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EEG source imaging enables us to reconstruct current density in the brain from the

electrical measurements with excellent temporal resolution (∼ ms). The corresponding

EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to

the fact that the number of EEG sensors is usually much smaller than that of the potential

dipole locations, as well as noise contamination in the recorded signals. To obtain a

unique solution, regularizations can be incorporated to impose additional constraints

on the solution. An appropriate choice of regularization is critically important for the

reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity

and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the

reconstruction accuracy by integrating two recently proposed regularization techniques:

Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to

preserve the source edge and recover the spatial distribution of the source intensity

with high accuracy. Compared to the relevant total variation (TV) regularization, TGV

enhances the smoothness of the image and reduces staircasing artifacts. The traditional

TGV defined on a 2D image has been widely used in the image processing field. In

order to handle 3D EEG source images, we propose a voxel-based Total Generalized

Variation (vTGV) regularization that extends the definition of second-order TGV from 2D

planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2

regularization is utilized to promote sparsity on the current density itself. We demonstrate

that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than

ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm

based on the difference of convex functions algorithm (DCA) and the alternating direction

method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate

the advantages of the proposed method over other state-of-the-art methods in terms

of total reconstruction accuracy, localization accuracy and focalization degree. The

application to the source localization of event-related potential data further demonstrates

the performance of the proposed method in real-world scenarios.

Keywords: EEG source imaging, inverse problem, total generalized variation (TGV), ℓ1−2 regularization, difference

of convex functions algorithm (DCA), alternating direction method of multipliers (ADMM)
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1. INTRODUCTION

Functional brain imaging techniques have been developed to
evaluate brain function, e.g., memory and cognition, as well
as help diagnose and treat brain disorders, e.g., epilepsy,
depression, schizophrenia and Alzheimer’s disease. Ideally, a
good imaging technique needs to provide brain image of
both high temporal and high spatial resolution. Hemodynamic
imaging techniques such as functional Magnetic Resonance
Imaging (fMRI) and Positron Emission Tomography (PET)
have been widely used since they offer high spatial resolution
(Poldrack and Sandak, 2004). However, their temporal resolution
is limited on the order of seconds due to the relatively slow blood
flow response (Poldrack and Sandak, 2004). Furthermore, these
imaging systems require the subject to be restricted in a large
chamber, which limits their applications in the natural habitual
environment. On the other hand, brain imaging based on
electroencephalography (EEG) provides an alternative solution
that overcomes these limitations. Unlike fMRI and PET, EEG has
much higher temporal resolution in the range of milliseconds.
In addition, it is lightweight and portable, hence can be used
in various applications that require natural environments, such
as learning in a classroom. Nevertheless, EEG source imaging
suffers from relatively low reconstruction accuracy due to the
ambiguity of the underlying inverse problem (Baillet et al.,
2001). To mitigate this disadvantage, appropriate constraints
could be incorporated into EEG inverse problem to improve
reconstruction accuracy of the brain image.

In general, there are two types of models for EEG source
imaging: dipolar and distributed source model (Michel et al.,
2004). The dipolar model (Sidman et al., 1978; Scherg and
Von Cramon, 1986; Mosher et al., 1992) assumes that a small
number of focal sources are active so only a few parameters of
these sources need to be estimated. Since the number of unknown
parameters is usually smaller than that of the measurements,
the corresponding inverse problem is over-determined and
can be solved by non-linear optimization techniques (Uutela
et al., 1998). However, the source reconstruction is usually
highly sensitive to the initial values due to the high non-
convexity of the objective function. Furthermore, this model
is not able to handle the spatially extended sources, such as
that during the propagation of a seizure. On the other hand,
in the distributed source model (Hämäläinen and Ilmoniemi,
1984; Hämäläinen et al., 1993), the source space is divided
into a lot of voxels with fixed locations, and only the
activation in each location needs to be estimated. However,
due to a relatively small number of electrodes (∼102) and
a large number of potential dipole locations (∼104), the
corresponding inverse problem is highly under-determined and
results in infinitely many solutions. To obtain a unique solution,
regularization can be used to impose additional constraints on
the solution. The conventional minimum ℓ2-norm methods,
such as minimum norm estimate (MNE) (Hämäläinen et al.,
1993) and standardized low resolution brain electromagnetic
tomography (sLORETA) (Pascual-Marqui, 2002), use ℓ2-norm
of the current density as the regularization term, leading to a
solution with minimal energy. These methods usually have a

closed-form solution thus the computational cost is relatively
low. However, they share a limitation that the reconstructed
sources spread over a large area of the brain, resulting in a brain
image with low spatial resolution, i.e., proximal sources may
become indistinguishable in the solution.

To overcome the limitation of minimum ℓ2-norm methods,
sparse structure of the underlying source is explored to improve
the focalization of the source. Minimizing ℓ1-norm methods,
such as minimum current estimate (MCE) (Uutela et al., 1999)
and sparse source imaging (SSI) (Ding and He, 2008), were
proposed by employing ℓ1-norm of the current density as
the regularization, assuming that the source current density is
sparse with only a few active voxels (Figure 1A). Although the
focalization is greatly improved, these methods fail to estimate
the extent of the sources since the reconstructed source is over-
focused. To address this issue, efforts have been devoted to
exploring sparsity on transform domains of the current density,
such as the spatial Laplacian domain (Haufe et al., 2008; Vega-
Hernández et al., 2008; Chang et al., 2010) , wavelet-basis domain
(Chang et al., 2010; Liao et al., 2012; Zhu et al., 2014), Gaussian-
basis domain (Haufe et al., 2011), or variation domain (Adde
et al., 2005; Ding, 2009; Gramfort, 2009; Luessi et al., 2011; Becker
et al., 2014; Sohrabpour et al., 2016). Furthermore, in order to
obtain a local smooth and global sparse result, some approaches
impose sparsity on both the transform domain and the original
source domain. For example, Focal Vector field Reconstruction
(FVR) (Haufe et al., 2008) and ComprEssive Neuromagnetic
Tomography (CENTL) (Chang et al., 2010) impose sparsity
on the spatial Laplacian and the current density itself. It has
been shown that combination of these two regularization terms
improves the imaging results than using ℓ2-norm or ℓ1-norm
regularization alone. However, the Laplacian operator, i.e., the
sum of all unmixed second partial derivatives, tends to assign
high weight to the central voxel and relatively low weights to
its neighbors, which results in the over-smoothing effect of the
reconstructed image (refer to Section 4). Sparse Total Variation
(TV) methods, also known as TV-ℓ1 (Becker et al., 2014;
Sohrabpour et al., 2016), impose the sparsity constraint on both
the spatial gradient and the current density itself. They assume
that the current density distribution is piecewise constant, and
are able to preserve well the extent of the sources. However, due
to the piecewise constant assumption, the reconstructed current
density distribution is almost uniform in each subregion (so
called “staircasing effect”), which fails to reflect the intensity
variation of the source in space. As a consequence, these methods
have difficulty localizing peaks of the source, leading to relatively
large localization error.

