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In this article, we numerically resolve the flow profiles of tastant concentration in the pipe

of a gustometer used to deliver alternative pulses in concentration, which is a typical case

of Taylor dispersion. Using this model, we can define the cases where the experimenter

will deliver to the assessors a concentration profile which is significantly different from that

intended. This can be simply assessed a priori using a scaling argument which involves

calculating a dimensionless frequency. This is a function of the pulses frequency, the

dimensions of the pipe and the flow rate used. We show that unless this parameter is

taken into account, modifying the pulse frequency will modify the pulse amplitude. This

design criterion is absent from the literature but we suggest this is important for designing

such experiments.
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INTRODUCTION

In recent years, the idea of modulating chemosensations, in particular taste and aroma, using
dynamically changing concentrations of chemicals, has emerged. This has been implemented in
model foods such as gels (Stieger, 2011) and other types of solid foods such as bread (Noort et al.,
2010, 2012) and bread crumbs (Konitzer et al., 2013; Pflaum et al., 2013), with various degrees of
success and impact on taste perception. This approach is obviously an attractive route for sodium
and sugar reduction in foods, which are particular areas of focus to both public health organizations
(World Health Organization, 2012, 2015) and the food industry.

To establish the parameters of such dynamics, one often uses a liquid delivery system, named
gustometer, to deliver dynamically changing concentrations (at a frequency ω) of chemicals to an
assessor, rating either dynamically the taste intensity (TI) (Morris et al., 2009, 2010) or giving a
global score to the sequence presented. Recently, Le Révérend et al. (2013) demonstrated that in
mouth mixing of the different pulses was likely to occur, damping those dynamics at the taste
cell/receptor level. Knowing how the boundary condition in concentration Coutlet varies with
respect to time t when the liquid enters the assessor’s mouth is important for the experimental
and numerical approaches previously cited.

In this short communication, we show that not all gustometers are created equal with respect
to Coutlet(t), even though programming of the pumps and manifold appears to be the same. The
dimensions of the pipe between the manifold or mixing cell and the assessor’s mouth are of critical
importance and yet often overlooked as design criteria.
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APPROACH

Gustometers are basically constructed from n pumps, whose
outputs at flow rates V̇i are mixed into a single flow channel,
so that the flow rate received by the assessor is V̇ =

∑n
i= 1 V̇i.

The dimensions of pipe length, L, and radius, R, are of particular
importance. R is supposed constant i.e., the tubing is stiff
enough to accommodate variations of pressure during flow
delivery without deforming. This is an important characteristic
to ensure constant flow delivery. If the flow is steady and laminar
(Re ≤ 2000)1, and the convection of the solute dominates
over its diffusion (Pe ≫ 1)2, a phenomenon named Taylor
dispersion occurs (Taylor, 1953), which practically increases the
effective diffusion Deff of the solute in the vehicle fluid following
Deff/D ∼ Pe2.

A simple way to represent this phenomenon is to imagine
that, since the flow in the pipe is parabolic, fluid elements in the
center of the pipe travel much faster than those at the periphery.
The fluid at the center thus rapidly catches up the fluid at the
periphery of the pipe from the previous pulse (Casadevall i Solvas
and deMello, 2011), as shown in Figure 1. As the residence time
of the fluid in the pipe increases, there is more time for dispersion
and the more significant this phenomenon will become. If the
pipe is long enough, a cross section of the pipe can contain fluid
elements from many successive pulses, such that convolution of
successive pulses of concentration occurs in the assessor’s mouth
(at the end of the pipe). If the Taylor dispersion is significant, a
deviation from the commonly assumed (Bult et al., 2007) square
wave function occurs, and the assessor experiences a sawtooth
like signal, making the relevance of the experiment to model
sharp changes in concentration flawed. In practice, as the pulse
is smeared during the flow, the effective concentration span
between two successive pulses will be reduced from H in the
ideal case (i.e., the square wave at the start of the pipe) down
to h < H. To measure this reduction in sensitivity we defined
a dimensionless amplitude 1 = h/H. We chose to monitor
this parameter 1 since the contrast between successive pulses is
reported to be the source for the increase in perceived taste by the
assessors (Burseg et al., 2010).

