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Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging.

Linear classifiers are widely employed in the brain decoding paradigm to discriminate

among experimental conditions. Then, the derived linear weights are visualized in the

form of multivariate brain maps to further study spatio-temporal patterns of underlying

neural activities. It is well known that the brain maps derived from weights of linear

classifiers are hard to interpret because of high correlations between predictors, low

signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore,

improving the interpretability of brain decoding approaches is of primary interest in many

neuroimaging studies. Despite extensive studies of this type, at present, there is no

formal definition for interpretability of multivariate brain maps. As a consequence, there

is no quantitative measure for evaluating the interpretability of different brain decoding

methods. In this paper, first, we present a theoretical definition of interpretability in

brain decoding; we show that the interpretability of multivariate brain maps can be

decomposed into their reproducibility and representativeness. Second, as an application

of the proposed definition, we exemplify a heuristic for approximating the interpretability

in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we

propose to combine the approximated interpretability and the generalization performance

of the brain decoding into a new multi-objective criterion for model selection. Our

results, for the simulated and real MEG data, show that optimizing the hyper-parameters

of the regularized linear classifier based on the proposed criterion results in more

informative multivariate brain maps. More importantly, the presented definition provides

the theoretical background for quantitative evaluation of interpretability, and hence,

facilitates the development of more effective brain decoding algorithms in the future.
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1. INTRODUCTION

Understanding the mechanisms of the brain has been a
crucial topic throughout the history of science. Ancient Greek
philosophers envisaged different functionalities for the brain
ranging from cooling the body to acting as the seat of the rational
soul and the center of sensation (Crivellato and Ribatti, 2007).
Modern cognitive science, emerging in the twentieth century,
provides better insight into the brain’s functionality. In cognitive
science, researchers usually analyze recorded brain activity and
behavioral parameters to discover the answers of where, when,
and how a brain region participates in a particular cognitive
process.

To answer the key questions in cognitive science, scientists
often employ mass-univariate hypothesis testing methods to
test scientific hypotheses on a large set of independent
variables (Groppe et al., 2011a; Maris, 2012). Mass-univariate
hypothesis testing is based on performing multiple tests, e.g.,
t-tests, one for each unit of the neuroimaging data, i.e.,
independent variables. The high spatial and temporal granularity
of the univariate tests provides fair level of interpretability. On
the down side, the high dimensionality of neuroimaging data
requires a large number of tests that reduces the sensitivity
of these methods after multiple comparison correction (Bzdok
et al., 2016). Although techniques such as the non-parametric
cluster-based permutation test (Bullmore et al., 1996; Maris and
Oostenveld, 2007), by weak rather strong control of family-
wise error rate, offer more sensitivity, they still experience low
sensitivity to brain activities that are narrowly distributed in time
and space (Groppe et al., 2011a,b). The multivariate counterpart
of mass-univariate analysis, known generally as multivariate
pattern analysis, have the potential to overcome these deficits.
Multivariate approaches are capable of identifying complex
spatio-temporal interactions between different brain areas with
higher sensitivity and specificity than univariate analysis (van
Gerven et al., 2009), especially in group analysis of neuroimaging
data (Davis et al., 2014).

Brain decoding (Haynes and Rees, 2006) is a multivariate
technique that delivers a model to predict the mental state
of a human subject based on the recorded brain signal.
There are two potential applications for brain decoding: (1)
brain-computer interfaces (BCIs) (Wolpaw et al., 2002), and
(2) multivariate hypothesis testing (Bzdok et al., 2016). In
the first case, a brain decoder with maximum prediction
power is desired. In the second case, in addition to the
prediction power, extra information on the spatio-temporal
nature of a cognitive process is desired. In this study, we are
interested in the second application of brain decoding that
can be considered a multivariate alternative for mass-univariate
hypothesis testing. Further, we mainly focus on the linear brain
decoding because of its wider usage in analyzing inherently
small sample size and high dimensional neuroimaging data,
compared to the complex (Cox and Savoy, 2003; LaConte et al.,
2005) and non-transparent (Lipton et al., 2016) non-linear
models.