The present study aims at reconstructing the location, extent
and magnitude variation of spatially extended sources with
high accuracy by employing more advanced regularization
techniques. We adopt the strategy that promotes global sparsity
and local smoothness simultaneously, and propose a Sparsity
and SMOOthness enhanced brain TomograpHy (s-SMOOTH)
method to improve reconstruction accuracy. More specifically, a
voxel-based Total Generalized Variation (vTGV) regularization
is employed to promote sparsity on the spatial derivative,
and the ℓ1−2 regularization is utilized to impose sparsity
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FIGURE 1 | Illustration of piecewise polynomial current densities in 3D

view and side view. (A–D) Impulse (sparse in itself), piecewise constant

(sparse in first spatial derivative), piecewise linear (sparse in second derivative),

piecewise quadratic (sparse in third derivative).

on the current density itself. The total generalized variation
(TGV) regularization (Bredies et al., 2010) has been shown
to outperform the Laplacian-based, wavelet-based and TV-
based regularizations in compressive sensingMRI reconstruction
(Knoll et al., 2011; Qin and Guo, 2013; Guo et al., 2014), image
deconvolution and denoising (Bredies et al., 2010; Qin et al.,
2014). Comparing to the TV, the TGV incorporates information
of higher-order derivatives, and therefore is better suited for
modeling piecewise smooth functions (Benning et al., 2013;
Bredies and Holler, 2014). Notice that the traditional TGV
is defined on a 2D image and its extension to an irregular
surface is challenging. In order to deal with the 3D cortex
surface, we define a voxel-based TGV (vTGV) regularization
which extends the definition of the second order TGV from
2D image to an irregular triangular mesh such as the cortical
surface. vTGV enhances the smoothness of the brain image and
reconstructs the spatial distribution of the current density more
precisely. Meanwhile, motivated by the performance of the ℓ1−2
regularization in compressive sensing reconstruction and other
image processing problems (Esser et al., 2013; Lou et al., 2014;
Yin et al., 2015), we incorporate the ℓ1−2 regularization into
the objective function. Numerical experiments show that ℓ1−2
regularization provides faster convergence and yields sparser
source image than the ℓ1-norm regularization. Furthermore, by
applying the difference of convex function algorithm (DCA) and
alternating direction method of multipliers (ADMM), we derive
an efficient numerical algorithm to solve the corresponding
optimization problem. A variety of simulation tests on Gaussian-
shaped sources with various noise levels, source sizes, source
configurations and locations show that the proposed approach
results in better performance than the state-of-the-art methods in
terms of total reconstruction accuracy, localization accuracy and
focalization degree. The tests on auditory and visual P300 data
further demonstrate that the proposed method is able to preserve
high order smoothness and produce brain images with higher
spatial resolution.

The paper is organized as follows. Section 2 introduces the
EEG inverse problem and describes the proposed s-SMOOTH
method based on the vTGV and ℓ1−2 regularizations. In Section

3, we show a series of experimental results using synthetic
data and real data, and compare various methods qualitatively
and quantitatively. Finally, the results and future directions
are discussed in Section 4 and a brief conclusion is drawn in
Section 5.

2. MATERIALS AND METHODS

2.1. EEG Inverse Problem
As a non-invasivemethod, electroencephalography (EEG) is used
to measure brain activity and detect abnormalities associated
with certain brain disease. When neurons in the brain are
activated, local currents are generated, and can travel through
different tissues, e.g., gray matter, cerebrospinal fluid (CSF), skull
and scalp. These currents result in electrical potentials on the
scalp that are recorded by electrodes as the EEG signals. The
EEG inverse problem refers to the process of reconstructing the
spatial distributions of currents in the form of a 3D brain image
given the electrical recordings. To formulate the inverse problem
in mathematical expressions, we consider a distributed source
model assuming that dipole sources are located on the cortex
surface (Dale and Sereno, 1993), which is discretized as a mesh
consisting of a large number of small triangles. From now on
we treat each triangle as one voxel in the discretized source
space, and the terms triangle and voxel are used interchangeably.
In addition, we assume that the orientation of each dipole is
perpendicular to the cortex surface (Dale and Sereno, 1993).
This is based on the assumption that most of the current flow
to the scalp is produced by cortical pyramidal cells, which are
normal to the cortical surface (Dale and Sereno, 1993; Nunez
and Srinivasan, 2006). Let b ∈ R

N be the electrical potential on
the scalp measured by the electrodes, where N is the number of
electrodes, and u ∈ R

M is the neural current density at each
dipole location. The electrode potential b can be related to the
neural current u by the following linear equation

b = Au+ n, (1)

where n ∈ R
N denotes the noise, and A ∈ R

N×M is called
lead field matrix. Note that the (i, j)-th entry of A stands for the
electrical potential measured by the ith electrode due to a unit
dipole source at the jth voxel. The matrix A can be calculated
by constructing a head model (Oostendorp and van Oosterom,
1991; Gulrajani, 1998; Fuchs et al., 2002), and solving the
Maxwell′s equations (Sarvas, 1987) with the boundary element
method (BEM) (Oostendorp and van Oosterom, 1991; Fuchs
et al., 2002). Usually the number of voxelsM is much larger than
the number of electrodes N, thus the linear system Equation (1)
is highly under-determined and has infinitely many solutions.
To guarantee uniqueness of the solution for the distributed
source model, regularization techniques can be applied to impose
additional constraints on the solution. We consider the following
model to reconstruct the brain image

min
u

1

2

∥∥Au− b
∥∥2
2
+ αR(u), (2)

Here the first term, called data fidelity term, reflects the statistics
of the Gaussian noise. The second term is the regularization term
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which is related to the assumption on the characteristics of u, e.g.,
smoothness or sparsity.

2.2. s-SMOOTH
In this section, we will first briefly review the definition of the
second order TGV on a 2D-grid image, and then define vTGV
on a triangular mesh such as the discretized cortex surface. After
that, the ℓ1−2 regularization will be introduced. Finally, Section
2.2.4 will describe the proposed model and derive an efficient
algorithm to solve the optimization problem. The parameter
selection for the algorithm will also be discussed.

2.2.1. Total Generalized Variation
TGV was proposed to preserve high order of smoothness in
image processing problems (Bredies et al., 2010). Based on the
assumption that the underlying image is piecewise polynomial,
TGV exploits sparsity of high order derivatives along the x-axis
and the y-axis. For the illustrative purpose, we display in Figure 1
various piecewise polynomials defined on a plane with degree up
to two. Given a 2D image u twice continuously differentiable on
a bounded set � ⊂ R

2, the second order TGV of u with the
coefficient α = (α1,α2) can be defined as the following infimal
convolution (Bredies et al., 2010; Guo et al., 2014)

TGV2
α(u) = min

p=(p1 ,p2)∈(C2(�,R))2
α1

∥∥∇u− p
∥∥
1
+α2

∥∥Ẽ(p)
∥∥
1
, (3)

where ∇ is the 2D gradient operator, p is an auxiliary variable,
and the operator Ẽ is defined by

Ẽ(p) =

[
∂p1
∂x

1
2 (

∂p2
∂x +

∂p1
∂y )

1
2 (

∂p2
∂x +

∂p1
∂y )

∂p2
∂y

]
. (4)

Here the ℓ1-norm of a matrix treats a matrix as a vector, i.e.,
‖X‖1 =

∑
i,j |Xi,j|. Different from the Laplacian operator which

only involves all unmixed second partial derivatives, the second-
order TGV involves all partial derivatives, similar to Hessian. In
(3), when ∇u is equal to p, the first term in the objective function
becomes zero and Ẽ becomes the Hessian of u. Therefore, one
can see that TGV(u) ≤

∥∥H(u)
∥∥
1
whereH(u) is the Hessian of u.

This suggests that TGV could yield a faster minimizing sequence
than ‖H(u)‖1, therefore it is a better choice as a regularization
term for imposing sparsity than the ℓ1-norm of Hessian in terms
of convergence rate.

