate weights for the connections
from the bias to the winner-take-all units. The weights w are
learned according to the rule in Equation (13).

1w = p∞B · (p∞WTA − w)+ σ · δ · (c− w)+ δ · ν (13)

where p∞B is the activation of the bias unit at equilibrium, p∞WTA
are the activations of the WTA units at equilibrium, δ is the
prediction error, ν is a noise term and the constants c and σ

are model parameters, which control how quickly the model
switches experts in response to large prediction errors. Thus,
while the prediction error is low, the learning rule behaves
like outstar learning (Grossberg, 1980) and learns to predict

1The reduction in the number of units being employed at each processing stage,

or model area higher up in the hierarchy, roughly corresponds with the pyramidal

structure of sensory networks in a series of areas (Uhr, 1972).
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FIGURE 3 | Structure of the extended network. Different motor mappings are realized by multiple expert networks, each of which comprises 50 units. All expert

networks receive input from the same sensory basis network. Basis network and expert networks together correspond to an original RELEARNN network (see

Figure 1) with restricted connectivity. Additionally, a dynamic control network (DCN) inhibits all experts but one. The structure of the DCN is detailed in Figure 4.

the outcome of the WTA. This leads to a repeated selection of
the same expert network. If, on the other hand, the prediction
error rises, the weights are attracted toward the constant c
and the selection becomes more noisy, enabling other units to
win the competition and activating different expert networks.
Consequently, the learned bias weights act like working memory,
as they enable the system to remember to which strategy it
currently adheres. The bias weights are reset after a higher than
usual prediction error occurs. This corresponds to a reorientation
of this working memory resource and bears resemblance to the
orienting system in adaptive resonance theory (Carpenter and
Grossberg, 1993, see Section 4.3).

Simulation Parameters
Experiments utilized frequency modulated auditory stimuli
differing in duration, intensity, frequency range, direction of
frequency modulation and speed of frequency modulation.
Stimuli were encoded using a population code which in our case
consisted of two units for each stimulus dimension. Thus, stimuli
in our simulations were encoded by ten binary units. We used
the same stimulus configuration as in the human experiments
in which a combination of two stimulus dimensions was task
relevant. Thus, the model had to learn to ignore the other three
stimulus dimensions.

We simulated two different networks, one with multiple
(three) experts and a dynamic control network and one network

with a single expert and without dynamic control. As in Figure 3,
200 units were used in the sensory basis network and 50 units
were used per expert network.

Model parameters were fitted empirically to reproduce the
first learning phase of the human data. We note, however,
that results did not critically depend on the precise parameter
choice. We set the rewards in successful trials to ̺ = 0.4
and to ̺ = 0 in erroneous trials. The learning rate was set
to η = 0.2, a momentum term α = 0.9 was used to speed
up learning, the softmax temperature (c.f. Equationn 6) was
set to τh = 0.15 and the parameters of the neuron model
(Equation 1) were set to α = β = δ = 1 and γ =

4. Connection weights were initialized by uniformly drawing
numbers from [0, 0.2] except for connections to the output
layer which were drawn from [0, 0.3] to speed up learning and
the modulatory connections which were drawn from [0, 0.1].
The inhibitory weights in the dynamic control network were
initialized to 4, the maximumweight permitted in the simulation.
The excitatory bias weights were initialized in the range [0.8, 1.2].
The parameters of the control network learning were set to
σ = 0.9, c = 0.2 and ν was uniformly drawn from
[−0.01, 0.01].

Each learning phase (the initial learning phase (Initial), the
phase after the first reversal (REV01) and after the second
reversal (REV02)) consisted of a fixed number of 160 stimulus
presentations.
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FIGURE 4 | Structure of the dynamic control network. Motor units are

inhibited by suppression units. One of the suppression units is itself

suppressed by the winning unit of a winner-take-all circuit, releasing the motor

units of a single expert network from inhibition. Which of the winner-take-all

units wins is determined by the connections from a tonic bias unit. The

strengths (w) of these connections from the bias unit to the winner-take-all

units are learned from the history of the reward prediction error, enabling the

network to learn the strategy selection. The dashed box corresponds to the

Dynamic Control Network box in Figure 3.

3. RESULTS

3.1. Experimental Results
We conducted serial reversal experiments with humans and
gerbils (compare Section 2.1). In both experiments, the
performance criterion was reached faster in the second than in
the first reversal.

