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The peripheral nervous system is one of several organ systems that are profoundly

affected in diabetes. The longstanding view is that insulin does not have a major role in

modulating neuronal function in both central and peripheral nervous systems is now being

challenged. In the setting of insulin deficiency or excess insulin, it is logical to propose

that insulin dysregulation can contribute to neuropathic changes in sensory neurons. This

is particularly important as sensory nerve damage associated with prediabetes, type 1

and type 2 diabetes is so prevalent. Here, we discuss the current experimental literature

related to insulin’s role as a potential neurotrophic factor in peripheral nerve function, as

well as the possibility that insulin deficiency plays a role in diabetic neuropathy. In addition,

we discuss how sensory neurons in the peripheral nervous system respond to insulin

similar to other insulin-sensitive tissues. Moreover, studies now suggest that sensory

neurons can also become insulin resistant like other tissues. Collectively, emerging

studies are revealing that insulin signaling pathways are active contributors to sensory

nerve modulation, and this review highlights this novel activity and should provide new

insight into insulin’s role in both peripheral and central nervous system diseases.
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INTRODUCTION

Approximately 25.8 million people in the United States are diagnosed with diabetes, and this
number is expected to almost double by 2030 (Wild et al., 2004; CDC, National Diabetes Fact Sheet,
2014). With this dramatic increase in diabetes also comes a dramatic increase in the complications
associated with diabetes. Damage to the peripheral nervous system due to diabetes is associated
with a particularly high level of morbidity and afflicts over 50% of all diabetic patients (Zochodne,
2007; CDC, National Diabetes Fact Sheet, 2014). Diabetic neuronal complications first present
in the distal extremities and can result in either numbness or chronic pain; and is one of the
major factors in the development of Charcot joints, foot ulcers, and limb amputation in diabetic
patients (Zochodne, 2007). The current treatment for DN involves only symptomatic relief, and
often the results are disappointing (Apfel et al., 2000; Chalk et al., 2007; Habib and Brannagan,
2010). Defining the pathogenic mechanisms that contribute to diabetic neuropathy (DN) is
essential to establish both appropriate pharmacological and nonpharmacological treatments for
this devastating diabetic complication. The currently investigated pathways of DN pathogenesis
mainly focus on the cellular damage associated with the various cascades activated in response
to hyperglycemia (for review see Tomlinson and Gardiner, 2008; Vincent et al., 2011), including
reactive oxygen species (ROS), advanced glycation end-products (AGE), and polyol flux. However,
there are 2 major insults in diabetes. The first is the loss of insulin signaling, either due to
insulinopenia (type 1), or insulin resistance (type 2), and secondly, is the resultant elevated
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blood glucose levels. Accordingly, the role of direct insulin
singling on sensory neurons and how disruption of this signaling
may be a contributing factor to DN pathogenesis has been the
subject of several studies which are reviewed here.

INSULIN RECEPTOR SIGNALING

The insulin signaling cascade is propagated by phosphorylation
events beginning with activation of the insulin receptor tyrosine
kinase upon insulin binding. After activation, the insulin receptor
kinase phosphorylates tyrosine residues on both the receptor
and docking proteins, such as insulin receptor substrate (IRS).
Tyrosine phosphorylation allows downstream mediators with
src homology-2 (Sh2) domains to bind IRS and localize to
the plasma membrane. Two key Sh2 containing mediators are
PI3-kinase, which activates the Akt cascade, and Grb2/SOS,
which activates the MAPK cascade (White, 2002, 2006). These
effectors eventually lead to increased transcription, translation,
and translocation of the proteins necessary to carry out insulin’s
actions (Figure 1).