2.2.2. Voxel-based Total Generalized Variation for

Smoothness Enhancement
Since the cortex surface has complicated geometries and
topological structures, it is crucial to choose an appropriate
regularization tailored to such kind of irregular surfaces. We
discretize the cortex surface to be a 3D triangular mesh � and
define a voxel-based TGV (vTGV) regularization on it. In order
to define directional derivatives on triangular mesh, we treat the
centroid of each triangular voxel as a dipole. Since each voxel has
three voxels connected, three directional derivatives on R

3 can
be used to define “gradient" of the density function u. Consider
a triangular voxel 3 ∈ �, which is homeomorphic to R

2, we

assume that q1, q2, q3 are three normal directions along three
edges for 3, where qi ∈ R

3 depends on the shape of the triangle
3. For instance, Figure 2 illustrates three normal directions
associated with a triangular voxel. Although not perpendicular
to each other, these three directions can span the tangent plane
through each voxel and thereby can be used to fully describe
variations of u. The gradient of u restricted on 3 is defined by

∇̂u =




∂u
∂q1
∂u
∂q2
∂u
∂q3


 ,

∂u

∂qi
= lim

h→0
x,x+hqi∈3

u(x+ hqi)− u(x)

h
. (5)

Note that this definition is in the local sense and it can be
considered as an extension of the gradient operator in R

2 into
the gradient in a 2D manifold. Given a differentiable function
p = (p1, p2, p3), the operator E acting on p restricted to 3 is
defined by

E(p) =




∂p1
∂q1

1
2 (

∂p2
∂q1
+

∂p1
∂q2

) 1
2 (

∂p3
∂q1
+

∂p1
∂q3

)

1
2 (

∂p1
∂q2
+

∂p2
∂q1

)
∂p2
∂q2

1
2 (

∂p3
∂q2
+

∂p2
∂q3

)

1
2 (

∂p1
∂q3
+

∂p3
∂q1

) 1
2 (

∂p2
∂q3
+

∂p3
∂q2

)
∂p3
∂q3


 . (6)

This operator can be considered as an extension of Ẽ in Equation
(4) tailored to the triangular mesh �.

Next, we discuss the discretization of the operators ∇̂ and E .
On the triangular mesh � withM voxels, we first index all voxels
and then define a finite difference operator matrix D ∈ R

3M×M

as follows. The (i, j)-th entry of D is defined as

Di,j =





1, if j = l;

− 1, if j ∈ {kl,1, kl,2, kl,3};

0, otherwise,

(7)

where the voxel index is l = ⌈i/3⌉ ∈ {1, . . . ,M}, i.e., the smallest
integer no less than i/3, and kl,1, kl,2 and kl,3 are the indices of
the voxels adjacent to the l-th voxel. Based on the definition in

FIGURE 2 | Illustration of three normal directions to a triangular voxel

3.
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Equation (6), the discretization of the operator E is defined as
E ∈ R

3M×3M of the form

E =
1

2
(D̂ + D̂T), where D̂ = I1×3 ⊗ D, and

I1×3 =
[
1 1 1

]
, (8)

where⊗ is the Kronecker product of twomatrices. Note that each
edge is counted twice in Equation (7) so that the operator E can
be easily constructed by using D. Moreover, E is symmetrized by
taking the average between D̂ and its transpose.

One can see that ∇̂u is discretized by Du, and E(p) is
discretized by Ep. Once D and E are available, TV and the second
order vTGV with the coefficients α1 and α2 can be defined as

TV(u) = ‖Du‖1 , (9)

vTGV2
(α1 ,α2)

(u) = min
p∈R3M

α1

∥∥Du− p
∥∥
1
+ α2

∥∥Ep
∥∥
1
. (10)

In Equation (10), the parameters α1 and α2 balance the first and
second order derivative information of the image (Papafitsoros
and Valkonen, 2015). It has been proven that for a large ratio
α2/α1, the second order TGV coincides with TV under certain
conditions (Papafitsoros and Valkonen, 2015).

TV is able to well preserve the edges of images, but is known
to create piecewise constant result even in regions with smoothly
changed intensities (Benning et al., 2013). By considering higher-
order derivative information, TGV generalizes TV and is able
to reduce staircasing effects by assuming that the image to
be reconstructed is piecewise polynomial (including piecewise
constant, piecewise linear, piecewise quadratic, etc.)(Bredies and
Holler, 2014). In particular, the proposed second order vTGV
assumes that the underlying current density distribution is
piecewise linear, and thereby this regularization is able to enforce
the sparsity of second spatial derivatives. Although a natural
image may have higher order smoothness, it is usually sufficient
to use the second order vTGV in practice, since performance
enhancement is limited but more computations are required for
higher order vTGV. Therefore, we only use the second order
vTGV regularization in this work.

2.2.3. ℓ1−2 Regularization for Sparsity Enhancement
In order to improve the spatial resolution of the brain image
to better separate close sources, we can incorporate sparsity
constraint into the model. A natural strategy to impose sparsity is
ℓ0-norm regularizationwhichminimizes the number of non-zero
intensity values in the image. However, since the ℓ0-regularized
problem is computational NP-hard, its ℓ1-norm relaxed version
is usually considered in practice. Recently ℓ1−2 regularization has
been proposed (Esser et al., 2013; Lou et al., 2014; Yin et al., 2014),
and has been shown to provide a sparser result than the widely
used ℓ1-norm regularization.
For a real positive number p, the ℓp-norm of u ∈ R

M is defined
as

‖u‖p = (

M∑

i=1

|ui|
p)

1
p , p > 0. (11)

Different from the ℓp-norm, the ℓ1−2 regularization penalty
function is defined as

‖u‖1−2,β = ‖u‖1 − β ‖u‖2 , 0 < β ≤ 1, (12)

which has shown potential in image processing and compressive
sensing reconstruction (Lou et al., 2014; Yin et al., 2015) in terms
of sparsity and fast convergence. It promotes sparsity of an image,
and achieves the smallest value when only one voxel in the image
is non-zero.

We further discuss the sparsity property of ℓ1−2 regularization
from the optimization point of view. Consider a minimization
problem in 2D minx∈R2 R(x) subject to the linear constraint
Ax = b where R(x) is a regularization function. To solve the
problem graphically, we need to find the level curve of minimum
radius to the origin that intersects with the line L : Ax =
b. Figure 3 illustrates the solutions when R is ℓ2, ℓ1, ℓ0.001
(used to approximate ℓ0) and ℓ1−2 when β = 1, respectively.
As shown in Figure 3A, the ℓ2-regularized solution rarely has
zero components, indicating that the solution is usually non-
sparse. The ℓ1-regularized solution may not be sparse if the
line L is parallel to the level curves. Compared to ℓp (0 <

p < 1) regularization, the ℓ1−2 regularization is more likely
to yield a sparse solution due to the curvature of level curves.
Therefore, the ℓ1−2 regularization promotes sparser solutions
than the other regularizations being compared. In the EEG
inverse problem, the brain images to be reconstructed in general
have a sparse structure that the number of sources is limited,
which motivates us to apply the ℓ1−2 regularization to solve this
problem.

In this paper, we unify the ℓ1 type and the ℓ1−2 type
regularizations by allowing β = 0 in Equation (12), so that
the sparsity regularization term could be adjusted by tuning the
parameter β .

