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Adverse conditions during fetal life have been associated to both structural and functional

changes in neurodevelopment from the neonatal period to adolescence. In this study,

connectomics was used to assess the evolution of brain networks from infancy to

early adolescence. Brain network reorganization over time in subjects who had suffered

adverse perinatal conditions is characterized and related to neurodevelopment and

cognition. Three cohorts of prematurely born infants and children (between 28 and

35 weeks of gestational age), including individuals with a birth weight appropriated

for gestational age and with intrauterine growth restriction (IUGR), were evaluated at

1, 6, and 10 years of age, respectively. A common developmental trajectory of brain

networks was identified in both control and IUGR groups: network efficiencies of the

fractional anisotropy (FA)-weighted and normalized connectomes increase with age,

which can be related to maturation and myelination of fiber connections while the

number of connections decreases, which can be associated to an axonal pruning

process and reorganization. Comparing subjects with or without IUGR, a similar pattern

of network differences between groups was observed in the three developmental

stages, mainly characterized by IUGR group having reduced brain network efficiencies

in binary and FA-weighted connectomes and increased efficiencies in the connectome

normalized by its total connection strength (FA). Associations between brain networks

and neurobehavioral impairments were also evaluated showing a relationship between

different network metrics and specific social cognition-related scores, as well as a higher

risk of inattention/hyperactivity and/or executive functional disorders in IUGR children.
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INTRODUCTION

Brain development consists of a genetically controlled but
environmentally modulated complex process starting early in
fetal life, which makes it very sensitive to adverse intrauterine
environment and/or to a premature exposure to extrauterine
medium. Alterations in fetal brain development can result in
long-term structural brain reorganization as well as in social
cognition impairments in childhood and adolescence (Leitner
et al., 2000; Wiles et al., 2006; Baschat, 2011; Guellec et al., 2011).
Namely, intrauterine growth restriction (IUGR), a condition
affecting 5–10% of all pregnancies involving a decrease in the
amount of nutrients and oxygen arriving to the fetus, has
consequences on the developing brain associated to short- and
long-term impairments in both brain function and structure
(Rees et al., 2008; Levine et al., 2015).

In order to better understand the long-term consequences of
adverse perinatal condition, the analysis throughout childhood
of the changes in brain structure and neurobehavior associated to
this condition becomes essential. This longterm perspective has
been considered in some studies describing the neurobehavioral
and cognitive dysfunctions associated with perinatal conditions
from infancy to adolescence (Heinonen et al., 2010; Baschat,
2011; Guellec et al., 2011; Levine et al., 2015). For instance, a
large French population based study has shown that preterm
infants (29–32 weeks of gestation) born with IUGR have a very
high incidence (40%) of cognitive delay at 6 years of age (Claas
et al., 2011). Indeed, the neurodevelopmental outcome of high
risk populations including impairment in cognitive, executive,
motor and behavioral functions has been described to be present
throughout childhood, with consequences observed even in adult
life (Walker and Marlow, 2008; Østgård et al., 2014b), though
with smaller incidence (Saigal et al., 2006; Saigal, 2014).

However, most studies describing structural changes have
focused on a single time point, from fetal life (Egaña-Ugrinovic
et al., 2013, 2014a,b; Sanz-Cortés et al., 2014, 2015) up to early
adulthood (Eikenes et al., 2012; Østgård et al., 2014a), including
neonates (Borradori Tolsa et al., 2004; Dubois et al., 2008),
1-year-old children (Padilla et al., 2011; Batalle et al., 2012,
2013) and school-age children (Fischi-Gómez et al., 2015). These
studies, mainly based on magnetic resonance imaging (MRI),
describe the brain structural alterations at different development
stages as a consequence of IUGR. Some of them also analyze
the association between structural alterations and functional
neurodevelopmental outcome at different ages. For example,
IUGR has been related to reductions in overall brain volumes,
with regional changes in gray matter (GM) and white matter
(WM) volumes (Padilla et al., 2011) and specifically in cortical
GM volume (Borradori Tolsa et al., 2004; Egaña-Ugrinovic
et al., 2014b), hippocampus (Lodygensky et al., 2008), corpus
callosum and brain-stem and cerebellum ratio (Sanz-Cortés et al.,
2014). Changes in cortical surface and folding (Dubois et al.,
2008; Egaña-Ugrinovic et al., 2013; Østgård et al., 2014a) and
differences in WM integrity (Eikenes et al., 2012) have been also
described.

Furthermore, changes in brain connectivity in IUGR subjects
have been identified using connectomic analysis, that allows

to model the brain structural or functional connections as a
network: the connectome. It can be mathematically described
and analyzed using graph metrics (Rubinov and Sporns, 2010;
Sporns, 2012), which help to understand its large-scale structural
topology. Diffusion-MR based network analysis has been used
to describe quantitative differences in global brain connectivity
in IUGR and their association with impairments in the
neurodevelopmental outcome (Batalle et al., 2012; Fischi-Gómez
et al., 2015). Additionally, connectomic analysis has also been
performed on a rabbit model of IUGR, showing changes in some
network metrics and its association with functional outcome in
pre-adolescent adult rabbits (Batalle et al., 2014).

Connectomics has been used to describe the evolution of
brain networks with age, since it provides a set of quantitative
measures describing global and local brain network organization,
whose changes over time can be quantified. Brain development
in healthy subjects has been assessed by means of connectomics
in different age ranges (Hagmann et al., 2010; Fan et al., 2011;
Yap et al., 2011; Dennis and Thompson, 2013; Tymofiyeva et al.,
2013; Ball et al., 2014; Pandit et al., 2014; Koenis et al., 2015;
van den Heuvel et al., 2015; Zhao et al., 2015). However, the
developmental trajectory in subjects who had suffered a perinatal
adverse condition, such as IUGR, has not yet been characterized.

In the present study, connectomics was used to analyze the
development of brain networks in children that had suffered
IUGR. From infancy to early adolescence, brain structure was
quantified by network metrics at three different time points
(1, 6, and 10 years of age), as a function of age and group.
Because of the evidence of neurobehavioral impairment in these
children, neurobehavioral scores were correlated with network
measures to determine the relationship between brain structure
and neurobehavioral outcome from infancy to childhood.