A classic approach to representing the behavior of a system
in physics and engineering is to define dimensionless numbers
that are products or ratios of physical dimensions, such that the
number of parameters of importance is reduced to a kernel of
parameters (Buckingham, 1915). Upon experimentally varying
several physical dimensions, all experimental data should then
collapse onto a single master curve when plotted as function
of well chosen dimensionless parameters. In the light of the
application of Taylor’s work to gustometers, we propose to use the
dimensionless frequency � = ω · L/ν̄ = ω · L · π · R2/V̇ (a
Deborah number) which takes into account both the frequency
of the pulses (ω) and the parameters of the equipment L and ν̄

(or V̇ and R); and 1 as detailed above. Our objective with this

1Reynolds number, Re = 2 · ν̄ · R · ρ/η, where ν̄ is the fluid average velocity,

ν̄ = V̇/(π · R2), ρ its density and η its dynamic viscosity. The solution is

theoretically valid for any value of Re, as long as the flow is laminar. The value of

2000 is an empirical, commonly accepted, upper threshold for the laminar regime.
2Peclet number, Pe = 2 · R · ν̄/D, where D is the diffusion coefficient of this solute

in the fluid vehicule.

model is to help the experimenter, who would like to know which
pipe dimensions to use for a particular working flow rate and
frequency.

SOLUTION AND APPLICATION TO
SYSTEMS USED IN THE LITERATURE

The best case scenario for the delivery of taste pulses is to assume
a laminar, diffusion free flow, which thus minimizes mixing (see
Figure 1). This can be solved using the analytical solution for
the Hagen-Poiseuille flow in a pipe3 coupled with a change in
concentration C of solute at the inlet of the pipe (l = 0). By
weighting the radial flow rate4 with the local concentrationC(r, t)
of solute in the fluid lamina comprised between r and r + dr, we
can then calculate Coutlet(t)

5. A typical solution for this problem
(solved numerically withMATLAB ver. R2015b, on a 1000×1000
grid for pipe radius and length, respectively) is plotted at the
bottom of Figure 1. One can see that the results deviate from
the plug flow situation envisioned in the literature (Bult et al.,
2007). The latter would lead to a simple dephasing of the outlet
concentration compared to the inlet concentration by a phase
lag φ = L/ν̄, such that Coutlet/plug(t) = Cinlet(t − φ). Instead,
the simulation predicts a sawtooth like profile, in excellent
agreement with the outlet concentration that was measured by
Burseg et al. (2010) (see Figure 1). Upon reaching steady state,
one can define h = max(Coutlet) − min(Coutlet) and calculate
1 for a range of design parameters. The finite time taken to
establish the steadiness of the pattern is an added complication
that experimenters should also be aware of; detailed investigation
of this is beyond the scope of this communication.

We carried out numerical simulations for a wide range of flow
rates (V̇ ∈ [0.2, 100]ml/min), pipe geometries (L ∈ [0.1, 5]m
and R ∈ [0.1, 1]mm) and pulse frequencies (ω ∈ [0.2, 5]Hz) in
order to map the experimental space of published gustometry.
Given that we have identified two dimensionless quantities
(�,1) that pertain to both the fluid/mass dynamics and the
sensory readout of a gustometer experiment, we position the
solutions and highlight different systems used in the literature on
a (�,1) axis in Figure 2. As expected, all the computed solutions
collapse on a single monotonous master curve suggesting that
our scaling relationship is valid. Points are slightly scattered
due to numerical errors during discretization of time and
space.

To keep a good dynamic range (1 > 0.9), one needs to have
a system with a very low dimensionless frequency (� < 0.1). In
practice it means that to have a good dynamic range to study very
short pulses (high frequency ω), one would need either a very
large flow rate (V̇) or a very short and thin pipe. The study of such
short pulses is of particular relevance for deciphering signaling
proceeding from the peripheral and central integration cascade,
which happens in a few hundreds of milliseconds (Tzieropoulos
et al., 2013).