Insulin has numerous effects throughout the body, mostly
relating to energy storage and glucose homeostasis. In peripheral
“insulin-sensitive” tissues (liver, muscle, and adipose), insulin
mediates glucose metabolism by stimulating glucose uptake
through translocation of glut4, as well as controlling glucose
breakdown and synthesis via its effects on glycolysis and
gluconeogenesis. Additionally, insulin promotes glycogen
synthesis through inhibition of glycogen synthetase kinase,
increases protein production through mTor activation, as well
as promotes fatty acid synthesis and inhibits lipolysis through
activation of Acetyl-CoA Carboxylase and inhibition of hormone
sensitive lipase, respectively. Furthermore, insulin can modulate
gene transcription through the MAPK pathway or through Akt-
mediated phosphorylation of FOXO transcription factors which
results in nuclear exclusion and a reduction in FOXO-mediated
gene expression (Le Roith and Zick, 2001; Taniguchi et al., 2006).
Beyond energy balance, insulin plays a role in several other
aspects of physiology, including: fertility, blood lipid levels,
blood pressure, as well as growth and survival of pancreatic beta
cells, bone, retina, and neurons (Skaper et al., 1982; Recio-Pinto
et al., 1986; White, 2002; Takamoto et al., 2008).

INSULIN AND THE NERVOUS SYSTEM

Throughout history, insulin signaling in the nervous system has
been fairly ignored, because unlike muscle and adipose tissues,
the majority of neurons do not take up glucose in an insulin
dependent manner (Greene and Winegrad, 1979; Patel et al.,
1994). However, neurons do express insulin receptors (Plum
et al., 2005). Neurons primarily express the glut1 and glut3
glucose transporters and take up glucose via a concentration
gradient receptor mediated process (Choeiri et al., 2002).
However, it has recently been demonstrated that certain areas
of the brain, such as the olfactory bulb, hippocampus, and
hypothalamus express glut4 transports (Leloup et al., 1996).
Glucose is the main energy supply for neurons; however, in states

of extreme starvation neurons can utilize ketone bodies (Sokoloff,
1973).

Insulin crosses the blood-brain barrier (BBB) through a
saturable receptor mediated transport system, termed receptor-
mediated transcytosis (Baura et al., 1993). During this process,
serum insulin binds the insulin receptor on the endothelial
cells of the blood brain barrier; the ligand-receptor complex is
internalized and transported to the opposite side of the cell where
insulin is released. Insulin receptor-mediated transcytosis is
currently one of the most targeted systems in drug development
to transport chemicals across the BBB (Wang et al., 2009).

Diabetes has recently been implicated as a risk factor
for several neurological diseases, including Alzheimer’s and
Parkinson’s disease (Luchsinger et al., 2001; Hu et al., 2007;
Jolivalt et al., 2008, 2010, 2012; Fadel et al., 2013). This
has led to increased interest in the role that insulin might
play in the nervous system and it is becoming very clear
that there is a strong link between diabetes and Alzheimer’s
disease (Ribe and Lovestone, 2016). Many of the CNS changes
associated with diabetes are similar to those observed in
Alzheimer’s disease, including increased beta amyloid and tau
phosphorylation (Akter et al., 2011). Additionally, the brains
from Alzheimer’s patients show characteristic signs of insulin
resistance (Talbot et al., 2012) and the insulin sensitizing drugs,
thiazolidinediones, have been shown to improve memory in
both mice (Pedersen et al., 2006) and human patients (Sato
et al., 2011). Furthermore, both intracerebroventricular and
intrahippocampal insulin administration has been demonstrated
to improve memory formation in rats (Park et al., 2000; Haj-
ali et al., 2009; McNay et al., 2010), and insulin has been
demonstrated to regulate synapse number and plasticity (Chiu
et al., 2008). Recently, in phase 1 clinical trials, Alzheimer’s
patients that received intranasal insulin treatment demonstrated
improvedmemory and activities of daily living (Craft et al., 2012).