MATERIALS AND METHODS

Subjects
Three cohorts of prematurely born infants (gestational age (GA)
at birth between 28 and 35 weeks) were considered in this study.
Each cohort was analyzed at a different age:

• First cohort (C1) consisted of 15 subjects, recruited at Hospital
Clínic de Barcelona. Infants underwent MRI acquisition at 1
year of age and neuropsychological evaluation at 2 years.

• Second cohort (C6) was composed by 18 subjects, recruited
at the Hôpitaux Universitaires de Genève (HUG). At 6 years
of age, both MR imaging and neurobehavioral evaluation was
performed.

• Third cohort (C10) was composed by 16 subjects, recruited
at the Hôpitaux Universitaires de Genève (HUG). Both MR
imaging and neurobehavioral assessment was performed at 10
years of age.

In each cohort, children were classified into two groups: children
born preterm with normal growth (controls) and children born
preterm with IUGR. Group distribution in the three cohorts,
average GA and the age at which the MR scan and the
neuropsychological evaluation were performed are detailed in
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TABLE 1 | Group distribution and basic information of the three cohorts in the study: gestational age (GA) in weeks at birth, age at MR-scan (years), age

at neurobehavioral evaluation (years).

1-year-old cohort 6-year-old cohort 10-year-old cohort

Controls IUGR Controls IUGR Controls IUGR

Sample 7 8 8 10 8 8

GA 32.2 ± 1.7 30.9 ± 1.7 32.4 ± 2.3 32.6 ± 1.5 32.5 ± 1.8 32.7 ± 1.5

Age at MR-scan 1.1 ± 0.2 1.0 ± 0.1 6.8 ± 0.6 6.9 ± 0.7 10.0 ± 1.0 10.2 ± 1.0

Age at neuropsy. test 1.7 ± 0.3 1.7 ± 0.4 6.3 ± 0.7 6.2 ± 0.5 9.8 ± 1.0 10.0.3 ± 0.9

Table 1. IUGR was defined as estimated fetal weight below the
10th percentile according to local standards (Figueras et al.,
2008) confirmed at birth and abnormal Doppler defined as:
umbilical artery pulsatility index above 95th centile and/or
cerebroplacental ratio below 5th centile and/or mean uterine
artery pulsatility index above 95th centile.

Perinatal data was prospectively recorded for all subjects,
including birth weight (BW), GA at birth and gender.
Pregnancies were dated according to the first-trimester crown-
rump length measurements (Robinson and Fleming, 1975).
Infants with chromosomal, genetic or structural defects, signs of
intrauterine infection or neonatal early onset sepsis as defined by
positive blood culture within the first 72 h of life, and significant
neonatal morbidities were excluded from this study. All of the
children considered in the study were free from medication
and from psychiatric or neurological disease. Parental socio-
economic status and maternal education were also recorded.

All studies were approved by the ethical committee of
the corresponding hospital and written informed consent
was obtained from the parents or legal guardians of all the
participants. The same group inclusion criteria were applied in
both hospitals.

Image Acquisition
MRI examinations were performed on 3T Siemens TrioTim
systems (Siemens Medical Solutions, Erlangen, Germany). C1
cohort was scanned at Hospital Clínic de Barcelona and C6 and
C10 were scanned at Hôpitaux Universitaires de Genève. For
each subject, high-resolution T1-weighted (T1w) images were
acquired using a 3D magnetization prepared rapid acquisition
gradient echo (MPRAGE) sequence. Diffusion weighted images
(DWI) were acquired using a diffusion sensitized single
echo planar imaging (SE-EPI) sequence covering 30 diffusion
directions (b0 = 1000 m/s2) and a baseline image without
diffusion weight. Acquisition parameters are detailed in Table 2.
No subject was sedated during the protocol. Acquisition at 1 year
of age was performed during natural sleep (Padilla et al., 2012).

Image Processing: Obtaining the Structural
Connectome
The extraction of the whole brain structural connectivitymatrices
(connectomes) followed the methodology described in Batalle
et al. (2012). In short, for each subject the structural brain
connectivity was inferred by combining the information from

TABLE 2 | Magnetic resonance acquisition parameters for the three

cohorts under study.

Cohort TR/TE In-plane Slice

(TI) (ms) resolution (mm) thickness (mm)

T1-w C1 2050/2.14 (1050) 0.86 × 0.86 0.9

C6-C10 2500/2.91 (1100) 1 × 1 2

DWI (30 C1 9300/94 1.64 × 1.64 3

directions) C6-C10 1020/107 1.82 × 1.82 2

brain parcellation and fiber tractography. The entire processing
pipeline can be sequentially divided in the following steps.

Brain tissue segmentation
For each subject, the T1w image was segmented into WM, GM
and cerebrospinal fluid (CSF) using the unified segmentation
model from SPM package (Ashburner and Friston, 2005), which,
based on a priori maps, describes the probability of having a
given kind of tissue in a given brain position. By default, SPM
provides probability maps derived from adult brains, suitable
for C6 and C10 cohorts, but not appropriated for the youngest
cohort, where specific probability maps adapted to 1-year-old
anatomical brain features were considered (Shi et al., 2011). Each
subject’s segmentation was translated to the diffusion space, by
registering the T1w image to the diffusion baseline volume using
affine registration based on mutual information as implemented
by IRTK (Studholme et al., 1999).

Network node definition
T1w images were used to obtain the parcellation of each
subject brain in regions of interest (ROI), according to the
Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). This atlas provides a parcellation of the brain based
on anatomical criteria. AAL defines 90 cortical regions and 16
cerebellar regions. We merged the 16 cerebellar regions into 3
(right cerebellum, left cerebellum and vermis) to simplify the
analysis, obtaining 93 regions considered as the network nodes.
The standard AAL atlas was used for parcellation in C6 and
C10 cohorts, and the specific 1-year-old version of AAL in Shi
et al. (2011) was used for C1 cohort. Parcellation was performed
using a consistent block-matching algorithm (Warfield et al.,
2002; Tristán-Vega and Arribas, 2007) which provided the elastic
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transformation matching the atlas template to each subject T1w
image.