2.2.4. Proposed EEG Reconstruction Algorithm
The following model is proposed to reconstruct the EEG brain
image u

min
u

1

2

∥∥Au− b
∥∥2
2
+ vTGV2

(α1 ,α2)
(u)+ α3 ‖u‖1−2,β , (13)

where vTGV2
(α1 ,α2)

(u) is defined in Equation (10), and
‖u‖1−2,β is defined in Equation (12). Here αi > 0 are
regularization parameters which control the contribution
of each regularization term. Note that if β = 0, the
ℓ1−2 regularization reduces to the ℓ1 regularization. If we
require p = 0, then the vTGV regularization reduces to
the TV.

Since the dual norm of ‖·‖2 is itself, i.e., ‖u‖2 =

max‖q‖2≤1
〈u, q〉, the model Equation (13) can be reformulated

as

min
u,p,‖q‖2≤1

1

2

∥∥Au− b
∥∥2
2
+ α1

∥∥Du− p
∥∥
1
+ α2

∥∥Ep
∥∥
1

+ α3(‖u‖1 − β〈u, q〉). (14)
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FIGURE 3 | Geometric interpretation of sparsity for various regularizations. (A–D) ℓ2, ℓ1, ℓ0.001 (used to approximate ℓ0), and ℓ1−2 when β = 1. The black

line corresponds to the linear constraint, the solid dot specifies the sparse solution and the circular dot specifies the non-sparse solution.

Next we apply the DCA (Tao and An, 1997) to obtain the
following two subproblems





q← u/‖u‖2,

(u, p)← argmin
u,p

1

2

∥∥Au− b
∥∥2
2
+ α1

∥∥Du− p
∥∥
1

+ α2

∥∥Ep
∥∥
1
+ α3(‖u‖1 − β〈u, q〉).

(15)

In particular, the second subproblem can be solved efficiently
using ADMM. By the change of variables, it can be further written
as

min
u,p,x,y,z

1

2

∥∥Au− b
∥∥2
2
+ α1 ‖x‖1 + α2

∥∥y
∥∥
1
+ α3(‖z‖1 − β〈z, q〉)

subject to x = Du− p, y = Ep, z = u.

By introducing the scaledmultipliers x̃, ỹ, z̃, we have the following
augmented Lagrangian function

L(u, p, x, y, z, x̃, ỹ, z̃) =
1

2

∥∥Au− b
∥∥2
2
+ α1 ‖x‖1 + α2

∥∥y
∥∥
1

+ α3(‖z‖1 − β〈z, q〉)

+
ρ

2

(∥∥Du− p− x
∥∥2
2
+ 2〈Du− p− x, x̃〉 +

∥∥Ep− y
∥∥2
2

+ 2〈Ep− y, ỹ〉 + ‖u− z‖22 + 2〈u− z, z̃〉
)

.

Note that this version is equivalent to the standard augmented
Lagrangian function up to scaling of multipliers. We group the
variables u, p, x, y, z into three blocks, i.e., u, p and (x, y, z). Then
the ADMM yields the following algorithm





u← argmin
u

L(u, p, x, y, z, x̃, ỹ, z̃)

p← argmin
p

L(u, p, x, y, z, x̃, ỹ, z̃)

(x, y, z)← argmin
x,y,z

L(u, p, x, y, z, x̃, ỹ, z̃)

x̃← x̃+ Du− p− x

ỹ← ỹ+ Ep− y

z̃← z̃ + u− z +
α3β

ρ
q

(16)

Moreover, u and p can be solved explicitly as follows





u =
(
ATA+ ρ(DTD+ I)

)−1(
ATb+ ρDT(p+ x

− x̃)+ ρ(z − z̃)
)

p = (ETE+ I)−1
(
ET(y− ỹ)+ (Du− x+ x̃)

)
.

In addition, due to the separability of variables, the (x, y, z)-
subproblem boils down to three independent subproblems with
respect to x, y and z, respectively, each of which has a closed-
form solution represented by proximal operators. For example,
the z-subproblem can be solved by using the proximal operator
of ℓ1-norm

argmin
z

{
α3 ‖z‖1 +

ρ

2

∥∥∥∥u− z + z̃ +
α3β

ρ
q

∥∥∥∥
2
}

= proxα3/ρ
(u+ z̃ +

α3β

ρ
q). (17)

where proxγ (x) = sign(x)⊙max{|x|−γ , 0}with componentwise
multiplication ⊙, also known as shrinkage operator. Combining
DCA for problem Equation (15) and ADMM for the
(u, p)-subproblem, we obtain the algorithm summarized in
Algorithm 1.

Note that in this study the entire matrix A is scaled by
multiplying 105 in order to reduce round-off errors. Algorithm
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FIGURE 4 | Various source configurations (side view) with a shape of

Gaussian function of different σ
2.

1 terminates when either the maximal number of iterations or
the minimal relative change is reached. Note that there are two
loops in the algorithm: outer and inner loop. In our experiments,
the maximum number of iterations for each inner loop is set to
be 40, and themaximum number of outer loop is set to be 10. The
algorithm will also be halted if the relative change of u is smaller
than 10−3. Here the relative change of u is defined as

uchange =
‖unew − uold‖2
‖uold‖2

. (18)

In general, ADMM is simple to implement with linear
convergence even if part of the objective function is non-
differentiable. Our empirical experience shows that the ℓ1−2
regularization further promotes faster convergence of the
algorithm than its ℓ1-regularized counterpart.

2.2.5. Parameter Selection
In the proposed Algorithm 1, the regularization parameters
α1,α2,α3 are selected to make a balance between smoothness and
sparsity. Based on our large numbers of experiments, the optimal
parameter selection does not change significantly as the source
number, size or configuration changes. For different noise levels,
the regularization parameters need to be tuned smaller when
SNR increases. Table 1 lists all values of α1 that we use for the
synthetic data sets with SNR between 0 and 30 dB. For simplicity,
we set α2 to be equal to α1. A more detailed discussion about
the influence of ratio α2/α1 on the reconstruction results can be
found in (Papafitsoros and Valkonen, 2015). For α3, we find that
the performance of the proposed method is not sensitive to α3

as long as it is in the range of α3 = 0.1 ∼ 0.5α1 . Figure 5
illustrates the source reconstruction results with different values
of α3, where we can see that the results look very similar. By
taking a careful look at the bottom source, one can see that α3 =

0.1α1 yields slightly under-focalized result, while α3 = 0.4α1

yields slightly over-focalized result, so α3 = 0.2 or 0.3 α1 provides
results closest to the ground truth. In our experiment, we fix α3 to
be 0.3α1 in all test cases. As for the parameter ρ, which controls

Algorithm 1 s-SMOOTH EEG Reconstruction Algorithm

Input: the data b, the sensing matrix A, difference operators
D,E, parameters α1,α2,α3 > 0 and β ∈ [0, 1], the maximal
number of iterations for the outer loop Nout , and the maximal
number of iterations for the inner loop Nin.
Output: the reconstructed uo.
if β = 0 then
Nout ← 0

end if

Initialize uo = 0.
for 1 to Nout do

if uo = 0 then

q← 0

else

q← uo/‖uo‖2
end if

Initialize p, x, y, z, x̃, ỹ, z̃ as zero vectors
for 1 to Nin do

u← (ATA+ ρ(DTD+ I))−1
[
ATb+ ρDT(p+ x

− x̃)+ ρ(z − z̃)
]

p← (ETE+ I)−1
[
ET(y− ỹ)+ (Du− x+ x̃)

]

x← proxα1/ρ
(Du− p+ x̃)

y← proxα2/ρ
(Ep+ ỹ)

z← proxα3/ρ
(u+ z̃ +

α3β

ρ
q)

x̃← x̃+ Du− p− x

ỹ← ỹ+ Ep− y

z̃← z̃ + u− z +
α3β

ρ
q

end for

uo ← u
end for

TABLE 1 | Parameter α1 used in different noise level.