3ν(r) = 2 · ν̄ · (1 − r2/R2), r ∈ [0,R] meaning that the velocity is null at the wall

(r = R) and maximal along the axis of symmetry of the pipe (r = 0).
4V̇(r) · dr = 4 · ν̄ · (1− r2/R2) · π · r · dr, r ∈ [0,R].

5Coutlet(t) =
∫ R
0 C(r,t)·V̇(r)·dr

∫ R
0 V̇(r)·dr

.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2016 | Volume 10 | Article 562

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Thomazo et al. Frequency-Amplitude Interaction in Gustometers

FIGURE 1 | Typical solution for a parabolic, laminar, diffusion free flow (R = 0.4 mm, L = 10 m and V̇ = 15 ml/min) when the inlet is subject to step

changes in concentration (represented by the black and white colors) at a given frequency (ω = 1/3 Hz) [top]. This results in an outlet concentration which

is dephased by φ due to the length of the pipe and the average flow rate (as if the flow was plug-like, dashed line) and in addition smeared to form a saw tooth like

signal (for the real parabolic case, solid line) [bottom]. In this case, taken from Burseg et al. (2010), the following parameters were used; R = 0.4 mm, L = 10 cm, ω =

1/3 Hz and V̇ = 15 ml/min.

Having validated the scaling behavior with our simulations, we
add to the graph simulations based on parameters used in three
published studies (Meiselman and Halpern, 1973; Morris et al.,
2009; Burseg et al., 2010). Divining exact parameters from such
published studies is often difficult since potential modifications in
either length L or radius R of the pipes are not always apparent to
the reader. From the reviewed literature, we identified three main
systems that have been developed to study those effects published

by Meiselman and Halpern (1973), Hort and Hollowood (2004),
and Bult et al. (2007). These systems have been used across many
studies originating from the same laboratories or others, for
example the setup used by Morris et al. (2009) is that developed
by Hort and Hollowood (2004) and that used by Burseg et al.
(2010) is that developed by Bult et al. (2007). Modifications of
L, R, V̇ , and ω across those studies would strongly modify the
dynamic range 1 of the system according to our simulations,
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FIGURE 2 | Reduction of dynamic range of the gustometer 1 is controlled by the dimensionless frequency of the system � = ω · L/ν̄. Dispersion of the

data points is due to numerical errors during discretization of time and space. Conditions from different systems available in the literature are plotted in open symbols:

Burseg et al. (2010) (circles), Meiselman and Halpern (1973) (triangles), and Morris et al. (2009) (squares).

and may not always be specified in the literature. In particular,
the modification of the pulse frequency ω within a study has an
important effect on the dynamic range 1 which in our opinion
may prevent the authors from comparing sensory results and
infer human somatosensory response as a function of ω.

Results from our simulations under the operating conditions
of three studies are overlayed on the master curve in Figure 2.
One can see that modifying ω from 0.25 to 0.5 Hz reduces the
dynamic range of the experiment designed by Meiselman and
Halpern (1973) from 1 = 0.96 to 1 = 0.88 (−8%) and from
1 = 0.92 to1 = 0.82 (−11%) in the experiments of Morris et al.
(2009). Similarly, modifying ω from 0.33 to 0.66 Hz reduces the
dynamic range of the experiment designed by Burseg et al. (2010)
from 1 = 0.90 to 1 = 0.80 (−11%).

CONCLUSIONS

According to the results from our simulations, designing
experiments to study the dynamics of chemical senses in mouth
using a gustometer needs careful consideration of the fluid

mechanics that will inevitably modify the outlet concentration
compared to the inlet concentration. Studying the effect of pulse
frequency on this perception requires careful validation of the
steadiness of dynamic range at the outlet. This can be achieved by
modifying pipe length, radius and flow rate between experiments
to maintain a constant �, avoiding repercussions on the sensory
readout. The simplest solution might be to work in a range where
� tends to 0, for example in the absence of a pipe after the
mixing chamber, such as that recently presented by Spector et al.
(2015).
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