Experimental studies that have addressed the role of insulin
signaling in the CNS reveal that removal of insulin signaling
in the hippocampus using viral delivery of insulin receptor
antisense sequences impaired hippocampal plasticity related to
long-term potentiation and spatial learning of rats (Grillo et al.,
2015). Neuronal knockout of the insulin receptor in the CNS
using Cre-recombinase driven by a nestin promoter led to a loss
in kinase activation and inhibition of apoptosis. Overall, this
reduced phosphorylation of AKt and GSK3β, which impacted
Tau phosphorylation, an important component of Alzheimer’s
disease (Schubert et al., 2004). In type 1 diabetic rats, the
hippocampus was shown to be more responsive to insulin
administration compared to nondiabetic rats, and sustained
insulin delivery to diabetic rats could normalize insulin receptor
activity, suggesting that insulin treatment as an intervention may
provide benefits to cognitive and memory deficits associated with
CNS disease (King et al., 2015).

Beyond a role in memory and cognition, insulin is involved
in centrally regulating glucose metabolism and food intake
via signaling in the hypothalamus. Insulin inhibits neuronal
firing of the NP-Y/AgRP neurons of the arcuate nucleus by
activating KATP leading to neuronal hyperpolarization, resulting
in decreased release of the orexigenic hormone NP-Y (Spanswick
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FIGURE 1 | The insulin signaling pathway: intracellular insulin signaling is initiated by insulin receptor tyrosine kinase activity leading to the activation

of both the PI3K-Akt pathway and the MAPK pathway. The most well characterized function of insulin signaling is glucose homeostasis; however insulin

stimulates several other cellular mechanisms including the biosynthesis of proteins, glycogen, and lipids. Insulin receptor substrate (IRS), glycogen synthetase kinase β

(GSK3β), extracellular signal-related kinase (ERK), Srchomology-2-containing protein (Shc), forkhead box protein O1 (FOXO1), Akt substrate of 160 kDa (AS160),

mammalian target of rapamycin complex (mTorc), p70 ribosomal protein S6 kinase (p70S6K), hormone sensitive lipase (HSL), phosphodiesterase (PDE), protein

kinase A (PKA), phosphoinositide dependent kinase (PDK), Growth factor receptor-bound protein 2 (Grb2), son of sevenless (SOS).

et al., 2000; Gerozissis, 2008). Additionally, this process has been
demonstrated to centrally regulate liver gluconeogenesis, and is
hypothesized to be a major mechanism contributing to obesity
and insulin resistance (Obici et al., 2002a,b). There also appears
to be a role for insulin signaling in the spinal cord. Insulin
receptors are expressed in dorsal and ventral spinal cord neurons
(Sugimoto et al., 2002) and insulin has also been demonstrated to
regulate AMPA-induced neuronal damage (Kim and Han, 2005)
andmodulate AMPA excitatory currents in the spinal cord dorsal
horn (Spicarova and Palecek, 2010). It is known that insulin
receptors are expressed Additionally, insulin receptor signaling
in the CNS has been shown be involved in regulating neuronal
development (Chiu and Cline, 2010). Overall, these observations
suggest that although neurons do not take up glucose in an
insulin dependent manner, many neuronal populations do seem
to be insulin responsive and insulin may be important to
maintaining proper neuronal function.

INSULIN AS A NEUROTROPHIC FACTOR
IN THE PNS

Insulin is a member of the insulin-like super family that includes
Insulin, IGF1, and IGF2. While IGF1 has been a well-defined

neurotrophic factor for some time, insulin’s effect on neurons

has only gained significant attention over the past 15–20 years. A
growing body of literature has now established insulin as a potent

neurotrophic factor that appears essential to promoting proper
neuronal function. Insulin receptors are expressed on both the

DRG neuron soma as well as in the peripheral nerve (Sugimoto
et al., 2000, 2002; Shettar andMuttagi, 2012). Several reports have

indicated that the insulin receptor is predominantly expressed
in small nociceptive neurons. Baiou et. al. indicated that

approximately 40% of DRG neurons express the insulin receptor
and that approximately 75% of insulin receptor expressing

neurons were co-labeled with peripherin (Baiou et al., 2007).
TRPV1 co-labeling indicated 25% of all DRG neurons coexpress

TRPV1 and the insulin receptor and that approximately 68% of

TRPV1 positive neurons express the insulin receptor (Baiou et al.,
2007). Furthermore, insulin receptor expression was not confined
to one c-fiber subtype, as insulin receptor expressing neurons
were co-labeled with either CGRP (peptidergic) or IB4 (non-
peptidergic). However, and in contrast, a number of reports have
also reported strong co-labeling with neurofilament-H, a marker
of large myelinated neurons (Guo et al., 2011; Singh et al., 2012).