SNR(dB) 0 5 10 15 20 25 30

α1 (*10) 7 6 5 3 2 2 1

the convergence speed of Algorithm 1, it is set to 10α1 by default.
For real data sets, we use the same parameters for the same noise
level as the synthetic data.

The parameter β in the ℓ1−2 regularization term varies from
0 to 1. When β = 0, the ℓ1−2 regularization becomes the
ℓ1 regularization. In Figure 6, we study the effect of β on the
source reconstruction results. Figure 6B shows the change of
reconstruction error with different values of β , where we can
see that the larger β is, the smaller the reconstruction error
will be. When β = 1, the highest reconstruction accuracy is
achieved. Figure 6C shows the change of the sparsity term as
iteration increases. One can see that comparing to β = 0 (ℓ1
regularization), β = 1 (ℓ1−2 regularization) helps to promote
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FIGURE 5 | Source localization results with different α3. Top: two sources with different configurations. Bottom: two sources with different sizes.

FIGURE 6 | (A) Two simulated sources. (B) Influence of β on the reconstruction error. The larger the β, the smaller the reconstruction error will be. (C) Influence of β

on the sparsity term. β = 1 enhances the sparsity compared to β = 0.

sparsity. Notice that the sparsity term will decrease rapidly from
one inner loop to another since the variable q is redefined in
each outer loop. In our experiments, the maximal number of

iterations at each inner loop is set to 40. At each inner loop,
the solution becomes convergent and stable within the tolerance,
so does the sparsity term. Then at the iteration 41, the updated
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q results in the refinement of the solution and a large drop of
the sparsity term (Figure 6C). In sum, β = 1 not only helps
reduce the reconstruction error, but also enhances the sparsity
term. Therefore, we set β to 1 in the following study.

2.3. Experimental Setup
2.3.1. Synthetic Data Simulation
In our simulation, source is synthesized using the Gaussian-
tapered patch. Firstly, a source center is seeded on the cortex
surface, then its neighbors are gradually recruited to make a
patch. Because the Gaussian function has bell shape, the source
intensity distribution reaches a peak at the center and gradually
decreases to zero as it moves away from the center. To model
different source configurations, we use Gaussian functions with
different variations (σ 2), illustrated in Figure 4. As σ 2 goes to
infinity, the intensity of the source decays more and more slowly
from the center to its neighbors and approximates the constant
function.

In addition to various source configurations, we test a variety
of sources with different sizes. Specifically, we use the sources
containing 100∼300 triangular voxels, which corresponds to
1.4∼2.2 cm in radius. To study the sensitivity of the result to
the measurement noise, we add i.i.d. additive white Gaussian
noise to each channel. We also study the influence of the brain
noise by adding i.i.d. Gaussian additive noise to the voxel space.
As a widely used criterion for noise level measurement, the
signal-to-noise ratio (SNR) is defined as

SNR = 10 log10
Psignal

Pnoise
,

where Psignal and Pnoise are the power of the signal and the noise,
respectively. In our simulation, SNR is set to 20 dB by default.
The effect of different noise levels is also studied by using signals
of SNR 0∼20 dB. The synthetic signal is normalized to make sure
that the amplitude of the signal falls into the range from 10 to 100
µV , which is the typical EEG signal amplitude of an adult human
(Aurlien et al., 2004). For synthetic data, we use the head model
template provided by Fieldtrip (Oostenveld et al., 2003), where
the number of voxelsM is equal to 10240.

2.3.2. Real Data Collection
To evaluate the performance of the proposed method in realistic
scenario, we collected two P300 event-related potentials (ERPs)
via auditory and visual oddball paradigms, in which a subject
detected an occasional target stimulus in a regular train of sensory
stimuli. The experiment was conducted with the approval of
institutional review board at Hualien Tzu Chi General Hospital,
Taiwan (IRB 101-102) with written informed consent from the
subject.

P300 is a positive peak occurring about 300ms or more
after a stimulus (Linden, 2005), which reflects information
processing associated with attention andmemory. In the auditory
stimulation setting, two audio signals of 1500Hz (target, 40 trials)
and 1000Hz frequency (non-target, 160 trials) were randomly
presented to the subject. In the visual stimulation setting, two
different pictures of a fierce shark (40 trials) and of an old
man (160 trials) were randomly presented to the subject. The

subject was required to detect the targets by silently counting
these events. A 64 channels EEGmachine (ANTNeuro, Enschede
Netherlands) was used to record the neural signals. The EEG data
was sampled at 512Hz, filtered by a band pass filter of 0.5–30Hz
and was referenced to the average of all channels. In the end, the
average was taken across the trials in order to improve the SNR,
and the difference between the target and non-target was used for
source localization.

In addition to EEG data, high-resolution MRI data (General
Electric, Waukesha, WI, USA) were obtained from the subject
for realistic head model construction (Oostenveld et al., 2011).
We first segmented the head into three layers, i.e., scalp, skull
and brain, and then constructed a triangular mesh for each layer
(Oostendorp and van Oosterom, 1991; Fuchs et al., 2002). The
cortex surface was also triangulated into a fine mesh with 16384
triangles, each corresponding to a potential dipole source. Finally,
BEM (Oostendorp and van Oosterom, 1991; Fuchs et al., 2002)
was used to calculate the lead field matrix.

2.4. Quantitative Metric
For synthetic data, in order to quantitatively evaluate the
performance of an EEG source imaging method, we use the
following three criteria to evaluate the results from different
perspectives:

1. Total reconstruction error (TRE), whichmeasures the relative
difference between the true source and the reconstructed
one (Im et al., 2003). The smaller the TRE is, the higher
reconstruction accuracy the brain image will have. TRE is
defined as

TRE =

∥∥û− u
∥∥
2

‖u‖2
,

where u is the true source, û is the reconstructed source. Note
that TRE has no units since it is a relative value.

2. Localization error (LE), whichmeasures the distance between
the peaks of the true source and the reconstructed one (Im
et al., 2003; Molins et al., 2008). Suppose that there are k
underlying sources, and LEk is the localization error of the
k-th source, then LE is defined as the average localization
error of all the sources. In order to define LEk, let Ik be a
set of voxel indices that are spatially closest to the peak of
the k-th source (the voxels with intensity less than 10% of the
global maximum are not considered), and dki be the distance
between the i-th voxel to the peak of the k-th true source.
Then LEk and LE can be expressed as

LE =
1

K

∑

k

LEk, LEk = {dki | i = argmax
i′∈Ik

‖ui′‖2}.

3. Degree of focalization (DF), which describes how focal the
reconstructed source is. It is defined as the energy ratio
between the reconstructed and the true source in the true
source area (Im et al., 2003)

DF =

∥∥ûS
∥∥2
2

‖uS‖
2
2

,
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where uS is u restricted to the true source area S. The higher
the DF is, the more focalized the reconstructed source will
be. A perfect reconstruction has a DF of 100%.