In linear brain decoding, linear classifiers are used to assess
the relation between independent variables, i.e., features, and

dependent variables, i.e., cognitive tasks (Besserve et al., 2007;
Pereira et al., 2009; Lemm et al., 2011). This assessment is
performed by solving an optimization problem that assigns
weights to each independent variable. Currently, brain decoding
is the gold standard in multivariate analysis for functional
magnetic resonance imaging (fMRI) (Haxby et al., 2001; Cox
and Savoy, 2003; Mitchell et al., 2004; Norman et al., 2006)
and magnetoencephalogram/electroencephalogram (MEEG)
studies (Parra et al., 2003; Rieger et al., 2008; Carroll et al.,
2009; Chan et al., 2011; Huttunen et al., 2013; Vidaurre et al.,
2013; Abadi et al., 2015). It has been shown that brain decoding
can be used in combination with brain encoding (Naselaris
et al., 2011) to infer the causal relationship between stimuli and
responses (Weichwald et al., 2015).

In Brain mapping (Kriegeskorte et al., 2006) the pre-computed
quantities, e.g., univariate statistics or weights of a linear
classifier, are assigned to the spatio-temporal representation of
neuroimaging data in order to reveal functionally specialized
brain regions which are activated by a certain cognitive task. In
its multivariate form, brain mapping uses the learned parameters
from brain decoding to produce brain maps, in which the
engagement of different brain areas in a cognitive task is
visualized. Intuitively, the interpretability of a brain decoder
refers to the level of information that can be reliably derived by an
expert from the resulting maps. From the cognitive neuroscience
perspective, a brain map is considered interpretable if it enables a
scientist to find out the answers of three key questions: “where,
when, and how does a brain region contribute to a cognitive
function?"

In fact, a classifier only answers the question of what is
the most likely label of a given unseen sample (Baehrens
et al., 2010). This fact is generally known as knowledge
extraction gap (Vellido et al., 2012) in the machine learning
context. Thus far, many efforts have been devoted to filling the
knowledge extraction gap of linear and non-linear data modeling
methods in different areas such as computer vision (Bach
et al., 2015), signal processing (Montavon et al., 2013),
chemometrics (Yu et al., 2015), bioinformatics (Hansen et al.,
2011), and neuroinformatics (Haufe et al., 2013). In the context
of neuroimaging, the knowledge extraction gap in classification is
generally known as the interpretation problem (Sabuncu, 2014;
Haynes, 2015; Naselaris and Kay, 2015). Therefore, improving
the interpretability of linear brain decoding and associated brain
maps is a primary goal in the brain imaging literature (Strother
et al., 2014). The lack of interpretability of multivariate brain
maps is a direct consequence of low signal-to-noise ratios (SNRs),
high dimensionality of whole-scalp recordings, high correlations
among different dimensions of data, and cross-subject variability
(Besserve et al., 2007; Anderson et al., 2011; Blankertz et al.,
2011; Brodersen et al., 2011; Langs et al., 2011; Lemm et al.,
2011; Varoquaux et al., 2012; Kauppi et al., 2013; Haufe et al.,
2014a; Olivetti et al., 2014; Taulu et al., 2014; Varoquaux and
Thirion, 2014; Haynes, 2015; Wang et al., 2015). At present, two
main approaches are proposed to enhance the interpretability
of multivariate brain maps: (1) introducing new metrics into
the model selection procedure, and (2) introducing new hybrid
penalty terms for regularization.

Frontiers in Neuroscience | www.frontiersin.org 2 January 2017 | Volume 10 | Article 619

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kia et al. Interpretability in Linear Brain Decoding

The first approach to improving the interpretability of brain
decoding concentrates on the model selection procedure. Model
selection is a procedure in which the best values for the hyper-
parameters of a model are determined (Lemm et al., 2011).
The selection process is generally performed by considering
the generalization performance, i.e., the accuracy, of a model
as the decisive criterion. Rasmussen et al. (2012) showed that
there is a trade-off between the spatial reproducibility and the
prediction accuracy of a classifier; therefore, the reliability of
maps cannot be assessed merely by focusing on their prediction
accuracy. To utilize this finding, they incorporated the spatial
reproducibility of brain maps in the model selection procedure.
An analogous approach, using a different definition of spatial
reproducibility, is proposed by Conroy et al. (2013). Beside spatial
reproducibility, the stability of the classifiers (Bousquet and
Elisseeff, 2002) is another criterion that is used in combination
with generalization performance to enhance the interpretability.
For example Yu (2013) and Lim and Yu (2016) showed
that incorporating the stability of models into cross-validation
improves the interpretability of the estimated parameters (by
linear models).