Human Reversal Learning
We recruited 21 participants, of which 16 (76%) reached the 80%
correct response criterion in all three phases, including the 2nd
reversal phase (Figure 5, left panel). Three out of 21 participants
(14%) were not successful in the initial learning phase. Another
2 subjects were not successful during the first reversal phase. The
results of the remaining participants are shown in a composite
arrangement in Figure 5 (left panel).

Pairwise comparisons between the first blocks of the 2nd
(REV02) and 1st (REV01) reversal phase were evaluated and
revealed significantly better performance during the 2nd reversal
block (p= 0.01, 2-sided paired Wilcoxon test). This improved
performance was also reflected in the time to criterion (Figure 5,
right panel) which was reached significantly faster in the 2nd
compared to the 1st reversal phase (p= 0.03, 2-sided paired
Wilcoxon test).

Animal Reversal Learning
Fifteen animal subjects out of 18 that were trained in the serial
reversal task were classified as “learners” since they reached
hit rates over 70% during the discrimination and sequential
contingency reversals. For each animal an individual criterion
was calculated as 80%median of the overall attained hit rate from

all training sessions. The average individual criterion level was
at 64% hit rates with 95% confidence intervals [59%, 70%]. One
animal out of the 15 animals reaching the 70% hit rate criterion
was classified as an outlier, as its time to criterion value in the
REV01 phase was larger than 4 times the standard deviation
of the group. Note that including this animal did not affect
the Wilcoxon statistic significantly, but lead to an even larger
averaged time to criterion for REV01.

Similar to humans, gerbils showed a significantly shorter
time-to-criterion when the second reversal was compared to the
first reversal phase (p = 0.023, 2-sided paired Wilcoxon test;
Figure 5, bottom right). The improvement was also reflected by
the significant difference (p = 0.002, 2-sided paired Wilcoxon
test) between the hit rates of the first session in the respective
phase (REV02 vs. REV01). Different learning speeds in the initial
learning phase are discussed in Section 4.6. In addition, animals
showed a significantly shorter time-to-criterion when the initial
discrimination learning was compared to the first contingency
reversal (p= 0.035, 2-sided paired Wilcoxon test).

3.2. Simulation Results
To obtain a quantitative comparison to the experimental data,
simulation runs of the model were similarly analyzed for their
performance. Simulation runs were classified as having learned
the task (learner) if they responded correctly in over 70% of the
trials in each of the three phases. Time to criterion was assessed as
the ordinate of the first linear intersection between the criterion
level (80%) and the rate of correct responses (over blocks of 40
trials).

Out of 100 simulation runs of the model version without
DCN, 53 were classified as “learners.” There was a significant
decrease in the required number of blocks to reach the criterion
from the initial phase to REV01 [paired t-test, t(52) = 5.78, p <

0.001], but no change from REV01 to REV02 [paired t-test,
t(52) = 0.14, p = 0.891; Figure 6, upper panels), which is not
consistent with the experimental data. Using the model version
with DCN, 73 simulation runs passed the learning criterion. Like
in the model without DCN, there was a significant decrease in the
number of blocks needed to reach a criterion of 80% performance
[paired t-test, t(72) = 6.26, p < 0.001] comparing the initial
learning phase to REV01. In accordance with experimental data
there was also a significant decrease from REV01 to REV02 for
this model [paired t-test, t(72) = 2.11, p < 0.038; Figure 6, lower
panels].

Consequently, only the model with the DCN reproduces
the experimental result of a faster time to criterion for REV02
compared to REV01. This is in line with the theoretical
considerations outlined before. In contrast to a network with a
single expert, the model with DCN and multiple expert networks
can re-employ the first expert network instead of degrading
existing and establishing new connections.