Tractography
Diffusion weighted images (DWI) were processed to estimate the
fiber tracts connecting different regions of the brain. For each
subject, all DWI were first registered to the baseline in order
to correct for eddy current effects and motion artifacts during
acquisition (Jenkinson et al., 2012). Diffusion tensor image (DTI)
estimation and deterministic tractography were performed using
MedINRIA (Toussaint et al., 2007). Fractional anisotropy (FA)
threshold was set to 0.1 to ensure the streamlines reaching the
GM-WM interface.

Connectivity Matrix
A pair of brain regions i and j were considered to be connected
if at least one streamline had end-points in the WM-GM
interface of both regions, excluding self-loops. Both binary
and weighted connectivity matrices were considered. The (i,j)
element of the binary connectivity matrix was set to one if at
least one connection between i and j existed, and zero if it did
not. Regarding the weighted connectomes, at each (i,j) matrix
element, we defined the connectivity weight as the mean FA value
along the streamlines linking the pair of regions i and j. FA is
a measure of the anisotropy of diffusion, indicating the degree
of preferred directionality of water diffusion, being influenced by
axonal fiber maturation and myelination (Sen and Basser, 2005).

In addition, a normalized version of the FA-weighted
connectome was also computed. In order to assess the brain
organization independently of the overall network strength1, the
weighted networks were individually normalized by the total FA
weight of all the connections in the network; in such a way that
each subject normalized connectome has total network strength
equal to 1 (Batalle et al., 2014).

In summary, we defined three connectomes for each subject:
binary, weighted by FA (FA-w), and the normalized FA-w
connectome (FA-n).

Brain Network Analysis
Structural connectomes, obtained as previously described, define
brain networks that can be characterized using graph theory
metrics, including basicmeasures, such as the number andweight
of the connections, and measures of functional integration and
segregation (Rubinov and Sporns, 2010).

Degree and strength are basic measures describing
connectivity. For an individual node, the degree is defined
as the number of nodes connected to it, while the nodal strength
is the sum of the weights of all the connections of this node.
In this work, we considered the average degree and strength in
the whole network. These metrics can influence the integration
and segregation measures, since higher degree/strength indicates
more connections at a global level which is generally related to
shorter path lengths between nodes.

1In a weighted network, the strength of a node (nodal strength) is the sum of the

weight of all the connections of the node. Network strength is defined as the sum

of the nodal strength of all the nodes in the network. In our case, the connection

weight is the average FA along the connection.

Integration is the ability to rapidly combine specialized
information from the distributed brain regions (Rubinov and
Sporns, 2010). Measures of integration are related to the so-called
path length, that is, the distance between two nodes. In a binary
network, it is quantified according to the minimum number of
steps required for moving from a given node to another, whilst
in a weighted network it is defined as the weight of all the steps
required for moving from a given node to another one. In this
study, we considered global efficiency, which is a typical measure
of integration inversely related to the path length. High values of
global efficiencies are related to short distances between network
nodes, allowing for fast communication between pairs of brain
regions.

Segregation in the brain is the ability for specialized processing
to occur within densely interconnected groups of brain regions
(Rubinov and Sporns, 2010). Measures of segregation are related
with clustering around individual nodes. Typical measures are
the clustering coefficient and the nodal efficiency. Clustering
coefficient of a node is a parameter that measures the number
of neighbors of this node that are also neighbors of each
other. The efficiency of a node is the global efficiency of its
associated subnetwork. In this study we considered the average
of these metrics in the whole network, that is, average clustering
coefficient and average nodal efficiency, also known as local
efficiency. High local efficiency and clustering coefficient are
related to both a highly segregated network and to a high number
(in binary connectomes) or weight (in weighted connectomes) of
connections between groups of regions.

Neurodevelopmental Assessment
Neurodevelopmental outcome was assessed for all infants by
neuropsychological testing appropriated for each range of age.

Children in the first cohort (C1), scanned at 1 year of age, were
evaluated at 20 months of corrected age with the Bayley’s Scale
for Infant and Toddler Development (BSID-III), which evaluates
five different scales: cognitive, language, motor, socio-emotional
behavior and adaptive behavior. The scales have scores with a
mean of 100 and a standard deviation of 15. Scores lower than
85 were considered as abnormal performance (Anderson et al.,
2010). Examinations were performed by a trained psychologist
with previous experience in the BSID-III that was not informed
about the infant medical history.

Neurodevelopmental outcome of the second cohort (C6) was
assessed at 6 years of age by three different tests: executive
function was evaluated by the behavior rating inventory of
executive function (BRIEF) (Gioia et al., 2000); problematic
behavior was assessed using the French version of the strength
and difficulties questionnaire (SDQ) (Goodman, 1997, 2001); and
cognitive assessment was carried out by the French version of the
Kaufman assessment battery for children 1 (K-ABC 1) (Kaufman
and Kaufman, 1983).

Behavior rating inventory of executive function (BRIEF)
(Gioia et al., 2000) consists of 86 items grouped on 8 clinical
scales measuring different aspects of executive functioning in
daily life: inhibition, shift, emotional control, initiate, working
memory, plan/organize, organization of materials and monitor.
In this study, at 6 years of age, we evaluated the behavioral

Frontiers in Neuroscience | www.frontiersin.org 4 December 2016 | Volume 10 | Article 560

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Muñoz-Moreno et al. Brain Networks from Infancy to Adolescence

regulation index (BRI), that is the sum of the first three scores;
and the metacognition index (MI), defined as the sum of the last
five scores. Evaluation consists in a questionnaire completed by
the parents, being higher scores associated with poorer executive
function.

Strength and difficulties questionnaire (SDQ) (Goodman,
1997, 2001) is a behavioral screening questionnaire for
children aged from 4 to 16 years. It includes 25 items
grouped on four dimensions that assess problematic behaviors
(conduct problems, hyperactivity/inattention, peer problems and
emotional symptoms) and a fifth dimension regarding prosocial
behavior. Evaluation is performed by a questionnaire completed
by parents. In the present study we took into account the
hyperactivity/inattention index, since IUGR has been related to a
higher risk of these kind of disorders (Baschat, 2011). In this scale,
higher scores are associated with more problematic behavior.

K-ABC (Kaufman and Kaufman, 1983) evaluates the
children’s cognitive ability by means of three scales: the
sequential processing (SEQ), simultaneous processing (SIM)
and achievement scales. Scores from the SEQ and SIM scales
are combined to form a mental processing composite (MPC),
which can be interpreted as a measurement of intelligence in the
K-ABC. Raw scores are transformed into standard scores with
mean 100 and standard deviation 15, with results higher than 85
considered as normal. In our study, SEQ, SIM, and MPC indexes
were considered.