The second approach to improving the interpretability
of brain decoding focuses on the underlying mechanism of
regularization. The main idea behind this approach is two-
fold: 1) customizing the regularization terms to address the ill-
posed nature of brain decoding problems (where the number
of samples is much less than the number of features; Mørch
et al., 1997; Varoquaux and Thirion, 2014), and (2) combining
the structural and functional prior knowledge with the decoding
process so as to enhance the neurophysiological plausibility
of the models. Group Lasso (Yuan and Lin, 2006) and total-
variation penalty (Tibshirani et al., 2005) are two effective
methods using this technique (Rish et al., 2014; Xing et al., 2014).
Sparse penalized discriminant analysis (Grosenick et al., 2008),
group-wise regularization (van Gerven et al., 2009), smoothed-
sparse logistic regression (de Brecht and Yamagishi, 2012), total-
variation ℓ1 penalization (Michel et al., 2011; Gramfort et al.,
2013), the graph-constrained elastic-net (Grosenick et al., 2009,
2013), and social-sparsity (Varoquaux et al., 2016) are examples
of brain decoding methods in which regularization techniques
are employed to improve the interpretability of linear brain
decoding models.

Recently, taking a new approach to the problem, Haufe
et al. questioned the interpretability of weights of linear
classifiers because of the contribution of noise in the decoding
process (Bießmann et al., 2012; Haufe et al., 2013, 2014b). To
address this problem, they proposed a procedure to convert the
linear brain decoding models into their equivalent generative
models. Their experiments on the simulated and fMRI/EEG
data illustrate that, whereas the direct interpretation of
classifier weights may cause severe misunderstanding regarding
the actual underlying effect, their proposed transformation
effectively provides interpretable maps. Despite the theoretical
soundness, the intricate challenge of estimating the empirical
covariance matrix of the small sample size neuroimaging
data (Blankertz et al., 2011) limits the practical application of this
method.

In spite of the aforementioned efforts to improve the
interpretability of brain decoding, there is still no formal
definition for the interpretability of brain decoding in
the literature. Therefore, the interpretability of different
brain decoding methods are evaluated either qualitatively
or indirectly (i.e., by means of an intermediate property).
In qualitative evaluation, to show the superiority of one
decoding method over the other (or a univariate map), the
corresponding brain maps are compared visually in terms of
smoothness, sparseness, and coherency using already known
facts (see for example, Varoquaux et al., 2012). In the second
approach, important factors in interpretability such as spatio-
temporal reproducibility are evaluated to indirectly assess the
interpretability of results (see for example, Langs et al., 2011;
Rasmussen et al., 2012; Conroy et al., 2013; Kia et al., 2016).
Despite partial effectiveness, there is no general consensus
regarding the quantification of these intermediate criteria. For
example, in the case of spatial reproducibility, different methods
such as correlation (Rasmussen et al., 2012; Kia et al., 2016), dice
score (Langs et al., 2011), or parameter variability (Conroy et al.,
2013; Haufe et al., 2013) are used for quantifying the stability of
brain maps, each of which considers different aspects of local or
global reproducibility.

With the aim of filling this gap, our contribution is three-fold:
(1) Assuming that the true solution of brain decoding is available,
we present a theoretical definition of the interpretability. The
presented definition is simply based on cosine proximity
in the parameter space. Furthermore, we show that the
interpretability can be decomposed into the reproducibility
and the representativeness of brain maps. (2) As a proof of
the concept, we exemplify a practical heuristic based on event-
related fields for quantifying the interpretability of brain maps
in time-locked analysis of MEG data. (3) Finally, we propose the
combination of the interpretability and the performance of the
brain decoding as a new Pareto optimal multi-objective criterion
for model selection. We experimentally, on both simulated
and real data, show that incorporating the interpretability into
the model selection procedure provides more reproducible,
more neurophysiologically plausible, and (as a result) more
interpretable maps. Furthermore, in comparison with a
standard univariate analysis, we show the proposed paradigm
offers more sensitivity while preserving the interpretability of
results.

2. MATERIALS AND METHODS

2.1. Notation and Background
Let X ∈ R

p be a manifold in Euclidean space that represents the
input space and Y ∈ R be the output space, where Y = 8∗(X ).
Then, let S = {Z = (X,Y) | z1 = (x1, y1), . . . , zn = (xn, yn)} be a
training set of n independently and identically distributed (i.i.d)
samples drawn from the joint distribution ofZ = X×Y based on
an unknown Borel probability measure ρ. In the neuroimaging
context, X indicates the trials of brain recording, e.g., fMRI,
MEG, or EEG signals, Y represents the experimental conditions
or dependent variables, and we have 8S : X → Y (note the
difference between 8S and 8∗). The goal of brain decoding is
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to find the function 8̂ : X → Y as an estimation of 8S. Here on
we refer to 8̂ as a brain decoding model.