4. DISCUSSION

4.1. Main Findings
In this study, we propose a dynamic control mechanism
which can selectively activate specific expert networks while
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FIGURE 5 | Humans and gerbils are faster in the second reversal phase as compared to the first reversal phase (REV01/REV02). Left: Average hit rates

(for gerbils) and average rate of correct responses (for humans). Right: Time to criterion. Top: Human data. Bottom: gerbil data. Average hit rates reached asymptotic

performance faster during each reversal phase. Error bars represent standard errors of the mean. Initial: initial learning, REV01: first reversal, REV02: second reversal.

silencing others for independent strategy acquisition during
serial reinforcement learning. We used animal and human
experimental paradigms together with computational modeling
and show that this extended model explains the behavioral data
better than a standard reinforcement learning scheme when
the agent is forced to change its behavioral strategy multiple
times. The learning mechanism of the DCN exploits the sudden
rise of the reward prediction error following immediately after
a reversal. Such a situation is different from those conditions
being investigated in, e.g., operant conditioning with respect
to different homeostatic drives (Harlow et al., 1950; Grossberg,
1971; Chang and Gaudiano, 1998; Keramati and Gutkin, 2011)
and also unlike context changes reflecting a significant variation
in the environment in which otherwise the same behavioral
operation is demanded (Bouton, 2002; Bouton and Todd, 2014).
Rather, the agent needs to register a significant variation in the
evaluative conditions within the environment.

The main contributions of the study are three-fold. First,
we demonstrated that the reinforcement learning rule for
establishing perceptual grouping mechanisms presented in
Brosch et al. (2015) is also suitable for behavioral learning.
Second, we present experimental findings from animal as well
as human studies using a behavioral task that induces multiple
strategy reversals for the agent. The results showed that after
the strategies have been successfully established, the previously

trained strategy after a second reversal can be adopted faster
than the new strategy after the first reversal. The subjects
learned to transfer previous experiences to a new reversal phase.
Third, based on these experimental findings we observed that
a neural network trained with standard reinforcement learning
mechanisms is not sufficient to account for the faster strategy
adoption after the second reversal. In such a scheme, a sudden
change in the received reward leads to a large difference in
predicted and received reward which in turn leads to a complete
unlearning and re-establishing of connections related to the
motor-mapping. We extended the basic model architecture
by adjoining a control mechanism which dynamically selects
one of multiple expert sub-networks, which determines the
current action. This dynamic control network (DCN) qualitatively
accounts for the reported experimental findings.

4.2. Relation to Previous Experimental
Findings and Models of Learning Action
Repertoires
Our proposal for an extended network builds on previous work
on reinforcement learning and multi-expert architectures. For
example, Jacobs et al. (1991b) suggested a supervised learning
scheme based on feedforward processing that establishes a system
of experts, each specialized to solve a specific subtask in an
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FIGURE 6 | Model with DCN explains faster learning speed in second reversal (REV02) compared to REV01. Performance data of simulation runs without

DCN (upper panels) and simulation runs with DCN (lower panels). The upper left panels show the average rate of correct responses of the 53 simulation runs that

reached 70% performance in all three learning phases (“learners” ). The upper right panel shows the time to criterion. Unlike humans and gerbils the model without

DCN did not improve from the first to the second reversal phase. From the model with DCN, 73 simulation runs reached criterion to classify as “learner” (lower panels).

In accordance with the experimental data within these simulations the criterion was reached significantly faster, comparing the first reversal phase to the second one

(lower right panel). Error bars represent standard errors of the mean. Initial: initial categorization learning, REV01: first reversal, REV02: second reversal.

overall complex interpretation task. While each expert receives
the input simultaneously to generate different outputs specific
for the respective subtask, a gating network learns in parallel to
control the selection of each expert. Graybiel (1998) argued that
cortico-striatal mapping in habit and action learning may rely on
such a multiple expert architecture, identifying the striatum as
a possible substrate of the experts, which can be modulated by
dopamine signals.

Similarly, Frank and Badre (2012) proposed an elaborate
hierarchical reinforcement learning model that implements a
Bayesian mixture-of-experts approach. This model is able to
prioritize information, and thereby instantiate different stimulus-
response mappings, depending on context. For example, the
model could learn to respond to stimulus orientation in the
presence of one colored box, while it would respond to stimulus
shape in the presence of a different colored box.

Another multiple-experts architecture is the multiple model-
based reinforcement learning algorithm (Doya et al., 2002).
However, the experts are not coordinated by a single gating
network. Instead, each learner is paired with a world model,
which predicts the environmental state (e.g., the movement of
prey). The influence of each expert as well as its propensity

to learn are scaled by the correctness of the prediction of the
associated world model. Only the experts associated with a
correct prediction learn and decide the action outcome, making
partitioning of the problem space possible. This architecture
excels at control tasks, in which the correct action depends on an
observable state of the environment, which can be predicted by
the world models (Doya et al., 2002). However, in settings like the
reversal learning tasks in this study, where the only external signal
that carries information about the task state is the reward itself,
the world models do not have sufficient information to select
appropriate experts. A similar concern applies to other model-
based reinforcement learning models (for a review see Doll
et al., 2012): they canmodel serial reversal learning, provided that
sufficient sensory information is available to learn to predict the
world state.