In primary culture models of embryonic sympathetic and
sensory neurons, insulin supplementation has been shown to
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have many functional effects (Snyder and Kim, 1980; Bothwell,
1982; Recio-Pinto et al., 1986). Insulin stimulation appears to
increase neuritogenesis, as well as neurite length and area. Recio-
Pinto et al. showed that the percent of both sympathetic and
sensory neurons bearing neurites increased in a dose dependent
manner with insulin supplementation, with an ED50 of 0.4 nM
for embryonic chick sympathetic neurons and an ED50 of 30
nM for dorsal root ganglion (DRG) sensory neurons (Recio-
Pinto et al., 1986). This study provides evidence that insulin may
act as a developmental neurotrophic factor, however, detailed
studies of the developmental actions of insulin need further
study, particularly in light that insulin does not appear to be
as potent as other traditional neurotrophic factors like nerve
growth factor (Recio-Pinto et al., 1986). In adult DRG neurons,
Fernyhough et al. reported that insulin increased the rate of
neurite regeneration in rat DRG cultures 3.5-fold compared to
control cultures without insulin supplementation (Fernyhough
et al., 1993). Interestingly, this effect appears to be additive
with NGF supplementation (Recio-Pinto et al., 1984; Jones
et al., 2003). One possible mechanism through which insulin
may be promoting an increase in neurite outgrowth is through
stabilization of tubulin microtubule mRNA, an essential part of
neurite formation, as suggested by Fernyhough et al. (1989).
Beyond neurite outgrowth, many reports also noted an apparent
increase in neuronal survival with insulin supplementation in
cultured adult sympathetic neurons, sensory neurons, and SH-
SY5Y cells (Recio-Pinto et al., 1986; Li et al., 2003), and
insulin is characterized to be one of the few essential molecules
required for cultured primary peripheral neurons (Skaper et al.,
1982). Furthermore, stimulation of the PNS with insulin has
shown strong activation of the PI3K-Akt pathway, a pathway
that is directly related to axonal growth and neuronal survival
(Huang et al., 2005). Thus, a possible molecular mechanism of
increased neuronal survival with insulin supplementation may
be through insulin-induced Akt activation, which in turn shuts
down apoptosis through inhibition of both BAD and caspase 9
(Datta et al., 1997).

Additionally, recent evidence has demonstrated that insulin
may play an important role in Schwann cell physiology and
Schwann cell dysfunction has been implicated in diabetic
neuropathy (Eckersley, 2002; Song et al., 2003). Schwann
cells express the insulin receptor in the basal lamina, plasma
membrane and cytoplasmic processes (Shetter et al., 2011) and
respond to insulin treatment (King et al., 2015). Insulin receptor
expression in Schwann cells during development parallels myelin
glycoprotein P zero (P0) expression and growth of the myelin
sheath. Furthermore, insulin supplementation can induce P0
expression in primary Schwann cell culture, indicating that
insulin could have crucial roles in myelination and peripheral
nerve support via Schwann cell signaling (Shettar and Muttagi,
2012). Moreover, Schwann cells Akt activation can induce
proliferation (Fex Svenningsen and Kanje, 1996), differentiation
(Ogata et al., 2004) and myelination (Liang et al., 2007). Finally,
insulin can modify myelin protein expression in the setting of
diabetic neuropathy (Rachana et al., 2016).

Interestingly, it has been demonstrated that insulin may
modify TRPV1 sensitivity and membrane expression (Van Buren

et al., 2005; Lilja et al., 2007) and alterations in TRPV1 have been
reported in DN (Hong and Wiley, 2005; Pabbidi et al., 2008).
Several studies have demonstrated that insulin can sensitize
and potentiate TRPV1 signaling by lowering the threshold for
activation and increasing membrane translocation (Sathianathan
et al., 2003; Van Buren et al., 2005; Lilja et al., 2007).