2.5. Computational Cost
In Algorithm 1, the two least squares subproblems involve matrix
inverse which is computationally intensive. Instead of computing
inverses of P = ATA + ρ(DTD + I) and Q = ETE + I directly,
we apply the Cholesky decomposition and then solve linear
systems using backward/forward substitution, i.e., mldivide in
MATLAB. In addition, since the construction of P andQ does not
depend on the time points, we can further reduce computational
time by performing Cholesky decomposition once and saving
results for all time points. For instance, when using 10240 voxels
and running 100 iterations, the running time on a desktop with
3.4 GHz CPU and 16Gmemory usingMATLAB 2014b is reduced
from 3.5 min to 1.8min.

Further, if we reduce the number of voxels to 6000, it takes
about 11 s to run 100 iterations, and only 6.4 s if the matrices
are pre-computed. If further decreasing the voxel number to be
2000, the computation time is reduced to 1.2 s, or 0.9 s with pre-
computed matrices. Compared to relevant work (Haufe et al.,
2008; Chang et al., 2010; Sohrabpour et al., 2016), the proposed
algorithm has reduced the computational cost significantly.

3. RESULTS

In this section, we evaluate the performance of the proposed
method by conducting experiments on various synthetic data sets
and two real data sets.

3.1. Synthetic Data Results
We compare the proposed method s-SMOOTH with four
representative source localization methods in the literature:
MNE, sLORETA, minimum ℓ1 method (“L1" for short) and
TV-ℓ1. Figure 7 shows the reconstructed brain image of three
synthetic sources, where the source intensity is scaled to be in
[0 1]. A threshold is set at 20% of the maximum intensity,
i.e., voxel intensity less than the threshold will be set to 0, so
as to obtain a better visualization. For MNE and sLORETA
which are minimum ℓ2 methods, one can see the reconstructed
sources are spread out with a lot of spurious sources around the
sources. The intensity of adjacent voxels has large jumps since
these two methods do not consider the spatial relation between
neighboring voxels. Regarding L1 method, the focalization of the
reconstructed source is greatly improved. However, the sources
are over-focused that only a few voxels are included in the area
of the true sources. Compared to L1 method, the TV-ℓ1 method
successfully recovers the extent of sources, but fails to reflect the
intensity variation of the sources, as we can see that the intensity
of the current density is almost uniform in each source region. In
contrast, the proposed method not only eliminates the spurious
sources, recovers the extent of the sources, but also provides
a smooth result which reflects the magnitude variation of the
current density.

3.2. Sensitivity Study
In this section, we investigate the sensitivity of the proposed
method to various factors both qualitatively and quantitatively.

3.2.1. Influence of Measurement Noise Level
Figure 8A illustrates the source localization results of two sources
in nearly noiseless (30 dB) and noisy (0 dB) cases. In the nearly
noiseless case, MNE successfully locates these two sources but
produces a few spurious sources. For TV-ℓ1 method, although
we can see a little magnitude variation in the edge of the sources,
the main area of the sources still shows almost uniform current
density distribution. Compared to the other two methods, the
proposed method shows the closest result to the ground truth,
where the magnitude of the current density varies smoothly from
the peak to its neighbors. From the noisy case, one can see that
the imaging result is sensitive to measurement noise, especially
for the bottom source. MNE shows a lot more spurious sources
than the nearly noiseless case even after thresholding. The TV-
ℓ1 method shows an enlarged coverage of the bottom source
compared to the ground truth. In addition, one can see that
the source intensity becomes more flat in the noisy case. The
proposed method is more robust to the noise with the coverage
of the bottom source shrinks slightly.

To quantify the influence of noise levels on the source
reconstruction performance, we test various noise levels and
evaluate the results with the criteria defined in Section
2.4. In order to avoid inconsistency due to different noise
configurations, we repeat the experiment 50 times by adding
random noise and display the averaged result and the standard
deviation in Figure 8B. Generally, the performance of all the
methods is improved as SNR increases. From the TRE plot, one
can see that our method has the smallest total reconstruction
error compared to the other two methods. The LE plot shows
that the proposed method has the smallest localization error.
Compared to the proposed method, the TV-ℓ1 method has
relatively large localization error since it tends to produce
an almost uniform current density and thereby has difficulty
locating the peak of the source. In the DF plot, both TV-ℓ1
method and the proposed method show very high focalization
degree, this is because they incorporate ℓ1 or ℓ1−2 regularization
to impose sparsity on the source current density. Taken together,
the proposed method shows good performance for all three
quantitative criteria at every noise level.

3.2.2. Influence of Brain Noise Level
In this section, we study the influence of brain noise by adding
i.i.d. Gaussian additive noise to each voxel. Figure 9A shows
the source imaging results in the nearly noiseless (30 dB) and
noisy (0 dB) cases. Note that in this figure the imaging results
are not thresholded so as to better visualize the influence of
brain noise. In the nearly noiseless case, MNE produces much
less spurious sources under the brain noise than under the
measurement noise (Figure 8A), indicating that the spurious
sources are mainly due to the measurement noise. For the TV-
ℓ1 method, the reconstructed intensity distribution is generally
piecewise constant, but we can see that the intensity variation
is larger than the result in Figure 8A. The proposed method
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FIGURE 7 | Source localization results of various methods on synthetic data with three sources.

FIGURE 8 | Influence of measurement noise. (A) Source localization results in the nearly noiseless (30 dB) and noisy (0 dB) cases. (B) Quantitative evaluation of

various methods under different measurement noise levels. The plots show the average results across 50 repeats, where the error bar represents standard deviation.
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FIGURE 9 | Influence of brain noise. (A) Source localization results in the nearly noiseless (30 dB) and noisy (0 dB) cases. (B) Quantitative evaluation of various

methods under different brain noise levels. The plots show the average results across 50 repeats, where the error bar represents standard deviation.

produces an accurate source intensity distribution that is very
close to the ground truth. In the noisy case, generally the
performance of all the methods is affected by the noise. TheMNE
result shows more background activities due to the high level of
noise. The TV-ℓ1 result shows smaller intensity variation than the
nearly noiseless case. For example, for the bottom source, we can
see four different intensity colors in the nearly noiseless case, but
only two different intensity colors in the noisy case. Compared
to the TV-ℓ1 method, the proposed method provides a smoother
result. We can see that the source intensity is weakened due to the
high noise level.

Figure 9B further quantifies the results using different noise
levels. The TRE plot shows that the proposed method has the
smallest reconstruction error. In addition, by comparing to the
result in Figure 8B with the same noise level, one can see that
the reconstruction error under brain noise is smaller, which
is consistent with the visualization result. The LE plot shows
that the proposed method has the smallest localization error. It
is worth noting that the localization errors of all the methods
are smaller than those with measurement noise (Figure 8B).
Finally, in the DF plot, both the proposed method and the TV-ℓ1
method achieve high focalization degree. The focalization degree
for MNE is much higher than that under measurement noise.

In summary, we observe that the brain imaging result is less
sensitive to brain noise than tomeasurement noise. The proposed
method demonstrates robust performance under various levels of
brain noise.

3.2.3. Influence of Source Size
In addition to noise level, we also investigate the influence of the
source size on the reconstruction results. Figure 10A illustrates
the reconstructed brain image with two sources of different sizes.
In MNE, although it locates these two sources at the approximate
locations, however, it is difficult to differentiate the smaller source
from the large numbers of spurious sources. TV-ℓ1 method
recovers both sources clearly without spurious sources, but the
coverage of the reconstructed sources is enlarged, especially for
the small source on the top. Additionally, it fails to recover
the intensity variation of the source in space. In contrast, the
proposed method accurately reconstructs the size and intensity
variation of these two sources.