Our network shares several properties with these previous
proposals in that the expert networks learn distinct behavioral
strategies and compete for action selection. This competition is
resolved by an additional (sub-)network that selectively gates or
inhibits the experts. However, there are important differences
between our framework and the cited models. For example,
unlike the model of Jacobs et al. (1991b), we here utilize a
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reinforcement scheme for learning in which the output selection
is based on a stochastic selection mechanism. Also, unlike
these previous models our reinforcement learning adapts not
only the expert network but also the hierarchically organized
basis (sensory) network for feature detection. As indicated
in Figure 2 the reward-based learning signal is distributed
globally to minimize the reward prediction error for those
representations that contribute to the action category. This leads
to a continuous adaptation—although with small amounts—
of the feature extraction mechanisms when different experts
are activated. In other words, the sensory input processing is
adapted to improve the function of the currently active expert
network.

Themost crucial difference to previous work is themechanism
of the dynamic control network. In other proposals, the
supervisory network typically receives a specific contextual input
that indicates the current task state. Jacobs et al. (1991a) provide
a special input signal that indicates the current task state and
in Jacobs et al. (1991b) the gating network received the same
input as the expert networks. Similarly, in Frank and Badre
(2012) one stimulus dimension explicitly encodes the current
task state. In contrast, the dynamic control network in the current
proposal learns solely based on the reward prediction error and
can, therefore, also learn successfully in situations in which no
external cue indicates which strategy is currently required. This
is the case in reversal learning experiments, in which the stimuli
do not provide cues about the current task.

Another model in which experts can be switched in the
absence of contextual information is outlined in Wilson and
Niv (2012); Niv et al. (2015). The authors describe two models,
one of which uses optimal Bayesian inference to estimate the
current rewarding dimension and feature, taking into account
that the reward contingencies may have switched. The other
model is sub-optimal but more efficient. It selectively attends
to a specific stimulus dimension for some time and learns the
reward contingencies for this dimension. Additionally, the model
is able to shift attention to another stimulus dimension using
Bayesian hypothesis testing. Thus, these models can explain
reversal learning in which the relevant stimulus dimension
changes, such that, for example, the participants first have to
react to low-frequency sound and later to low-intensity sounds.
However, in paradigms where the relevant stimulus remains the
same and only the correct action changes, such as the human
experiments described in this study, these models do not predict
faster learning after the second reversal. Notably, the authors tie
their model to specific brain areas, including prefrontal cortex
and the basal ganglia.

Another Bayesian model (Donoso et al., 2014) monitors the
reliability of several alternative strategies simultaneously and
acts according to the one that is currently most reliable. If a
contingency change renders all current strategies unreliable, then
an exploratory stage is initiated in order to learn a new strategy.
Crucially, both the strategy learning and switching are guided by
the prediction error, as in our model and in themodel of Niv et al.
(2015). The authors showed that the processes of their model
correlate with activations in the prefrontal cortex and the basal
ganglia (Donoso et al., 2014).