Beyond its effects on neurons in vitro, insulin has also been
shown to have dramatic neurotrophic qualities in vivo and
in vivo insulin signaling was recently demonstrated throughout
the PNS in response to IP injection (Grote et al., 2013a). In
nerve injury models (nerve transection or nerve crush), recovery
from the ensuing pathological changes is accelerated by insulin
supplementation. Xu et al. showed that intraperitoneal (IP)
injections of insulin (0.02 IU Humulin R) twice daily increased
both the rate of motor endplate reinnervation (measured by M
wave amplitude) and hindpaw motor function recovery after
sciatic nerve transection (Xu et al., 2004). Furthermore, in
these studies it was also demonstrated that systemic insulin
treatment through IP injections increased the number of mature
regenerating myelinated fibers after nerve crush. Mice in the
insulin treated group displayed significantly increased axonal
and fiber diameter as well as increased axonal area (Xu et al.,
2004). Similar results were reported in a comprehensive study
comparing the effects of intrathecal (through mini-osmotic
pump) or near nerve insulin treatment on peripheral nerve
regeneration after nerve crush injury by Toth et al. (2006a).
In the experimental paradigm of this study, the most dramatic
effects of insulin treatment were observed in the group receiving
intrathecal insulin. In separate experiments of sural (mostly
sensory axons) and peroneal (mostly motor axons) nerve
crush, insulin supplementation prevented degeneration of axons
proximal to the nerve injury and accelerated regeneration of
axons distal to the crush site. These changes were associated with
an increase in axonal fiber density, size, and regenerating fiber
clusters in both the sural and peroneal nerve with intrathecal
insulin treatment. Furthermore, these observed morphological
differences were coupled with an increase in CGRP and translated
into an accelerated recovery of thermal sensation after nerve
injury in insulin treated rats. Additional studies of IGF have also
demonstrated a role for impaired IGF signaling inmotor neurons
in diabetic neuropathy (Simon et al., 2015; Rauskolb et al.,
2017). Viral delivery of IGF1 to models of diabetic neuropathy
also revealed positive actions of IGF1 perhaps through vascular
endothelial growth factor expression (VEGF), and signaling via
Akt/PI3K pathways in sensory and motor nerves (Homs et al.,
2014).

Collectively, these studies have established insulin and IGF1
as key components of neuronal support and have led to the
assumption that disruptions in insulin availability (reduced
circulating levels or reduced signaling) could have detrimental
effects on neuronal function.

INSULIN AND DIABETIC NEUROPATHY

As previously discussed, the currently investigated pathways of
DN pathogenesis mainly focus on the cellular damage associated
with the various cascades activated in response to hyperglycemia,
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yet there is growing interest in the role of neuronal insulin
signaling in DN development and progression (Zochodne, 2014,
2015). Epidemiologic data from the Diabetes Control and
Complications Trial (DCCT) provided very strong evidence of
the link between poor glucose control and DN (Diabetes Control
Complications Trial Research Group, 1995a). Results from this
trial indicated that patients with intensive glycemic control (3 or 4
daily insulin injections or external pump) showed a 64% percent
reduction in neuropathy over a 5-year period as compared
to patients on conventional therapy (1 or 2 daily insulin
injections with mixed rapid and intermediating acting insulin).
Furthermore, patients on conventional therapy experienced a
steady deterioration in nerve conduction velocity, while patients
in the intensive treatment group displayed no change and
even a slight improvement (Diabetes Control Complications
Trial Research Group, 1995a; Diabetes Control Complications
Trial (DCCT) Research Group, 1995b). Accordingly, the best
known treatment for prevention of neuropathic complications
is strict glycemic control. Interpretation of this clinical data
has led to a large emphasis on the role of hyperglycemia in
DN, however another interpretation of this data reveals that
strict glycemic control also means a more balanced, steady, and
physiological insulin exposure. Thus, the reduction in DN in
intensive treatment group may be a result of restoration of the
lost neuronal insulin signaling key to maintaining proper sensory
function rather than just the control of hyperglycemia.