Behavioral screening (SDQ) and executive function testing
(BRIEF) were also performed at the last cohort (C10), evaluated
at 10 years of age. Regarding SDQ, we again focused on the
hyperactivity/inattention score. Among BRIEF scales, in addition
to the composite BRI and MI scores, the inhibition capacity
(INH) score was also considered.

This C10 cohort was also assessed for analogical reasoning
abilities using the colored progressive matrices (CPM) test. It
provides a global score of the non-verbal intellectual efficiency
(Raven et al., 1998). In this study, we considered the raw score,
being the higher the score, the better the performance.

Table 1 describes the distribution of ages at which
neuropsychological evaluation was performed for each cohort.

Statistical Analysis
Statistical comparisons between IUGR and control groups were
performed using general linear models (GLM), including gender
and maternal education as cofactors, and GA at birth as a
covariate. In the analysis of the case-control differences in
network measures, the age at which the MR scan was performed
was also included as a covariate, whereas for the case-control
comparison of the neuropsychological scores, the age at which
the test was performed was considered a covariate. Significance
was declared at p < 0.05.

Case-control comparisons were performed at each cohort
C1, C6, and C10 independently. To describe the longitudinal
evolution, a second order polynomial was used to fit the
distribution of network metrics in IUGR and control groups
along the different ages.

To perform the correlation between neuropsychological
scores and network measures, we first corrected the

neuropsychological scores by the age at test, and the network
measures by the age at MR scan. Afterward partial correlations
between the corrected scores and corrected network measures
were computed, considering gender, GA at birth, maternal
education level and group as confounders.

RESULTS

Brain Network Metrics: Developmental
Trajectories and Case-Control Differences
Figures 1–3 show, respectively, the basic (degree or strength),
integration (global efficiency) and segregation (local efficiency
and clustering coefficient) graph metrics for the three cohorts.
Trajectories of these metrics through the different developmental
stages for cases and controls were fit by a second order
polynomial.

Furthermore, a representation of the connections with high
FA-weight is shown in Figure 4. The average FA-weighted brain
network in IUGR and control children at each evaluated time
point was computed and connections with an FA-weight higher
than 0.3 were depicted in this figure. It can be observed that the
number of connections with high FA increases with age, being
higher in control children with respect to infants who suffered
IUGR at all the evaluated time points.

Table 3 shows the mean and standard deviation of graph
metrics for each group. The resulting p-value is included for those
which were found to be statistically significantly different (p <

0.05) between cases and controls or which have shown a statistical
trend (p < 0.1) to difference. Regarding basic metrics, note that
the averaged network degree is the same for all the connectomes,
since it does not take into account the weight of each connection.
Therefore, we only include this metric in the binary connectome
analysis. On the other hand, the connections in the FA-n network
were normalized in such a way that the network average strength
is the same for all the subjects. Consequently, case-control
comparison of FA-n network strength was not performed.

Neuropsychological Assessment:
Case-Control Differences
The between-groups comparison of the cognitive outcome
showed that IUGR is related to poorer executive function
and higher risk of hyperactivity as evaluated by the
neuropsychological tests. Albeit executive function and
hyperactivity are better evaluated by tests at school age, a
tendency to poorer neurobehavioral outcome was already
present at 2 years of age, as assessed by BSID-III. At this age,
even though differences in the test outcome were not statistically
significant, a non-significant trend to lower scores was observed
in cognitive, language, motor, and socio-emotional scales for
IUGR children.

Poorer executive function was found in IUGR subjects,
associated with higher BRIEF scores at 6 and 10 years of age, with
a statistically significant difference at 10 years of age for BRI (p=
0.0422) and MI (p = 0.0262) scores. In addition, for the 10 year-
old cohort a non-significant trend to increased INH scores was
also found (p= 0.0706).
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FIGURE 1 | Basic network metrics: mean degree and average strength in the whole network. Stars correspond to IUGR children and circles to controls.

Solid line, evolution of the metric along age in control group; dashed line, evolution of the metric along age in IUGR group.

FIGURE 2 | Brain network integration metric: global efficiency. Stars correspond to IUGR children and circles to controls. Solid line, evolution of the metric with

age in control group; dashed line, evolution of the metric with age in IUGR group.

Higher risk for hyperactivity disorder was also identified in the
IUGR group, with an increased SDQ hyperactivity score in IUGR
children both at 6 and 10 years of age, statistically significant (p
= 0.0029) in the C10 cohort.

Tests evaluating more generic cognitive abilities, such as K-
ABC at 6 years of age, and CPM at 10 years of age, did not
show statistically significant differences, but a tendency (p =

0.0980) of IUGR subjects having lower SIM scores, that is, worse
performance in simultaneous processing.

Correlation between Neuropsychological
Scores and Brain Network Metrics
Significant correlations between cognitive outcome and network
metrics were found in the three age groups. Neurobehavioral

performance at 2 years of age was correlated with brain network
structure at 1 year of age, namely cognitive, motor, and socio-
emotional scores of the BSID-III were significantly correlated to
network metrics, as shown in Table 4.

Network organization was also correlated to executive
function at 6 and 10 years of age. Table 5 shows the significant
correlations between BRIEF scores and the network metrics both
at 6 and 10 years of age. No significant correlation was found with
the MI index at 6 years of age.

Hyperactivity, as assessed by the SDQ innatention/
hyperactivity index, was significantly correlated to the FA-
w connectome in the C10 cohort, as shown in Table 6, although
no significant correlation was found in C6.

Non-verbal intellectual efficiency, as measured by CPM score,
was correlated to FA-w average strength at 10 years of age (rho=
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FIGURE 3 | Brain network segregation metrics: local efficiency and average clustering coefficient. Stars correspond to IUGR children and circles to

controls. Solid line, evolution of the metric along age in control group; dashed line, evolution of the metric along age in IUGR group.

0.6344, p= 0.0138), while no significant correlations were found
between the cognitive ability evaluated by general KABC scores
and the structural brain network metrics, neither at 6 nor at 10
years of age.