Recently, it has been suggested by O’Reilly and Pauli (2010)
that representations in prefrontal cortex are dynamically gated
to determine when representations are updated or preserved.
The subnetwork responsible for this gating process consists of
the interconnected basal ganglia, frontal cortex, and thalamus.
It is suggested to adaptively control action repertoires to build
a flexible sequence of actions as part of procedural knowledge
(Graybiel, 1995). The modulation of such action templates
is suggested to evaluate the reinforcement of repertoires.
These principles are the basis for more recent investigations
which demonstrate that striatal neuron activity is involved in
establishing (encoding) and adaptation (recoding) of actions
and activities, considered as procedural memories (Barnes et al.,
2005). Interestingly, such learned action repertoires, considered
as experts with focused tuning properties, could be reactivated
after they had been selectively shut off (compare also Mink, 1996,
for an earlier overview). Such a switching behavior necessitates
an internal monitoring mechanism to evaluate the success of a
specific program. In our network architecture, such a monitoring
function is conducted by the DCN which selectively inhibits
specific expert networks or action categories. We suggest that
such a monitoring function can be learned using only the reward
acquired by the agent. If the prediction error for the reward is
consistently high, the current strategy is not appropriate and a
switch occurs due to a shift in biasing top-down input to the
competitive field of the DCN. This resembles the functionality
of the orienting system which was suggested as part of adaptive
resonance theory (Grossberg, 1980, 1987) that uses a vigilance
mechanism that is triggered by a top-down signal and encodes
the expected matching input. In the case of a mismatch the
input and top-down attentional expectation are dissimilar and
trigger a reset signal that shuts off the currently active category
cell representation. In the scheme proposed here, we suggest
that the selection signal is not generated by an evaluation
of the signal characteristic but rather by the obtained reward
over an extended temporal period of the agent’s interaction
with its environment. Taking findings obtained from long-term
recordings of sensorimotor striatum into account (Barnes et al.,
2005), our results suggest that cortico-ganglial circuits of learners
reliably encode changes in task representations while these
correlates would be missing in subjects that fail to solve the task.

4.3. Action Category Selection by a
Dynamic Control Network
A key motivation of the proposed network architecture and its
computations is derived from layered bidirectionally coupled
neural mechanisms in adaptive resonance theory (ART),
originally proposed by Grossberg (1980). ART principles have
originally been proposed to explain mechanisms of stable
online category learning in neural systems. Later the framework
was operationalized to realize an online associative memory
mechanism for unsupervised learning of categories in object
recognition tasks (see Carpenter, 1989). A core element of
this framework is the specification of mechanisms which allow
a neural system to automatically acquire new knowledge (by
assigning new category nodes to novel input) and to adapt
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existing nodes to input variations. Input and category layers
are connected bidrectionally. While feedforward connections
convey input feature representations, feedback signals in ART
architectures help solve the stability-plasticity dilemma. Top-
down signals carry predictions from category nodes of the
expected input feature representation. As long as the feature
representation matches the top-down prediction, learning by
weight adaptation takes place for the active category. However,
if representation and prediction produce a mismatch, the
currently active category is switched off to allow another
category node (with better matching representation) to become
active or to recruit a new category node. This match-adapt
and mismatch-reset principle keeps those previously acquired
representations stable and prevents catastrophic forgetting when
existing category representations are overshadowed by new
input.

Building upon this key framework, we propose a similar
mechanism for the establishment and dynamic selection of expert
networks. Similar to the inhibition of the active category after a
mismatch in ART, the current behavioral or motor category is
suppressed in response to a high prediction error. This prevents
catastrophic forgetting after reward contingency changes. We
suggest here that categories in our system are defined by small
subnetworks (of a few hundred model neurons) which receive
input feature representations from sensory processing. These
subnetworks can be considered as expert networks of the kind
as proposed by Graybiel (1995). In our conceptual framework
we suggest that a category node (at the output layer of the
model network) represents the interface to a competitive layer
of categories to be selected. Here, categories encode predicted
reward values (instead of object categories) which are compared
to the achieved reward. The reward indicates the appropriateness
of the (motor) action selected by the system. The comparison
between predicted reward, viz activity of the selected category
node, and the acquired reward can be considered as an orienting
system with vigilance as in ART systems, which is activated
when new and unexpected events occur and induce mismatches
between bottom-up input and top-down expectation. Here we
propose that such an orienting system is realized in a cascaded
subsystem to steer a reinforcement learning mechanism. The
learning itself is achieved in three separate phases, namely the
activation and selection of the output category, the tagging
of those synaptic weights that were involved in the overall
network computation to calculate the predicted reward at the
output, and the global adaptation signal (difference between
predicted and received reward) effective at the tagged synapses.
In ART this orienting system is suggested to include the non-
specific thalamus and the hippocampal system (Carpenter and
Grossberg, 1993). For themonitoring of the reward accumulation
for sequences of behavioral choices we argue that a different
complementary subsystem evaluates the success of the reward
acquisition. A monotonic trace of rewards indicates ongoing
success of behavioral choices. In case of strong deviations
from such a trace, conditions might have changed and/or
selections might no longer be appropriate and should therefore
be adapted. The current motor category with its associated expert
network is switched off and another subnetwork is selected. This

orienting subsystem has been dubbed Dynamic Control Network
(DCN).