LOW INSULIN WITHOUT HYPERGLYCEMIA
CAUSES SIGNS OF DN

Due to the intimate connection between insulin and blood
glucose levels; teasing out the consequences of changes in one
variable without disruptions in the other is difficult. However,
several studies have demonstrated that in instances of low
serum insulin, yet euglycemia, abnormalities in sensory function
develop. Correspondingly, strong evidence has also shown that
low dose insulin treatment of animals with DN can reverse many
of the abnormal morphologic and behavioral changes associated
with the disease, without significantly altering glucose levels.

A common animal model of type 1 diabetes is to use the
beta-cell toxin STZ to induce severe insulinopenia and thus
hyperglycemia. However, there is a variable response to STZ
and not all animals will develop hyperglycemia and diabetes.
In 2010, Romanovsky et al. characterized a cohort of these
euglycemic-STZ injected rats, and showed that while they did
not have elevated glucose levels, they did have a significant
decrease in serum insulin concentrations as compared to rats that
received vehicle. Interestingly, euglycemic-STZ rats did display
mechanical hyperalgesia indicated by a reduced threshold on
a paw-pressure withdrawal test. These changes were similar to
that of hyperglycemic-STZ rats, although hyperglycemic rats did
maintain a lower threshold (Romanovsky et al., 2010). In an
earlier study, it was also demonstrated that this observed change
in paw-pressure threshold correlated significantly with insulin
deficiency in euglycemic-STZ rats and could be ameliorated
with low-dose insulin treatment (Romanovsky et al., 2006).

The euglycemic-STZ rats showed no alterations in mechanical
sensitivity in response to von Frey filaments, no change in
thermal sensation, or decreases in nerve conduction velocity,
perhaps indicating that the loss of neuronal insulin support
and hyperglycemia contribute to different features of DN in the
limbs. Recently, additional biomarkers of neuropathy outside of
peripheral nerves in the limbs have been improved by insulin.
Topical application of insulin to the cornea prevented the nerve
depletion in the cornea (Chen et al., 2013).

Similar results of neuropathy without overt hyperglycemia
have also been demonstrated in the Goto-Kakizaki (GK)
rat. Murakawa et al. evaluated the effect of continued
impaired glucose tolerance (IGT) and progressive insulinopenia,
without severe hyperglycemia on peripheral neurophysiology
and neuromorphology in the GK rat (Murakawa et al., 2002).
While no differences in PNS function were observed in the
2-month-old GK rat with IGT and hyperinsulinemia, 18-
month-old GK rats with IGT and insulinopenia displayed
classical features of diabetic neuropathy (reduced NCV, loss of
unmyelinated axons, and increased frequency of regenerating
fibers). These neuropathic changes developed without overt
fasting hyperglycemia in 18 month old GK rats (control = 3.2
± 0.4mM and GK = 4.4 ± 1.3mM) and the authors suggest
that these changes appear to be more related to the decrease in
neuronal insulin support. Furthermore, in conjunction with the
increase in CGRP expression with insulin treatment observed
by Toth et al., Murakawa et al. noted a significant decrease
in CGRP expression in insulinopenic 18-month-old GK rats
(Murakawa et al., 2002; Toth et al., 2006b). Together these results
suggest that one of the mechanisms through which insulin may
promote proper sensory function is by maintaining synthesis of
key neuromodulator proteins and peptides.