DISCUSSION

Brain connectivity evolves during development, starting
prenatally and continuing into adolescence (Hagmann et al.,
2010; Yap et al., 2011; Dennis and Thompson, 2013; Ball et al.,
2014; Dubois et al., 2014). Along with this, perinatal conditions,
such as IUGR and prematurity have been shown to influence
the normal brain development, affecting network connectivity
in the short- and long-term (Batalle et al., 2012; Ball et al.,
2013; Fischi-Gómez et al., 2015). This altered brain connectivity
has been related to the impairment in cognitive and social
functions that have been described in childhood and adolescence
as a consequence of IUGR (Geva et al., 2006; Wiles et al.,
2006; Leitner et al., 2007; Heinonen et al., 2010; Baschat, 2011;
Guellec et al., 2011; Levine et al., 2015). In this study, we used
connectomics to evaluate brain networks from early infancy
to school age in preterm born children with or without IUGR,

and to compare the developmental network trajectories in both
populations, as well as their relationship to social and cognitive
performance.

Evolution of Brain Networks
Plots of the network metrics at different ages (Figures 1–3)
have shown two different patterns: one associated to the
binary network (degree, binary efficiencies, and binary clustering
coefficient), decreasing with age; and the other associated to the
FA-w/FA-n connectomes, increasing with age.

Interestingly, these two patterns may reflect the two main
processes occurring during brain development and maturation:
pruning and myelination. Starting in the fetal life, the
wiring process of the brain includes neuronal and synaptic
overproduction followed by cellular apoptosis, axonal retraction
and synaptic pruning to remove redundant connections. This
pruning process extends from the end of gestation to childhood
(Innocenti and Price, 2005; Stiles and Jernigan, 2010; Dubois
et al., 2014). Fiber myelination occurs in parallel with this neural
pruning, extending in time beyond late adolescence (Miller et al.,
2012). Myelination favors the conduction of the nerve impulse
along fibers and has been associated with an increase in FA values,
very prominent during the first years of postnatal life (van der
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FIGURE 4 | High-FA connections of the average brain network in control and IUGR children at each range of age. Only connections with FA weight higher

than 0.3 are plotted. Line width and color represents the connection strength.

Knaap and Valk, 1995; Dubois et al., 2014). From this perspective,
it seems logical to hypothesize that the pruning effect could be
more related to the binary network metrics, describing which
regions are connected to which regions, whilst the myelination
process would have a more prominent influence in the FA-w or
FA-n networks, that take into account the differences in the mean
FA of the connections.

Accordingly, binary network metrics are mainly associated
with the structure and organization of the connections
themselves, but not with the maturational state of these
connections. In this sense, average nodal degree is associated
with the number of connected regions and our results showed
a decrease with age, what could be viewed as related to the
synaptic pruning. Along the same line, efficiency and clustering
are also influenced by the number of regions connected and
appear to decrease with age. Segregation metrics in the binary
connectome follows a different pattern of evolution, showing
a very slight increase from 1 to 6 years of age and then a
decrease to 10 years. This fact can be explained by a decrease in
the number of connections with age (and therefore a decrease
in network global efficiency), as measured by the network

degree, together with an increase in the organization of the
remaining connections in subnetworks, increasing the ability for
specialized processing. Previous analyses of longitudinal changes
in the binary brain network of healthy subjects have described
contradictory findings. For instance, the clustering coefficient
was shown to be increased in the early neonatal period by
van den Heuvel et al. (2015), while a decrease from birth to 6
months of age followed by a further increase in adulthood was
described by Tymofiyeva et al. (2013). The path length (inversely
related to global efficiency) has been shown to increase in the
early neonatal period and decrease in adulthood by Tymofiyeva
et al. (2013), while (van den Heuvel et al., 2015) detected a
decrease of path length in the early neonatal period. In the
analysis of neonates, 1- and 2-year-old children, Yap et al. (2011)
had shown an increase of local efficiency but no differences in
global efficiency. An explanation of these different findings can
be seen in methodological issues, such as different parcellation
schemes, tractography algorithms or different criteria to define
connectivity, as well as differences in the cohorts, especially in
the analyzed age ranges. In fact, our results showed an inflection
point in the evolution of both local efficiency and clustering
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TABLE 3 | Network metrics (mean and standard deviation) in control and IUGR groups at 1, 6, and 10 years of age. p-value of the case-control

comparison is only included if p < 0.1.

1-year-old cohort 6-yearl-old cohort 10-year-old cohort

CONTR IUGR p-value CONTR IUGR p-value CONTR IUGR p-value

BINARY Degree 60.24 (1.26) 56.87 (2.57) 0.0360 55.13 (3.72) 53.65 (2.96) n.s 53.14 (1.735) 48.88 (6.522) n.s

Global Efficiency 0.827 (0.007) 0.809 (0.014) 0.0370 0.799 (0.021) 0.791 (0.016) n.s 0.779 (0.009) 0.754 (0.038) n.s

Local Efficiency 0.881 (0.005) 0.871 (0.011) n.s 0.881 (0.008) 0.880 (0.005) n.s 0.872 (0.006) 0.863 (0.016) n.s

Clustering 0.762 (0.011) 0.743 (0.022) n.s 0.763 (0.016) 0.760 (0.011) n.s 0.743 (0.012) 0.728 (0.029) n.s

FA-w Strength 19.05 (0.93) 17.61 (1.68) 0.091 0.210 (0.010) 0.198 (0.011) 0.026 0.204 (0.011) 0.187 (0.019) 0.0321

Global Efficiency 0.274 (0.011) 0.263 (0.019) n.s 0.294 (0.010) 0.282 (0.008) 0.0070 0.301 (0.012) 0.291 (0.015) 0.0213

Local Efficiency 0.301 (0.010) 0.293 (0.019) n.s 0.335 (0.014) 0.324 (0.009) 0.054 0.347 (0.013) 0.345 (0.022) n.s

Clustering 0.241 (0.010) 0.230 (0.0190) n.s 0.270 (0.011) 0.260 (0.007) 0.0280 0.273 (0.012) 0.268 (0.014) n.s

FA-n Global Efficiency 0.154 (0.002) 0.161 (0.005) 0.0333 0.164 (0.007) 0.167 (0.006) n.s 0.172 (0.004) 0.183 (0.019) n.s

Local Efficiency 0.170 (0.003) 0.179 (0.008) 0.0358 0.186 (0.012) 0.191 (0.010) n.s 0.198 (0.006) 0.218 (0.032) n.s

Clustering 0.136 (0.002) 0.141 (0.003) 0.0194 0.150 (0.009) 0.154 (0.007) n.s 0.156 (0.005) 0.169 (0.020) n.s

TABLE 4 | Significant correlations (p < 0.05) between network metrics at 1 year of age and BSID-III scores at 2 years of age in C1.