Unlike the vigilance level of the orienting subsystem in
ART, the DCN itself is subject to learning, resulting in a bias
of competition between motor categories. In a nutshell, the
competition is biased to further establish a routine behavioral
selection when the predicted and accumulated reward fulfill
a matching condition. The neural correlates of this biasing
mechanism remain to be investigated. In the current model, we
implemented the bias using a single model unit, which projects
to the competitive field of the DCN with weights learned using
an outstar-like learning scheme (Grossberg, 1980), which fulfills
two purposes: it stabilizes the competitive field while the reward
prediction error remains low and resets the competition once the
prediction error rises. A neuronal population that implements
this mechanism would be expected to show activity during the
reset phase when the prediction error is high. Furthermore, its
activation strength should predict strategy reversals. Whether
such a population can be found remains to be investigated in
future work.

The DCN itself is hierarchically organized to implement a
dis-inhibitory network that releases a category from inhibition.
Such organization resembles the cascade of different nuclei in
the basal ganglia system. In particular, dis-inhibitory chains of
striato-nigral (Pars reticularis) as well as striato-pallidal (Pars
interna) projections to the ventrolateral thalamus are involved in
dopaminergic control of the cortico-striatal loop (Gurney et al.,
2001a). We suggest that the proposed networks, responsible for
the selection of proper behavioral motor templates, might be
selectively activated and concerted by the action of subnetworks
of the basal ganglia. Furthermore, the learning of sensory
representations as well as motor action templates is based on
a temporally and spatially distributed system of modulatory
influence that controls the adaptation of connection weights in
the sensory as well as the behavioral control systems.

An alternative approach to implement dynamic control over
behavioral strategies has been taken by Maniadakis et al. (2012).
They used genetic algorithms to instantiate networks that can
activate one of several fixed actions, retain the current strategy
in a working-memory-like manner, and switch between strategies
in response to punishment. Due to their evolutionary approach,
learning and control are separated into different phases. Thus,
their model applies to a somewhat different paradigm than
the one explored here, in which the agent knows the possible
reward contingencies and does not need to learn them on
the fly. Interestingly, Maniadakis et al. (2012) observed that a
hierarchically structured network is much more likely to learn
switching strategies correctly.

4.4. Differences in Reinforcement
Paradigms
We show that the proposed architecture can qualitatively
capture the strategy-switching behavior and reestablishment of
earlier strategies observed in humans and gerbils. Nevertheless,
some differences between the paradigms for human and gerbil
experiments have to be taken into account when interpreting the
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results. The main differences pertain to the nature of the reward
(positive and negative reinforcer), the reward distribution for
non-target sounds, and the task instructions.

In the gerbil task, negative reinforcers (foot shocks)
were administered, whereas positive and negative reinforcers
(feedback utterances) were used for human participants. As was
argued above (Section 2.1), we assume that the same learning
mechanisms underlie positive and negative reinforcement, and
treat the release of fear (Mowrer, 1956) after a successful
avoidance response as a reward. Thus, here we only model
learning by reinforcement. In the current formulation, the model
does not learn from punishment (i.e., negative reward values)
alone, as the motor units predict the reward directly using
their mean spike rate, which is strictly positive. In order to
model learning from punishment without the assumption of a
negative reinforcement effect, a further transduction step would
be required to map the mean spike rate onto a range that includes
negative values as well.

In addition to the absence of positive reinforcement in the
gerbil paradigm, the distribution of rewards also differed from
the human experiments: whereas human participants received
negative feedback if they responded incorrectly to a non-target
stimulus, the gerbils did not receive any reinforcer during the
NoGo trials. Consequently, shuttling on every trial irrespective
of the stimulus would constitute an optimal strategy for this
task as the foot shock would be avoided on every trial. This
holds true under the assumption that there is no behavioral bias
against shuttling. Such bias, for example, translates to a decreased
reward value after shuttling, rendering indiscriminate switching
suboptimal. The experimental evidence shows that gerbils did not
shuttle on every trial but reached the discrimination performance
criterion between Go- andNoGo-tone, indicating that such a bias
exists.