As is a common assumption in the neuroimaging context, we
assume the true solution of a brain decoding problem is among
the family of linear functions H (8∗ ∈ H). Therefore, the aim
of brain decoding reduces to finding an empirical approximation
of 8S, indicated by 8̂, among all 8 ∈ H. This approximation
can be obtained by estimating the predictive conditional density
ρ(Y | X) by training a parametric model ρ(Y | X,2) (i.e.,
a likelihood function), where 2 denotes the parameters of the
model. Alternatively, 2 can be estimated by solving a risk
minimization problem:

2̂ = argmin
2

L(X2,Y)+ λ�(2) (1)

where 2̂ is the parameter of 8̂, L : Z × Z → R
+ is the loss

function, � : R
p → R

+ is the regularization term, and λ is
a hyper-parameter that controls the amount of regularization.
There are various choices for �, each of which reduces the
hypothesis space H to H′ ⊂ H by enforcing different prior
functional or structural constraints on the parameters of the
linear decoding model (see for example, Tibshirani, 1996b;
Tibshirani et al., 2005; Zou and Hastie, 2005; Jenatton et al.,
2011). The amount of regularization λ is generally decided using
cross-validation or other data perturbationmethods in the model
selection procedure.

In the neuroimaging context, the estimated parameters of a
linear decoding model 2̂ can be used in the form of a brain map
so as to visualize the discriminative neurophysiological effect.
Although the magnitude of 2̂ (i.e., the 2-norm of 2̂) is affected
by the dynamic range of data and the level of regularization, it
has no effect on the predictive power and the interpretability of
maps. On the other hand, the direction of 2̂ affects the predictive
power and contains information regarding the importance of and
relations among predictors. This type of relational information is
very useful when interpreting brain maps in which the relation
between different spatio-temporal independent variables can be
used to describe how different brain regions interact over time for
a certain cognitive process. Therefore, we refer to the normalized
parameter vector of a linear brain decoder in the unit hyper-
sphere as a multivariate brain map (MBM); we denote it by E2
where E2 = 2

‖2‖ 2 (‖.‖2 represents the 2-norm of a vector).

As shown in Equation (1), learning occurs using the sampled
data. In other words, in the learning paradigm, we attempt
to minimize the loss function with respect to 8S (and not
8∗) (Cucker and Smale, 2002). Therefore, all of the implicit
assumptions (such as linearity) regarding 8∗ might not hold
on 8S, and vice versa. The irreducible error ε is the direct
consequence of sampling; it sets a lower bound on the error,
where we have:

8S(X) = 8∗(X)+ ε (2)

The distribution of ε dictates the type of loss function L in
Equation (1). For example, assuming a Gaussian distribution
with mean 0 and variance σ 2 for ε implies the least squares loss
function (Wu et al., 2006).

2.2. Interpretability of Multivariate Brain
Maps: Theoretical Definition
In this section, we present a theoretical definition for the
interpretability of linear brain decoding models and their
associated MBMs. Consider a linearly separable brain decoding
problem in an ideal scenario where ε = 0 and rank(X) = p.
In this case, the ideal solution of brain decoding, 8∗, is linear
and its parameters 2∗ are unique and neurophysiologically
plausible (van Ede and Maris, 2016). The unique parameter
vector2∗ can be computed as follows:

2∗ = 6−1X XTY (3)

where 6X represents the covariance of X. Using 2∗ as the
reference, we define the strong-interpretability of an MBM as
follows:

Definition 1. An MBM Ê
2 associated with a linear brain

decoding model 8̂ is “strongly-interpretable” if and only if
Ê
2 ∝ 2∗.

It can be shown that, in practice, the estimated solution of
a linear brain decoding problem is not strongly-interpretable
because of the inherent limitations of neuroimaging data, such
as uncertainty (Aggarwal and Yu, 2009) in the input and output
space (ε 6= 0), the high dimensionality of data (n ≪ p), and
the high correlation between predictors (rank(X) < p). With
these limitations in mind, even though in practice the solution
of linear brain decoding is not strongly-interpretable, one can
argue that some are more interpretable than others. For example,
in the case in which 2∗ ∝ [0, 1]T , a linear classifier where
Ê
2 ∝ [0.1, 1.2]T can be considered more interpretable than a

linear classifier where Ê2 ∝ [2, 1]T . This issue raises the following
question:

Problem 1. Let S be a training set of n i.i.d samples drawn
from the joint distribution of Z = X × Y , and P(S) be the

probability of drawing a certain S from Z . Assume Ê2 is the
MBM of a linear brain decoding model 8̂ on S (estimated
using Equation 1 for a certain loss function L, regularization
term �, and hyper-parameter λ). How can we quantify the
proximity of 8̂ to the strongly-intrepretable solution of the
brain decoding problem8∗?