Cognitive Motor Socio-Emotional

FA-w Strength 0.6359 (p = 0.0435) n.s 0.9001 (p = 3.8e−6)

Global Eff. 0.6922 (p = 0.0187) 0.6842 (p = 0.0359) n.s

Clust. Coef. n.s n.s 0.6997 (p = 0.0285)

FA-n Local Eff. n.s n.s −0.8040 (p = 0.0025)

Clust. Coef. n.s n.s −0.8778 (p = 4.2e−5)

coefficient during development from 1 to 10 years of age, with an
initial increase until 6 years of age and then a decline to 10 years.
This change of trajectory can be missed when only neonatal and
adulthood periods are considered, or if not enough intermediate
time points are evaluated. In addition, regarding our findings, it
is interesting to highlight that both IUGR and control subjects
follow parallel trajectories along time, with IUGR binary metrics
always being lower than control subjects’ metrics.

Regarding FA-w measures, which take into account both
neural myelination and organization (Sen and Basser, 2005),
our results have shown an increase in both integration and
segregation metrics with age, while FA strength appears to be
constant. This constant FA network strength can be explained by
the combination of the decrease in the number of connections
and the increase in the FA weight of such connections. As in the
case of binary metrics, our results indicated a parallel trajectory
between IUGR and healthy subjects, with IUGR infants showing
reduced values of network metrics already at 1 year of age. These
results are in line with the evolution of FA-w networks described
in healthy neonates (from 30 to 40 weeks) by van den Heuvel
et al. (2015), showing an increase in clustering coefficients and
a decrease in path length (what would be associated with an
increase in global efficiency), a tendency that still persists in
our cohorts, from 1 to 10 years of age. Connectome analysis
considering FA-related weights for the connections has shown
similar results. Increase in network strength, global and local

efficiency was described in Chen et al. (2013) in a study of subjects
from 6 to 29 years of age in a cohort evaluated between 9 and 15
years of age (Koenis et al., 2015).

The increase in FA-w connectome metrics is also reflected in
Figure 4, which shows the connections with high FA weights (FA
> 0.3) in the average brain network of each group under analysis.
Although the binary degree indicated that the total number of
connections decreases with age, the connections in early stages
have lower FA values, resulting in a smaller number of links
whose FA-weight is higher than 0.3. Myelination and maturation
occurring with age leads to increased FA values (Oishi et al., 2013;
Krogsrud et al., 2016), and results in an increase of the number of
high FA weighted connections in the older cohorts.

With regards to the FA-n network metrics, the developmental
trajectory was similar to the one described for the FA-w, showing
parallel trajectories for IUGR and controls. However, in this case,
IUGR showed increased values on their network metrics when
compared with controls, as a consequence of the connectome
normalization, which will be further discussed in the next section.

Brain connectivity at different age has been assessed in several
studies using different criteria to describe or weigh connections:
connectivity density (Hagmann et al., 2010); apparent diffusion
coefficient (ADC) (Hagmann et al., 2010; Huang et al., 2015);
probability of connections (Huang et al., 2015) number of
streamlines (Dennis et al., 2013; Zhao et al., 2015) and correlation
between GM volumes (Fan et al., 2011). Although the differences
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TABLE 5 | Significant correlations (p < 0.05) between network metrics at 6 and 10 years of age, and its respective BRIEF scores in the C6 and C10 cohorts.

6-year-old cohort 10-year-old cohort

BRI BRI MI INH

Binary Degree n.s n.s n.s −0.6024 (p = 0.0235)

Global Eff. n.s n.s n.s −0.6024 (p = 0.0023)

Local Eff. −0.6182 (p = 0.0374) n.s −0.5967 (p = 0.0256) −0.7132 (p = 0.0023)

Clust. Coef. −0.6242 (p = 0.0345) n.s −0.6165 (p = 0.0188) −0.6821 (p = 0.0051)

FA-w Strength n.s n.s −0.5558 (p = 0.0449) −0.5921 (p = 0.0275)

FA-n Global. Eff. n.s 0.6015 (p = 0.0239) n.s 0.6737 (p = 0.0023)

Local Eff. n.s 0.5810 (p = 0.0322) n.s 0.6327 (p = 0.0142)

TABLE 6 | Significant correlations (p < 0.05) between network metrics at

10 years of age and the SDQ hyperactivity/inattention scores.

10-year-old cohort

FA-w Strength −0.6334 (p = 0.0449)

Global Eff. −0.9239 (p = 3.4e−9)

Local Eff. −0.8366 (p = 0.0002)

Clust. Coef. −0.8310 (p = 0.0002)

in the definition of connectivity do not allow a direct comparison
of these results, patterns of increased global efficiency (or
decreased path length) throughout development are described
in all of them, similar to the pattern we have observed in both
IUGR and control children. Regarding the segregation metrics,
a decrease in clustering coefficient has been described by several
authors (Hagmann et al., 2010; Huang et al., 2015; Zhao et al.,
2015), similar to the decrease in clustering measured in our
binary network. In these studies, the influence of FA was not
considered in the connection weight. When we included FA to
weight the connections, the clustering coefficient increased with
age as a consequence of the increase of FA withmaturation (Oishi
et al., 2013; Krogsrud et al., 2016), tapering off in the later period
(6–10 years of age), as described in Dennis et al. (2013) for
subjects between 12 and 30 years.

Brain Network Reorganization in IUGR
Brain network reorganization has already been described in
infants and children born with IUGR at 1 and 6 years of
age (Batalle et al., 2012; Fischi-Gómez et al., 2015). It has
been mainly characterized by a decrease in global and local
efficiencies and/or clustering of the FA-w connectome compared
to controls. Our results are coherent with these previous findings
and show the persistence of these differences in the brain network
measures at all three developmental ages, even though these
differences appeared more pronounced in the youngest cohort.
Changes in network parameters were shown in the three different
connectomes we considered: binary, FA-w and FA-n.