Finally, the experiments differed in the instructions which
the participants received. Human participants were instructed
to respond to target category tones with button presses. They
were not told about the reversals or the target category, but
the instructions provided an initial understanding about the
task that the gerbils and the model lacked. This is reflected in
the faster learning speeds of gerbils and the model after the

first reversal, compared to the initial learning phase. During
the initial learning, the gerbils and the model had to learn that
there was a meaningful distinction between target and non-target
tones. This knowledge could be transfered to the second learning
phase such that, e.g., in the model the trained sensory basis
network builds separable feature representations that support the
decision-making.

Furthermore, the human participants may have used their
abstract knowledge about the task structure and relied on
higher cognitive functions. For example, after experiencing a
contingency reversal in the second phase of the experiment
they may have predicted a further reversal in the third phase
and used cognitive control to inhibit the current strategy (for
possible mechanisms, see Mansouri et al., 2012). Such additional
influences on the behavioral strategies are not considered in the
current form of the model but may be explored in future work.

4.5. Role of the Sensory Basis Network
An important feature of our model is the sensory basis network,
which provides inputs to all expert networks. It corresponds
to a sensory processing stream, e.g., in auditory cortex, which
can acquire sensory representations that are relevant for the
task, but not specific to the learned strategies. Notably, the
sensory basis network also learns based on the back-propagated
reward prediction error. This is in line with experimental findings
indicating that early auditory cortical areas are activated in
response to dopaminergic reward signals (Puschmann et al.,
2012) and show learning-dependent plastic changes (Weis et al.,
2013).

Therefore, we expected that the sensory basis network would
develop representations which differentiate well along stimulus
dimensions that were task relevant (i.e., stimulus duration and
modulation direction) and which are not very discriminative
along stimulus dimensions that were not relevant to the task. This
effect can be observed in Figure 7. Activities in the basis net are
highly similar for stimuli that differ only along dimensions which
are not relevant to the task. Furthermore, correlations between
stimuli that have a different meaning with respect to the task (i.e.,
that require different behavioral responses) are low, indicating
that the sensory basis network already makes discriminations

FIGURE 7 | Left: Activities in the trained sensory basis network when stimulated with all 32 possible stimuli. Notably, stimuli that only differ along dimensions which

are not task relevant induce highly similar activities. Right: Correlation matrix between sensory basis network activities for the 32 stimuli. Notably, correlations for

stimuli that differ only along task irrelevant dimensions are high. Furthermore, correlations for stimuli that require different actions (type 1 vs. types 2, 3, and 4) are low.
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that are task relevant. This supports strategy learning in the
expert networks.

Thus, our model predicts that similar, task-relevant sensory
representations should be found in sensory brain regions, e.g.,
in auditory cortex. We would expect representations of stimuli
that belong to the same task category, i.e., that differ only along
dimensions that are non-discriminative with respect to the task,
to show much higher correlations among each other than with
representations of stimuli that belong to a different task category.
While this hypothesis still requires further experimental work,
there are indications that task-dependent representations exist in
sensory cortices (Ohl et al., 2001; Weis et al., 2013).

The assumption of a sensory basis network has another
consequence concerning non-discriminative stimulus
dimensions. A multi-expert model without sensory basis
network predicts that learning speed is independent of
whether new stimulus dimensions become task-relevant after a
contingency change. As each expert learns the complete sensory-
to-motor mapping independent of all others, a newly recruited
expert can neither exploit the sensory categories learned by other
experts, nor can its learning be impaired by them. In contrast, in
architectures with a sensory basis network experts share sensory
categories. Thus, it should take longer to learn a new task that
requires new sensory categories to be formed because a new
stimulus dimension becomes relevant, whereas learning of a task
that exploits previously learned sensory categories will be faster.
These predictions can be used in future experimental work in
order to determine whether human and animal learners do
indeed rely on a sensory basis network as predicted in our model.

4.6. Possible Improvements and
Extensions
Here, we introduced the concept of a dynamic control network
(DCN) that “switches” expert networks once the reward and the
expected reward (as calculated by the network) differ strongly.
The results presented here indicate that the mechanism of a DCN
can explain the ability of the system to recover previously learned
responses and quickly regain behavioral performance levels after
contingency changes. However, the architecture of the DCN is
currently rather simple and leads to several limitations, which
should be addressed in future work.