To answer this question, considering the uniqueness and the
plausibility of 8∗ as the two main characteristics that convey its
strong-interpretability, we define the interpretability as follows:

Definition 2. Let S, P(S), and Ê2 be as defined in Problem 1.

Then, assume α be the angle between Ê2 and E2∗. The
“interpretability” (0 ≤ η8 ≤ 1) of a linear brain decoding
model 8̂ is defined as follows:

η8 = EP(S)[cos(α)] (4)

In practice, only a limited number of samples are available.
Therefore, perturbation techniques are used to imitate the
sampling procedure. Let S1, . . . , Sm be m perturbed training sets
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drawn from S via a certain perturbation scheme such as jackknife,
bootstrapping (Efron, 1992), or cross-validation (Kohavi,

1995). Assume Ê21, . . . , Ê2m are m MBMs estimated on the
corresponding perturbed training sets, and αj (j = 1, . . . ,m) be

the angle between Ê2j and E2∗. Then, the empirical version of
Equation (4) can be rewritten as follows:

η8 =
1

m

m
∑

j= 1

cos(αj) (5)

Empirically, the interpretability is the mean of cosine similarities
between 2∗ and MBMs derived fro different samplings of the
training set (see Figure 1A for a schematic illustration). In
addition to the fact that employing cosine similarity is a common
method for measuring the similarity between vectors, we have
another strong motivation for this choice. It can be shown that,
for large values of p, the distribution of the dot product in the unit
hyper-sphere, i.e., the cosine similarity, converges to a normal
distribution with 0 mean and variance of 1

p , i.e.,N (0,
√

1/p). Due

to the small variance for a large enough p values, any similarity
value that is significantly larger than zero represents a meaningful
similarity between two high dimensional vectors (see Appendix
6.3 for the mathematical demonstration).

In what follows, we demonstrate how the definition of
interpretability is geometrically related to the uniqueness and

plausibility characteristics of the true solution of the brain
decoding problem.

2.3. Interpretability Decomposition into
Reproducibility and Representativeness
The trustworthy and informativeness of decoding models
are providing two important motivations for improving the
interpretability of models (Lipton et al., 2016). The trust of a
learning algorithm refers to its ability to converge to a unique
solution. On the other hand, the informativeness refers to the
level of plausible information that can be derived from amodel to
assist or advise to a human expert. Therefore, it is expected that
the interpretability can be quantified alternatively by assessing its
uniqueness and neurophysiological plausibility. In this section,
we firstly define the reproducibility and representativeness as
measures for quantifying the uniqueness and neurophysiological
plausibility of a brain decoding model, respectively. Then we
show how these definitions are related to the definition of
interpretability.

The high dimensionality and the high correlations between
variables are two inherent characteristics of neuroimaging data
that negatively affect the uniqueness of the solution of a
brain decoding problem. Therefore, a certain configuration of
hyper-parameters may result different estimated parameters on
different portions of data. Here, we are interested in assessing this
variability as a measure for uniqueness. We first define the main
multivariate brain map as follows:

FIGURE 1 | A schematic illustrations for (A) interpretability (η8), (B) reproducibility (ψ8), and (C) representativeness (β8) of a linear decoding model in two

dimensions. (D) The independent effects of the reproducibility and the representativeness of a model on its interpretability.
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Definition 3. Let S, P(S), and Ê2 be as defined in Problem 1.
The “main multivariate brain map” E2µ ∈ R

p of a linear brain
decoding model 8̂ is defined as:

E2µ = EP(S)[
Ê
2]

∥
∥
∥EP(S)[

Ê
2]

∥
∥
∥
2

(6)

Assuming θ
j
i be the ith (i = 1, . . . , p) element of an MBM

estimated on the jth (j = 1, . . . ,m) perturbed training set, E2µ
empirically can be estimated by summing up Ê2js (computed on
the perturbed training set Sj) in the unit hyper-sphere:

E2µ =

[
∑m

j= 1 θ
j
1

∑m
j= 1 θ

j
2 . . .

∑m
j= 1 θ

j
p

]T

∥
∥
∥
∥

[
∑m

j= 1 θ
j
1

∑m
j= 1 θ

j
2 . . .