Figure 10B shows the quantitative results of various source
sizes, where the x-axis represents the number of voxels contained
in the simulated sources. TRE plot shows that the proposed
method has the smallest reconstruction error, which is insensitive
to the source size. In the LE plot, the proposed method shows
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FIGURE 10 | (A) Source localization results of various methods for two sources with different source sizes. (B) Quantitative evaluation of various methods with

different source sizes. The average result of 50 repeats is shown in the plots, where the error bar represents the standard deviation.

the smallest localization error. As the source size increases, its
localization error becomes slightly smaller, which implies that the
proposed method has advantages of dealing with larger sources.
The TV-ℓ1, by contrast, shows relatively large localization error
due to the uniform intensity of the reconstructed source. In
the DF plot, the proposed method demonstrates very high
focalization degree. In summary, the proposed method shows
consistent outstanding performance over the other two methods
regardless of the source size.

3.2.4. Influence of Source Configuration
We study the performance of the proposed method using sources
with different decay speeds (see Figure 4). In Figure 11A we
show two sources of different configurations: the top source
decays fast as it goes far from the center while the bottom source
decays slowly. From the reconstruction results, one can see that
the MNE is not able to tell the configuration difference between
these two sources. The TV-ℓ1 methodmodels the source intensity
to be piecewise constant, so both of the reconstructed sources
decay very slowly. As for the proposed method, we can tell that
the bottom source decays more slowly than the top one.

We further evaluate the performance of the methods with
different source configurations quantitatively. In Figure 11B,
the x-axis represents the variance σ 2 of the Gaussian function
(Figure 4), so the source intensity decays faster and faster from
left to right. The TRE plot shows that the proposed method
has the smallest reconstruction error among all the methods. By
comparing the results of different variance σ 2, one can see that
the proposed method favors smoother sources whose intensity
decays faster, i.e., smaller σ 2. In the LE curve, the proposed

method shows much smaller localization error than the other
two methods. Again, one can see that the smoother sources have
smaller localization errors. Finally, the DF plot shows that the
focalization degree does not rely on the source configurations too
much. In sum, the proposed method outperforms the other two
methods consistently for all three criteria. Compared to constant
sources, it favors smoother sources.

3.2.5. Influence of Source Location
To systematically evaluate the performance of the proposed
method for different source locations, we randomly select
50 locations in the whole source space, and test its average
performance. Figure 12 displays the whisker plot of the
quantitative results, where the lower quartile, median and upper
quartile are shown. In TRE plot, the proposed method shows the
best median reconstruction accuracy. The range of the results
is relatively large which indicates the performance varies at
different locations. The LE plot shows that the localization error
of the proposed method has a median value of around 1 cm,
which is the smallest among all the methods. In addition, the
range of its localization error is also the smallest. From the DF
plot, one can see that the median focalization degree of the
proposed method is ∼ 97% which is the highest. All in all,
the proposed method shows the best average performance for
different source locations among all the compared methods.

3.3. Real Data Results
We have also applied the proposed method to localize the
generators of P300 ERPs. Although the neural generators of P300
remain imprecisely located, a consistent pattern of P300 sources
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FIGURE 11 | (A) Source localization results of two sources data with different configurations. (B) Quantitative results of various methods with different source

configurations (σ2). The average result of 50 repeats is shown in the plots, where the error bar represents the standard deviation.

FIGURE 12 | Whisker plots of various methods at different source locations. The red bar represents the median value of 50 random locations.

has been shown by various techniques, such as intracranial
recordings, lesion studies and fMRI-EEG combination, that the
target-related responses locate in the parietal cortex and the
cingulate, with stimulus specific sources in the superior temporal
cortex for the auditory stimulation and in the inferior temporal,
and superior parietal cortex for the visual stimulation (Linden,
2005). It is shown that there is a significant amplitude difference
between target and non-target at latency of 300–400 ms for
auditory stimulation and of 400–500 ms for visual stimulation
(Linden et al., 1999).

We compare the proposedmethodwith various representative
methods, including MNE, sLORETA, minimum ℓ1 method
(“L1” for short), and TV-ℓ1. Among them, sLORETA has been
widely used to localize the sources of P300 (Sumiyoshi et al.,
2009; Bae et al., 2011; Machado et al., 2014) due to its high
localization accuracy, which can be used as a rough reference.

Figure 13 illustrates the P300 source localization results of
auditory stimulation at the peak (312 ms). Since the results of
MNE and sLORETA show low spatial resolution, a threshold is
set at 20% of themaximum intensity to improve the visualization.
One can see that the source localization results of different
methods generally agree with each other. The sources from
insula, superior temporal, temporo-parietal junction and parietal
cortex are detected, which agree with previous literature (Linden
et al., 1999; Mulert et al., 2004; Linden, 2005). The results of
MNE and sLORETA are spread out with many spurious sources,
and the extent of the sources is difficult to be identified. L1
method generates an over-focused result that only a few voxels
are active in each source area. TV-ℓ1 produces a result with
clearer extent, however the current density is piecewise constant
in each source subregion. In contrast, our method provides a
smooth result that reflects the intensity variation of the sources
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FIGURE 13 | Localization results of auditory P300 sources with different methods.

in space. Figure 14 shows the source localization results of
visual stimulation at 438 ms, in which the sources in posterior
temporal, parietal and mesial frontal cortices are found, which
generally agrees with previous literature (Linden et al., 1999;
Linden, 2005). One can see that the image resolution for MNE
and sLORETA is very low, especially for sLORETA. L1 method
only pinpoints a few active voxels and TV-ℓ1 provides an almost
uniform current density in each source region. Compared to
other methods, the proposedmethod demonstrates the capability
of producing brain images with better smoothness and higher
spatial resolution.

4. DISCUSSION

In this study, we develop a novel EEG source imaging
method aiming to accurately reconstruct the location, extent
and magnitude variation of the current density distribution.
The contributions of this work are threefold: (1) a vTGV
regularization is defined, which incorporates the information of
higher-order derivatives, therefore is able to enhance smoothness

of the reconstructed brain image as well as reduce the
staircasing artifacts; (2) a new ℓ1−2 regularization is introduced
to the EEG source imaging field for the first time, which
is able to reconstruct a sparser source than the widely used
ℓ1 regularization; (3) an efficient algorithm is derived to
solve the proposed model based on DCA and ADMM. The
reconstructed brain image by the proposed method shows
not only high location accuracy, but also high focalization
degree.

Due to the ill-posedness of EEG inverse problem, the source
image reconstruction relies on the modeling of the characteristics
of underlying sources. MNE and sLORETA do not model the
spatial relation between adjacent dipoles, thus the reconstructed
current density distribution is not smooth and many spurious
sources are generated. Minimum ℓ1-norm methods, such as
MCE, assume the source to be highly focalized thus is not suitable
for spatially extended sources. TV based methods assume the
intensity of the source to be uniformly distributed in space,
hence fail to reflect the intensity variation of the sources.
This effect becomes more obvious when the regularization
parameter increases, resulting in even more flat intensity
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FIGURE 14 | Localization results of visual P300 sources with different methods.

distribution (Gramfort, 2009). By contrast, the proposed method
s-SMOOTH assumes the intensity of the adjacent dipoles to
be piecewise polynomial, resulting in a brain image which is
very smooth that recovers the magnitude variation within a
source precisely (Figure 7). The performance of the proposed
method is evaluated under various noise levels, source sizes,
source configurations and locations. The simulation results
show that the source reconstruction result of s-SMOOTH is
robust under different conditions. Quantitative results show that
the performance of s-SMOOTH improves as the noise level
decreases (Figures 8B, 9B), source size increases (Figure 10B)
and current density distribution gets far from a constant function
(Figure 11B).