The DCN currently uses hard-wired connections to inhibit
the expert networks, similar to the gating proposals in Jacobs
et al. (1991a,b); Graybiel (1998). Therefore, it implements a
selection mechanism for a fixed number of expert networks. In
the simulations reported here, we used a network architecture
with three experts. However, in biological networks the number
of experts is most likely not constrained in this manner. Thus,
it remains to be investigated how the current DCN mechanism
can be generalized to an architecture in which experts emerge
dynamically during learning. One possible approach would be
to have the DCN units inhibit random, overlapping portions
of the network instead of clearly separated expert networks
(Brosch and Neumann, 2012). In this case, the DCN would steer
network dynamics in a more variable way, selecting between
different attractor states of the network. This is conceptually

similar to recurrent neural networks with a parametric bias (Tani
and Ito, 2003; Tani et al., 2004), in which a top-down input
signal (the parametric bias) is used to steer network dynamics,
making it possible to switch and even combine previously learned
behaviors.

In this context it is important to consider that a high number
of expert networks may require a different selection mechanism.
Currently, our model selects new experts by random search,
which would not work reliably for architectures with many
experts, as the average number of trials required to find a
correct, previously learned strategy grows with the number of
expert networks. An alternative to random selection would be to
evaluate several expert networks on each trial and to select the
most reliable one, similar to Donoso et al. (2014). It remains to
be examined how many alternative strategies human and animal
learners can learn in parallel, i.e., how many expert networks are
required. Donoso et al. (2014) found that a low number of two
to three strategies modeled their subjects’ performance best, but
in their model further inactive strategies could be stored in and
retrieved from long-term memory.

An important advantage of our network is that it can learn
to switch experts based on the reward prediction error alone
and does not require additional sensory contextual information,
similar to Bayesian multi-strategy learners (Donoso et al., 2014;
Niv et al., 2015). Thus, the proposed model constitutes a first step
to understanding neuronal mechanisms for error-based strategy
selection. This is crucial in serial reversal learning in which
no contextual cues predict contingency changes. Nevertheless,
there are also many scenarios in which environmental cues could
be exploited to select the appropriate task state. If there are
environmental cues indicating a reversal (e.g., ambient lighting
changes from green to red) it might be useful to learn a biasing
function from the regular input to the winner-take-all units of
the DCN. This is conceptually similar to the gating mechanism
in Jacobs et al. (1991a). In this way both forms of strategy
switching, error-based and context-based, could be incorporated
in one model. To what extend the two mechanisms interact
requires further investigation, e.g., experiments in which context
is indicative of some contingency changes but not of others.
It remains to be seen whether participants rely on context
and error information equally or disregard one in favor of the
other.

Furthermore, the impact of training different expert networks
atop a common basis network needs to be further investigated.
From a theoretical point of view, this problem is related to
recent proposals in the deep learning community trying to train
neural networks for multiple objectives, like simultaneous region
segmentation and object recognition (Girshick et al., 2014; Ren
et al., 2016).

Conclusion
To summarize, the present contributions are three-fold: First, we
demonstrated that the reinforcement learning rule presented in
Brosch et al. (2015) is also suitable for behavioral learning as
part of a more complex model architecture. Second, we present
experimental findings from animal as well as human studies on
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reversal learning. We show that previously learned stimulus-
response mappings can be readopted faster in serial reversal
learning. Third, we observed that a standard reinforcement
trained neural network cannot account for the faster learning
after the second reversal and suggest an extended architecture
that captures the results. It consists of a sensory basis network
and multiple expert networks, each of which learns a distinct
stimulus-response mapping. During each trial, one expert is
selected by a dynamic control network to determine the
response and to learn based on the reward, while all other
experts are inhibited. The model is conceptually similar to
other multiple-expert architectures (Jacobs et al., 1991a,b;
Frank and Badre, 2012). However, in our model the dynamic
control is learned based on the prediction error alone and
does not require additional context information. A possible
neural substrate for the proposed learning mechanism comprises
sensory and association cortices, implementing the basis network
for feature extraction, prefrontal cortex as the substrate for the
expert networks, and the basal ganglia, realizing the dynamic
control network. This hypothesis is consistent with previous
proposals about the roles of the prefrontal cortex and basal

ganglia in behavioral and reinforcement learning (Graybiel,
1998; O’Reilly and Pauli, 2010; Frank and Badre, 2012) and
action selection (Redgrave et al., 1999; Gurney et al., 2001a,b).
Thus, we believe that we have identified a mechanism for
simultaneous acquisition and dynamic control of multiple action
repertoires.
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