∑m
j= 1 θ

j
p

]T
∥
∥
∥
∥
2

(7)

E2µ provides a reference for quantifying the reproducibility of an
MBM:

Definition 4. Let S, P(S), and Ê2 be as defined in Problem 1, and
E2µ be the main multivariate brain map of 8̂. Then, assume α

be the angle between Ê2j and E2µ. The “reproducibility” ψ8
(0 ≤ ψ8 ≤ 1) of a linear brain decoding model 8̂ is defined
as follows:

ψ8 = EP(S)[cos(α)] (8)

Let Ê21, . . . , Ê2m are m MBMs estimated on the corresponding
perturbed training sets, and αj (j = 1, . . . ,m) be the angle

between Ê2j and E2µ. Then, the empirical version of Eq. 8 can be
rewritten as follows:

ψ8 =
1

m

m
∑

j= 1

cos(αj) (9)

In fact, reproducibility provides a measure for quantifying the
dispersion of MBMs, computed over different perturbed training
sets, from the main multivariate brain map. Figure 1B shows
a schematic illustration for the reproducibility of a linear brain
decoding model.

On the other hand, the similarity between the main
multivariate brain map of a decoder and the true solution can
be employed as a measure for the neurophysiological plausibility
of a model. We refer to this similarity as the representativeness of
a linear brain decoding model:

Definition 5. Let E2µ be the main multivariate brain map of 8̂.
The “representativeness” β8 (0 ≤ β8 ≤ 1) of a linear brain
decoding model 8̂ is defined as the cosine similarity between
its main multivariate brain map ( E2µ) and the parameters of
the true solution ( E2∗) (see Figure 1C):

β8 =
| E2µ. E2∗|

∥
∥
∥ E2µ

∥
∥
∥
2

∥
∥
∥ E2∗

∥
∥
∥
2

(10)

As discussed before, the notion of interpretabilty is tightly related
to the uniqueness and plausibility, thus to the reproducibility
and representativeness, of a decoding model. The following
proposition analytically shows this relationship:

Proposition 1. η8 = β8 × ψ8.
See Appendix 6.1 for a proof. Proposition 1 indicates the
interpretability of a linear brain decoding model can be
decomposed into its representativeness and reproducibility.
Figure 1D illustrates how the reproducibility and the
representativeness of a decoding model independently affect its
interpretability. Each colored region schematically represents
a span of different solutions of the a certain linear model (for
example with a certain configuration for its hyper-parameters)
on different perturbed training sets. The area of each region
schematically visualizes the reproducibility of each model,
i.e., the less is the area, the higher is the reproducibility of a
model. Further, the angular distance between the centroid of
each region (2µ) and the true solution (2∗) visualizes the
representativeness of each corresponding model. While 81 and
82 have similar reproducibility, 82 has higher interpretability
than 81 because it is more representative of the true solution.
On the other hand, 81 and 83 have similar representativeness,
however 83 is more interpretable due to the higher level of
reproducibility.

2.4. A Heuristic for Practical Quantification
of Interpretability in Time-Locked Analysis
of MEG Data
In practice, it is impossible to evaluate the interpretability,
as the true solution of the brain decoding problem 8∗ is
unknown. In this study, to provide a practical proof of theoretical
concepts, we exemplify contrast event-related field (cERF) as a
neurophysiological plausible heuristic for the true parameters
of the linear brain decoding problem (2∗) in a binary MEG
decoding scenario in time domain. Due to the nature of proposed
heuristic, its application is limited to the brain responses
that are time-locked to the stimulus onset, i.e., the evoked
responses.

The MEEG data are a mixture of several simultaneous
stimulus-related and stimulus-unrelated brain activities.
Assessing the electro/magneto-physiological changes that are
time-locked to events of interest is a common approach to
the study of MEEG data. In general, unrelated-stimulus brain
activities are considered as Gaussian noise with zero mean
and variance σ 2. One popular approach to canceling the noise
component is to compute the average of multiple trials. The
assumption is that, when the effect of interest is time-locked
to the stimulus onset, the independent noise components can
be vanished by means of averaging. It is expected that the
average will converge to the true value of the signal with a

variance of σ
2

n (where n is the number of trials). The result of
the averaging process consist of a series of positive and negative
peaks occurring at a fixed time relative to the event onset,
generally known as ERF in the MEG context. These component
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peaks are reflecting phasic activity that are indexed with different
aspects of cognitive processing (Rugg and Coles, 1995)1.