Figures 1–3 and Table 3 show a tendency of graph measures
from binary connectomes to be decreased in IUGR children.
This decrease was found to be statistically significant for binary
network degree and global efficiency in the 1 year cohort,
but this significance disappears with age. Binary connectome

is related to the skeleton of the brain network, that is, it
evaluates the existence or absence of connections between
regions, disregarding how strong the connections are (Rubinov
and Sporns, 2010). Therefore, our results suggest that IUGR
leads to a reduction of structural connections between brain
regions, especially important in the early developmental period.
Differences are less evident later in life, which allows us to
hypothesize that in this later period IUGR is mainly associated
with a different maturation of the connections rather than with a
lack of connections. This idea is supported by the results obtained
in the FA-w connectome, sensitive to fiber myelination and/or
maturation (Sen and Basser, 2005).

The graph measures associated to FA-w connectome were
decreased in IUGR children, as shown in Figures 1–3 and
Table 3. Statistically significant differences were present at
all three evaluated ages. The FA-w network strength was
significantly reduced in IUGR from 1 to 10 years of age. This
difference is also illustrated by Figure 4, where lower number of
high-FA connections are observed in each average IUGR brain
network when compared with their respective average control
networks. Differences in FA have been shown to persist even in
adulthood, as described by Eikenes et al. (2012) in a 20-year-old
cohort. Differences in the connection organization were found
at 6 and 10 years of age, significantly decreased global efficiency
in both cohorts, and significantly decreased local efficiency and
clustering at 6 years of age in IUGR, suggesting that the IUGR
brain shows a different brain network organization that persists
in childhood. Although we did not find statistical significance
in the global and local efficiency of the FA-w connectome at 1
year of age, we observed values that tended to be lower in IUGR
infants with respect to controls. In a prior study with a larger
cohort (Batalle et al., 2012), IUGR was shown to be associated
with a significant decrease of these two network metrics at one
year of age. Regarding the 6-year-old cohort, our results using
a different methodological approach were coherent with the
network metrics shown in Fischi-Gómez et al. (2015).

Finally, the FA-n connectome allows to take into account
differences in the network organization regarding the
distribution of the connections and their relative individual
strength (FA weight), independently of the total network
strength (sum of FA in the connections of the entire brain).
That is, it can evaluate if the IUGR and control infant brain
networks are still different even if they were equal in terms of
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the average FA of the whole-brain network. Graph measures
associated to the normalized connectome show an inverse
behavior compared to binary and FA-w network metrics, that
is, IUGR values are increased with respect to control values.
An increase in the efficiency of the normalized network could
be related mainly to two factors: first, a lower number of
connections, when the total network strength is set to 1 by
normalization, each individual connection has relatively higher
weight (FA) than in more connected networks, where the fix
total strength must be split into a higher number of connections;
and second, a different distribution of the FA-weights of the
connections between the different regions in the brain, which has
been previously suggested by Batalle et al. (2014) as a potential
compensatory mechanism adapting the brain network to the
reduced resources. Even though it is difficult to disentangle
the individual contribution of these two effects on the increase
of FA-n network metrics in IUGR, we can hypothesize that
IUGR is related to both a connection decrease and a network
re-organization to obtain efficient connectivity from such a
limited infrastructure (less organized and/or myelinated axons).
Global and local efficiency and clustering coefficient were found
to be significantly increased in IUGR cohort, pointing to a
reorganization of the brain network in IUGR to cope with
the reduced infrastructure and maturation. This connectome
normalization approach has been previously used in the analysis
of the long-term effects of IUGR in the rabbit model (Batalle
et al., 2014) where a significant increase in network metrics was
described associated with the normalized generalized fractional
anisotropy (GFA)-weighted connectome and a tendency to lower
efficiencies in the GFA-weighted connectome in IUGR. This
pattern of alterations agrees with our findings in the children
cohort. Albeit absence of significance, the increase of FA-n
network metrics is still present in the older cohorts.

Correlation between Network Metrics and
Neuropsychological Scores
As social and cognitive problems have been previously
described in children with IUGR, together with general
neurodevelopmental evaluations (BSID-III, K-ABC, and
RAVEN), neuropsychological assessment specifically focused
on these impairments were administered in form of specific
questionnaires (SDQ hyperactivity/inattention score and
BRIEF). Results showed that IUGR children performed worse
in almost all the scores when compared to controls. The
differences were statistically significant in the measures of
hyperactivity/inattention and executive function (SDQ and
BRIEF) at 10 years of age, which supports the idea of a specific
pattern of neurodevelopmental impairments in IUGR children,
related to social cognitive problems. Executive dysfunction is
more easily detectable in older children, which could explain
significant differences appearing only in the older cohort. These
findings are coherent with previous studies showing higher
hyperactivity and conduct problems associated with IUGR at
school age (Wiles et al., 2006).

Since structural and functional maturation of neuronal
pathways connecting individual brain regions have been

directly related with the successful development of cognitive
motor and sensory functions (Paus, 2010), changes in brain
structure associated with IUGR may lead to impairments in
the neurobehavioral outcome of these children. Consequently,
different measures computed from brain MRI have been shown
to correlate with neurodevelopmental performance in our
cohorts.

Changes in connectivity of the neonatal brain have been
correlated to BSID-III scores in studies with IUGR and
prematurely born children (Batalle et al., 2012; Ball et al., 2015). It
has also been correlated tomore severe disorders, such as cerebral
palsy, where an increase in brain connectivity was related to
improved functional abilities (Englander et al., 2015) in a cohort
of children between 1 and 5 years of age.

In agreement with these previous findings, our study shows
correlation between the cognitive, motor and socio-emotional
scores in BSID-III assessed at 2 years of age and the network
metrics evaluated at 1 year of age. Coherently with the fact
that metrics computed from the FA-w connectome were shown
to be decreased in IUGR and FA-n network metrics were
increased in IUGR, positive correlation was shown between FA-
w metrics and neurodevelopment outcome, while a negative
correlation was found between FA-nmetrics and BSID-III scores.
It is interesting to note that while cognitive and motor scores
are correlated with an integration metric (global efficiency),
socio-emotional scores are related to segregation metrics (local
efficiency and clustering), pointing to a difference in processing
of these brain functions. Motor function and also general
complex cognitive processing requires efficiency in long range
connectivity, for instance, the cortico-basal-ganglia-thalamo-
cortical loops, whereas the socioemotional functioning has been
associated with specific short cortico-cortical networks (Fischi-
Gómez et al., 2015). Therefore, this relationship with integration
and segregation metrics, respectively, could be related with the
fact that motor function has been associated to projectional long-
range connectivity, while socio-emotional function has been
more associated to cortico-cortical networks and association
fibers.