It has also been demonstrated that sequestering of endogenous
intrathecal insulin in nondiabetic rats by intrathecally infusing
anti-insulin antibodies produces slowed motor nerve conduction
and atrophy of axonal fibers, similar to that seen in models of
diabetic neuropathy (Brussee et al., 2004), again suggesting that
non-glycemic triggers of DN exist and that the loss of PNS insulin
signaling may be one of the initiating events. Finally, it has been
reported that STZ-diabetic rats show reduced insulin receptor
activation in the sciatic nerve (Sugimoto et al., 2008). The rapid
change in insulin receptor signaling was correlative with the
rapid onset of mechanical hyperalgesia. This was one of the first
publications investigating insulin signaling in the sciatic nerve
and the authors speculate that the change in sciatic nerve insulin
signaling may help explain the change in nociceptive behavior
associated with DN.

LOW DOSE INSULIN REVERSES SIGNS OF
DN

Many studies have shown that a loss of PNS insulin signaling may
contribute to DN, similarly, several reports have demonstrated
that low-dose insulin (insufficient to reduce hyperglycemia)
can have beneficial effects on the signs and symptoms of DN.
Brussee et. al. demonstrated that intrathecal delivery of insulin
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or equimolar IGF1 daily for 4 weeks could not only restore
both motor and sensory nerve conduction deficits, but also
prevent axonal atrophy in type 1 diabetic rats (Brussee et al.,
2004). In a similar experiment, both intrathecal insulin and
IGF1 were able to reverse the loss of epidermal nerve fiber
density and length in diabetic rats (Toth et al., 2006a), which is
a well-documented and quantifiable consequence of the “dying
back” neuropathy associated with diabetes. Subcutaneous insulin
delivery within these same experimental paradigms did not
alter the investigated neuronal parameters. Studies in diabetic
rats also reported positive actions of subcutaneous low dose
insulin on reducing peripheral nerve dysfunction and MAP
kinase activity (Sugimoto et al., 2013). This is in contrast to
the results from Hoybergs and Meert, which demonstrated
that low-dose insulin delivered through subcutaneous insulin
pellet can nearly normalize diabetes-induced tactile allodynia
and mechanical hyperalgesia, despite persistent hyperglycemia
(blood glucose levels dropped from 600 mg/dl to approximately
400 mg/dl 2 weeks after insulin pellet insertion; Hoybergs
and Meert, 2007). Thus, some controversy still exists as
the appropriate dosing regimen and delivery method most
appropriate for beneficial effects on the PNS, however it does
appear that insulin treatment can relieve symptoms of DN
through mechanisms other than reducing elevated blood glucose
levels.

Most recently, Guo et. al reported that intraplantar delivery
of insulin at sub-glucose lowering levels not only reversed
the loss of intraepidermal nerve fiber density but also slightly
ameliorated some of the symptoms of DN (Guo et al., 2011). This
study demonstrated the efficacy of local insulin administration
on epidermal innervation in several mouse models of diabetic
neuropathy, including type 1 diabetes induced by STZ in
C57BL/6J, CD-1, and CFW as well as db/db type 2 diabetic
mice. Intraplantar insulin showed a benefit on epidermal axons
over vehicle control in each of these DN models and in diabetic
C57BL/6Jmice the increase in epidermal innervationwith insulin
treatment was also associated with upregulation of GAP43/B50,
a growth associated protein. Along with changes in innervation,
local insulin administration improved deficits in mechanical
but not thermal sensation. These results further corroborate
the neuronal growth promoting qualities of insulin and the
potent affects that insulin treatment in vivo has on symptoms of
DN.

Beyond its effects on sensorimotor behavior and epidermal
innervation, some subcellular pathological changes associated
with DN can be alleviated with insulin treatment. Defects in
sensory neuronmitochondrial function has been investigated as a
possible mechanism contributing to DN through several different
pathways, including the over-production of ROS and reduced
respiration through defects in the electron transport chain.
Insulin and mitochondria are intimately connected through
numerous metabolic pathways, and proper insulin signaling is
essential for proper mitochondrial function (Cheng et al., 2010).
However, attempts to demonstrate excessive mitochondrial ROS
production in DRG neurons (Akude et al., 2011), Schwann
cells (Zhang et al., 2010), and kidney (Dugan et al., 2013)
have only revealed decreases in ROS or no change in the