Assume X+ = {xi ∈ X | yi = 1} ∈ R
n+×p and X− = {xi ∈

X | yi = −1} ∈ R
n−×p be sets of positive and negative samples

in a binary MEG decoding scenario. Then, the cERF brain map
E2cERF is computed as follows:

E2cERF =
1
n+

∑

xi∈X+ xi −
1
n−

∑

xi∈X− xi
∥
∥ 1
n+

∑

xi∈X+ xi −
1
n−

∑

xi∈X− xi
∥
∥
2

(11)

Generally speaking E2cERF is a contrast ERF map between
two experimental conditions. Using the core theory presented
in Haufe et al. (2013), the equivalent generative model for the
solution of linear brain decoding, i.e., the activation pattern (A),
is unique and we have:

A ∝ 6X2̂ (12)

Assuming 2̂ to be the solution of least squares in a binary
decoding scenario, then the following proposition describes the
relation between E2cERF and the activation pattern A:

Proposition 2. E2cERF ∝ A.

See Appendix 6.2 for the proof. Proposition 2.4 shows that,
in a binary time-domain MEG decoding scenario, cERF is
proportional to the equivalent generative model for the solution
of least squares classifier. Furthermore, E2cERF is proportional
to the t-statistic that is widely used in the univariate analysis
of neuroimaging data. Using E2cERF as a heuristic for E2∗, the
representativeness can be approximated as follows:

β̃8 =
| E2µ. E2cERF|

∥
∥
∥ E2µ

∥
∥
∥
2

∥
∥
∥ E2cERF

∥
∥
∥
2

(13)

Where β̃8 is an approximation of the actual representativeness
β8. In a similar manner, E2cERF can be used to heuristically
approximate the interpretability as follows:

η̃8 =
1

m

m
∑

j= 1

cos(γ j) (14)

where γ1, . . . , γm are the angles between Ê21, . . . , Ê2m and E2cERF .
It can be shown that η̃8 = β̃8 × ψ8.

The proposed heuristic is only applicable to the evoked
responses in sensor and source space MEEG data. Despite this
limitation, cERF provides an empirical example that shows
how the presented theoretical definitions can be applied in
a real decoding scenario. The choice of the heuristic has a
direct effect on the approximation of interpretability and that
1The application of the presented heuristic to MEG data can be extended to EEG
because of the inherent similarity of the measured neural correlates in these two
devices. In the EEG context, the ERF can be replaced by the event-related potential
(ERP).

an inappropriate selection of the heuristic yields a very poor
estimation of interpretability. Therefore, the choice of heuristic
should be carefully justified based on accepted and well-defined
facts regarding the nature of the collected data.

Since the labels are used in the computation of cERF, a proper
validation strategy should be employed to avoid the double
dipping issue (Kriegeskorte et al., 2009). One possible approach is
to exclude the entire test set from the model selection procedure
using a nested nested cross-validation strategy. An alternative
approach is employing model averaging techniques to neatly get
advantage of the whole dataset (Varoquaux et al., 2017). Since
our focus is on the model selection, in the remaining text, we
implicitly assume the test data is excluded from the experiments,
thus, all the experimental results are reported on the training and
validation sets.

2.5. Incorporating the Interpretability into
Model Selection
The procedure for evaluating the performance of a model so
as to choose the best values for hyper-parameters is known as
model selection (Hastie et al., 2009). This procedure generally
involves numerical optimization of the model selection criterion
on the training and validation sets (and not the test set). Let U
be a set of hyper-parameters, then the goal of model selection
procedure reduces to finding the best model configuration
u∗ ∈ U that maximizes the model selection criterion (e.g.,
generalization performance) on the training set S. The most
common model selection criterion is based on an estimator of
generalization performance, i.e., the predictive power. In the
context of brain decoding, especially when the interpretability
of brain maps matters, employing the predictive power as the
only decisive criterion in model selection is problematic in terms
of interpretability of MBMs (Gramfort et al., 2012; Rasmussen
et al., 2012; Conroy et al., 2013; Varoquaux et al., 2017). Valverde-
Albacete and Peláez-Moreno (2014) experimentally showed that
in a classification task optimizing only classification error rate is
insufficient to capture the transfer of crucial information from
the input to the output of a classifier. This fact highlights the
importance of having some control over the estimated model
weights in the model selection. Here, we propose a multi-
objective criterion for model selection that takes into account
both prediction accuracy and MBM interpretability.