In the 6-year-old cohort, correlation was found to be
significant between the binary segregation metrics and BRI
index, which describes behavioral regulation, being composed
of inhibition, shift and emotional control scores. Although not
reaching statistical significance, differences were found at this
age between IUGR and control, higher BRI values (higher risk
of disorder) were obtained by IUGR children, and this score
was negatively correlated with the network metrics. Binary
segregation metrics are related to the number of regions that
are interconnected, forming clustering of specialized processing,
without taking into account the strength of the connections.

Finally, the brain network metrics in the 10-years-old
cohort were strongly correlated with both BRI and SDQ
hyperactivity/inattention score. In this case, correlation
is significant both in integration and segregation metrics
of the binary, FA-w and FA-n. The higher correlations
were found between the network metrics and the SDQ
hyperactivity/inattention score (correlation coefficients
higher than 0.8 for FA-w global and local efficiency and
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clustering coefficient), showing a clear relationship between
the reorganization of brain connectivity and these attention
impairments. Inhibition capacity measures (INH) were similarly
correlated with network metrics and associated with the binary,
FA-weighted and FA-normalized connectomes. Note that the
sign of the correlation relates higher risk (higher SDQ or INH
scores) with brain network organization associated with IUGR
(lower binary and FA-w network metrics, and higher FA-n
network metrics).

An association between structural brain changes and
attention deficit-hyperactivity disorder (ADHD) has already
been described in previous studies, including changes in
FA of specific fiber tracts (de Zeeuw et al., 2012) or specific
regions (Kobel et al., 2010), as well as alterations in functional
connectivity (Wang et al., 2009). Along with this, previous
studies have indicated higher hyperactivity and conduct
problems associated with IUGR at school age (Wiles et al.,
2006), describing alterations in executive function, attention and
memory persisting at 20 years of age (Østgård et al., 2014b).
Therefore, our study corroborates the higher risk for IUGR
children to have brain network abnormalities disposing them for
hyperactivity/inattention disorders in childhood.

Strengths and Limitations
This study presents an evaluation of brain networks from infancy
to late childhood, taking into account structural alterations
associated with IUGR. Several studies have already shown the
evolution of brain networks during development (Hagmann
et al., 2010; Dennis and Thompson, 2013; Huang et al., 2015), but
the influence of adverse perinatal condition was not considered
in these analyses. Although structural changes at some given
neurodevelopmental period have been previously described, the
changes in brain networks from infancy to early adolescence have
not been reported. Actually, longitudinal analyses of IUGR have
mainly focused on the neuropsychological outcomes (Leitner
et al., 2000, 2007; Geva et al., 2006), but correlation between
these outcomes and changes in brain structure was not described
in these studies. One of the strengths of our study is the
fact of having very well characterized cohorts with both image
acquisitions and neuropsychological evaluation available so both
cognitive and structural differences, and the relationship between
them, could be assessed. From a structural point of view,
long-term brain reorganization associated with IUGR had been
described in Fischi-Gómez et al. (2015) at 6 years of age, but, to
the best of our knowledge, this is the first study that analyzes
brain networks in IUGR children from early infancy up to 10
years of age. To describe the brain network organization along
time, this analysis combines different cohorts from Hospital
Clìnic de Barcelona and Hospitaux Universitaires de Gèneve
that have been acquired with similar imaging parameters. This
allows us to have MR-scans of children at 1, 6, and 10 years of
age, although we could not have the same subjects in the three
time points. This is a common problem to most of the studies
describing evolution of brain networks along development
(Dennis and Thompson, 2013; Hagmann et al., 2010; Huang
et al., 2015). Nevertheless, it deserves to be highlighted that some

of the subjects in the 6 and 10 year-old cohorts were the same,
leading to stronger reliability in the longitudinal comparison.

The availability of a variety of neuropsychological test
evaluating the children performance at every range of age,
and the combination of these results with the brain structural
measurements provide new insights in the description of the
short- and long-term effects of IUGR. However, we acknowledge
that the sample size at every age group is relatively small.
But even with this small sample size, a similar pattern of
differences between IUGR and controls was observed at each
time point. Small sample size could explain the lack of significant
differences in some measures, both in neuropsychological scores
and network metrics.

The acquisition parameters are slightly different in C1
compared to the other two cohorts, mainly the voxel size, which
for obvious reasons is smaller in the C1 cohort. It is related with
the difference in brain size between 1-year-old children and older
subjects, which requires to have smaller voxels to have sufficient
image resolution. For this reason, in the analysis of connectivity
we have considered the FAweighted networks, since it is a relative
parameter (Westin et al., 2002), which minimizes the possible
influence of differences in voxel and brain size between cohorts.
Only global or average local metrics have been considered in
the study. It would be interesting to identify regional alterations
and patterns of network nodes or specific connections showing
differences between IUGR and controls. However, due to the
small sample size and the high number of nodes (93) and
connections (around 8000) this would have proven statistically
difficult.

CONCLUSIONS

The development of brain networks from infancy to childhood is
characterized by an increase in the efficiency and clustering of the
FA-related connectomes (both FA-weighted and FA-normalized),
and a tendency to decreased efficiency and clustering coefficients
of the binary connectome, especially in the later infancy period.
These changes can be associated, respectively, with an increase
in structured and myelinated connections along with a pruning
of less organized connections. The longitudinal trajectory is
similar in both IUGR and control preterm born children,
although a delay could be observed in IUGR with respect to
control children, related to a pattern of structural alterations in
brain network associated with this condition that persists, but
lessens with age. Namely, a decrease in the FA weighted metrics
and increase in normalized FA networks was found, which is
likely related to lower neural myelination and/or organization
in IUGR children. These structural differences are related to
a higher risk of social cognitive disorders in IUGR, being
especially relevant the association with executive dysfunction and
hyperactivity/inattention behavior.
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