setting of diabetes. Insulin treatment has been shown to
improve many of the mitochondrial defects associated with DN
(Huang et al., 2003, 2005; Chowdhury et al., 2010). Huang
et al. reported that in a STZ model of type 1 diabetes, DRG
neuronal mitochondria display increased depolarization and
Chowdhury et. al. reported that diabetes can induce deficits
in mitochondrial respiration as well as mitochondrial protein
expression (Huang et al., 2003; Chowdhury et al., 2010). In
both of these reports, insulin supplementation restored the
mitochondrial parameters back to the levels observed in control
animals. It is clear that this topic requires further investigation
to sort out whether reduced insulin signaling may be one
of the compounding factors affecting proper mitochondrial
function.

Similar to the beneficial roles of insulin treatment on
sensory deficits associated with DN, insulin treatment has been
shown to protect against late-stage diabetes-induced motor
neuropathy as well (Francis et al., 2011). Intranasal insulin
(and subcutaneous insulin to a lesser extent) showed beneficial
effects on motoneuron morphology and function. Insulin treated
diabetic mice (8 month old CD1) showed protection against
electrophysiological decline, loss of neuromuscular junctions,
and loss of motor function (as measured with forelimb and
hindlimb grip testing as well as rearing activity). These results
provided further evidence of the neurotrophic qualities of insulin
and the potential impact it may have on proper neuronal
function.

A link between reduced insulin signaling in type 1
(insulinopenic) and type 2 (hyperinsulinemic) diabetic models
was established with the recent demonstration of PNS insulin
resistance. In vitro studies using models of chronic insulin
treatment and type 2 diabetic ob/ob and db/db mice have
demonstrated blunted Akt activation in response to insulin
as compared to controls in sensory neurons and these
results were correlated with reduced neurite outgrowth (Grote
et al., 2011) and changes in mitochondrial-associated proteins
(Kim et al., 2011). Neurite outgrowth stimulated by insulin
also appears to be sensitive to higher doses of insulin
suggestive of insulin resistance (Singh et al., 2012). This
idea of neuronal insulin resistance is in agreement with
studies reporting reduced downstream insulin signaling in vivo
in the PNS of insulin resistant ob/ob mice in response
to either IT and IP injections of insulin (Grote et al.,
2013b).

CONCLUSIONS

While the pathogenesis of DN is clearly related to hyperglycemia,
there does appear to be non-glycemic triggers that also
contribute to its etiology. The loss of normal neuronal
insulin signaling in diabetes may be one of the main factors
beyond hyperglycemia that plays a role in PNS dysfunction
and neuropathic symptoms. It will also be important to
consider that DN is a multifactorial disease, such that, perhaps
hyperglycemic injury and reduced neuronal insulin signaling
are not independent, but connected. Whereas, hyperglycemic
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FIGURE 2 | Possible mechanisms of reduced insulin signaling in the pathogenesis of diabetic neuropathy. Insulin’s role in the peripheral nervous system is

just beginning to be elucidated. Several early mechanisms of how alterations in insulin signaling may impact PNS physiology are shown here, including disruptions in

mitochondrial function, metabolism, neurochemical synthesis, and regeneration/repair.

injury causes neuronal damage, and that damage cannot
be repaired due to reduced insulin support. The loss of
appropriate PNS insulin support may result in impaired glucose
metabolism, altered neuropeptide/neurotransmitter regulation,
improper mitochondrial function, or reduced neurotrophic
qualities, such as nerve regeneration (Figure 2). While the
body of literature documenting decreased neuronal insulin
signaling is expanding, it does appear that to definitively tease
apart the effect that reduced insulin support has on neuronal
function more powerful models are needed, such as conditional
knockouts targeting insulin signaling in sensory neurons. In
conclusion, although still a relatively new concept, dysfunctional
neuronal insulin signaling may be a crucial component in
the development of DN, and should be considered when
investigating DN pathogenesis. Further research into this field
could potentially highlight new therapeutic avenues and perhaps

begin to provide relief for patients suffering from this devastating
condition.
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