The classical TGV assumes that the underlying image is
piecewise polynomial (including piecewise constant, linear,
quadratic, etc.) and thus imposes sparsity in high-order spatial
derivatives. In this work we extend the TGV framework from
Euclidean spaces to irregular surfaces and propose a novel
second-order vTGV operator. A large number of simulation
experiments with Gaussian-shaped sources show that it provides
better results than the state-of-the-art methods. It is sufficient

to use second order considering the computational cost and
performance improvement. Note that the second-order TGV is
mathematically different from the Laplacian operator (Bredies
et al., 2010) used in previous methods, such as LORETA,
FVR and CENTL. Laplacian operator has been widely used in
EEG brain imaging (Pascual-Marqui et al., 1994; Haufe et al.,
2008; Chang et al., 2010) due to its simple form. However,
it only considers the unmixed second partial derivatives and
does not involve the mixed partial derivatives. It assigns high
weight to the central dipole and low weights to its neighbors,
resulting in a very high peak in the center of the reconstructed
source. In contrast, the proposed vTGV operator takes both
unmixed and mixed partial derivatives into account and is able
to recover fine details of brain images. Figure 15 compares the
reconstructed brain image using a Laplacian operator and the
proposed vTGV operator. One can see that the vTGV operator
reconstructs the intensity variation of the sources more precisely.
With the Laplacian operator, the reconstructed sources show
a high peak in the center and the intensity decays very fast
from the center (“over-smoothing” effect). Note that in this
paper we treat each triangle as voxel, so each voxel has three
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FIGURE 15 | Comparison of Laplacian and vTGV operator. Top: two sources with different configurations. Bottom: two sources with different sizes. The left

panel visualizes the source localization results. The vTGV operator provides accurate results with intensity distribution closer to the ground truth. The right panel shows

the quantitative results.

neighbors. Accordingly, the weighting assigned to the central
voxel by Laplacian operator is 1 and is -1/3 for its neighbors.
In the case that each vertex is treated as voxel, this over-
smoothing effect will become even more severe, since each
vertex usually has 6 neighbors thus the weighing assigned to
the neighbors will be only -1/6. From the quantitative results
in the right panel of Figure 15, one can see that the vTGV
operator is advantageous in both total reconstruction accuracy
and localization accuracy. The focalization degree results are very
close for both operators.

The ℓ1-norm regularization has been used in EEG source
imaging to improve the focalization of the source for a long
time (Matsuura and Okabe, 1995; Uutela et al., 1999; Huang
et al., 2006; Ding and He, 2008). In this paper, we use the
ℓ1−2 regularization instead of the ℓ1-norm regularization to
enhance sparsity of the image. The ℓ1−2 regularization is a
very recently proposed regularization technique which refines
the ℓ1 regularization by taking the difference between the ℓ1
and ℓ2 norms. In this paper, we set the parameter β ∈

[0, 1]. When β is equal to 0, ℓ1−2 regularization becomes
the ℓ1-norm regularization. We show that the reconstruction
accuracy is improved as β increases , and it achieves the
highest accuracy when β = 1 (Figure 6B). Therefore, we
set the β to 1 in our experiments. Figure 6C shows that
with β = 1, the sparsity of the image improves faster
than β = 0, implying that the sparsity of the image is
further enhanced using the ℓ1−2 regularization compared to
ℓ1 regularization. On the other hand, if sparsity is fixed,
ℓ1−2 regularization helps to accelerate the convergence of the
optimization algorithm.

It is worth noting that the proposed objective function is a very
general frame, which includes some related methods, e.g., L1, TV
and TV-ℓ1, as its special cases by choosing proper parameters.

For example, by setting the α2, p and β to be 0, it becomes the
TV-ℓ1 method. By further setting the α3 to be 0, it becomes the
TV method. On the other hand, if choosing α1, α2 and β to be
0, it becomes the L1 method. In addition, some relevant methods
that combine two regularization terms (Haufe et al., 2008; Chang
et al., 2010; Sohrabpour et al., 2016) usually describe the data
fidelity by using an inequality constraint. Instead, we integrate
this term into our objective function. This enables us to apply
efficient optimization methods such as ADMM to derive a fast
and robust algorithm. Compared to the optimization algorithms
used in these methods (Haufe et al., 2008; Chang et al., 2010;
Sohrabpour et al., 2016), the proposed algorithm in this paper
is more efficient and robust, and it is also able to tackle large-
scale problems. Further, with this type of problem formation, it is
possible to adopt some computing techniques (Peng et al., 2015)
to further accelerate the algorithm, which will be the future work.

For parameter selection, we provide some typical parameter
values that work well in our experiment. Table 1 lists some
values for α1 used in our experiments. For α2, we simply
set it to be equal to α1. Note that it might provide a better
result if α2 is further tuned. For α3, the parameter associated
with the sparsity term, we show that the source reconstruction
results are not sensitive to the choice of α3 as long as it is
within the range 0.1 ∼ 0.5α1. Specifically, we suggest to use
α3 = 0.3α1. Notice that in this study we focus on spatially
extended sources rather than point sources, therefore we assign
relatively small weighting to the sparsity term. In the case that
the underlying source is point source, larger weights can be
assigned to the sparsity term (e.g., α3 = 100α1) so as to make
the reconstructed source highly focalized. So far these parameters
are tuned manually. In the future, the parameters could be
selected in an automatic fashion by treating the parameters as
unknown variables in the proposed model Equation (13) and
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then solving the corresponding optimization problem using the
bilevel approach (Kunisch and Pock, 2013; Calatroni et al., 2015;
Reyes et al., 2016).

In the present study, the EEG source imaging method
works for each time point independently. In the future, the
relationship between two contiguous time points could also be
modeled so that the brain imaging is done in a spatiotemporal
manner. Considering that the current source distributions
between consecutive time points usually changes smoothly
(Baillet and Garnero, 1997; Galka et al., 2004; Zhang et al.,
2005), the temporal smoothness of the signal could be integrated
into the proposed objective function to further improve the
reconstruction accuracy (Ou et al., 2009; Gramfort et al.,
2012).

5. CONCLUSION

In this paper, we propose a novel EEG inverse method Sparsity
and SMOOthness enhanced brain TomograpHy (s-SMOOTH),
which combines the vTGV and the ℓ1−2 regularizations to
improve reconstruction accuracy for EEG source imaging.
Considering the complicated geometries of the cortex surface,
we define a vTGV regularization on a triangular mesh expressed
as an infimal convolution form. The vTGV regularization
enhances the high-order smoothness and thus is able to improve
localization accuracy, while the ℓ1−2 regularization enhances the
sparsity of the brain images. A series of simulation experiments
with Gaussian-shaped sources show that the proposed s-
SMOOTH is able to accurately estimate the location, extent
and magnitude variation of the current density distribution.

It also consistently provides better performance than other
competitive methods in terms of quantitative criteria such as
total reconstruction accuracy, localization accuracy, and degree
of focalization. The test on two P300 data sets further shows the
advantage of s-SMOOTH over state-of-art-methods in terms of
brain image quality. Although this paper focuses on discussing
EEG source imaging, the proposed method is equivalently
applicable to MEG source imaging.
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