Let η̃8 and δ8 be the approximated interpretability and
the generalization performance of a linear brain decoding
model 8̂, respectively. We propose the use of the scalarization
technique (Caramia and Dell´ Olmo, 2008) for combining η̃8
and δ8 into one scalar 0 ≤ ζ (8) ≤ 1 as follows:

ζ8 =
{
ω1η̃8 + ω2δ8
ω1 + ω2 δ8 ≥ κ

0 δ8 < κ
(15)

where ω1 and ω2 are weights that specify the level of importance
of the interpretability and the performance, respectively. κ is
a threshold on the performance that filters out solutions with
poor performance. In classification scenarios, κ can be set by
adding a small safe interval to the chance level of classification.
The hyper-parameters that are optimized based on ζ8 are
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Pareto optimal (Marler and Arora, 2004). We hypothesize that
optimizing the hyper-parameters based on ζ8, rather only δ8,
yields more informative MBMs.

Algorithm 1 summarizes the proposed model selection
scheme. Themodel selection procedure receives the training set S
and a set of possible configurations for hyper-parameters U, and
returns the best hyper-parameter configuration u∗.

2.6. Experimental Materials
2.6.1. Toy Dataset
We regenerate the simple 2-dimensional toy data presented
in Haufe et al. (2013). Assume that the true underlying generative
function8∗ is defined by:

Y = 8∗(X ) =
{

1 if x1 = 1.5
−1 if x1 = −1.5

where X ∈ {[1.5, 0]T , [−1.5, 0]T}; and x1 and x2 represent
the first and the second dimension of the data, respectively.
Furthermore, assume the data is contaminated by Gaussian noise

with co-variance 6 =
[

1.02 −0.3
−0.3 0.15

]

. In fact, the Gaussian noise

adds uncertainty to the input space.

2.6.2. Simulated MEG Data
We simulated two classes of MEG data, each of which composed
of 250 epochs with length of 330ms at 300Hz sampling rate (so
that we have 100 time-points). For simplicity, the whole scalp
topography are simulated with a single dipole located at −4.7,
−3.7, and 5.3cm in the RAS (right, anterior, superior) coordinate
system. The dipole is oriented toward [1,1,0] direction in the
RA plane (see Figure 2A). One hundred two magnetometer
sensors of Elekta Neuromag system are simulated using a
standard forward model algorithm implemented in the Fieldtrip
toolbox (Oostenveld et al., 2010). The epochs of the positive
class are constructed by adding three components to the dipole

Algorithm 1 The model selection procedure.

1: procedureMODELSELECTION(S,U)
2: Compute E2cERF on S. ⊲ using Equation (11)
3: for all ui ∈ U do ⊲ For all hyper-parameter

configurations.
4: for j← 1,m do ⊲ Data perturbation iterations.
5: Partition S into training Str and validation Svl
6: subsets via a perturbation method.
7: Compute 2̂j on Str using ui as the
8: hyper-parameter.

end

9: Compute δi8 of 2̂js on Svl.

10: Compute η̃i8 of 2̂js using E2cERF . ⊲ using
Equation (14)

11: Compute ζ i8. ⊲ using Equation (15)
end

12: u∗ = argmaxui∈U(ζ8).
13: return u∗.

time-course: (1) a time-locked ERF effect with a positive 3Hz
followed by a negative 5Hz half-cycle sinusoid peaks after
150 ± 10ms and 250 ± 10ms of the epoch onset, respectively;
(2) uncorrelated background brain activity that was simulated by
summing 50 sinusoids with random frequency from 1 to 125Hz,
and random phase varied between 0 and 2π . Following the data
simulation procedure in Yeung et al. (2004), the amplitude of any
single frequency component of the signal (the ERF effect and the
background noise) is set based on the empirical spectral power
of human brain activity to mimic the actual magnetic features
of scalp surface; and (3) white Gaussian noise scaled with the
root mean squared of the signal in each epoch. The epochs of the
negative class are constructed without the ERF effect by adding
up only the noise components (i.e., the background activity and
the white noise). Therefore, the ERF component is considered
as the discriminative ground-truth in our experiments (see
Figure 2B).

2.6.3. MEG Data
We use the MEG dataset presented in Henson et al. (2011)2.
The dataset was also used for the DecMeg2014 competition3. In
this dataset, visual stimuli consisting of famous faces, unfamiliar
faces, and scrambled faces are presented to 16 subjects and
fMRI, EEG, and MEG signals are recorded. Here, we are only
interested in MEG recordings. The MEG data were recorded
using a VectorView system (Elekta Neuromag, Helsinki, Finland)
with a magnetometer and two orthogonal planar gradiometers
located at 102 positions in a hemispherical array in a light
Elekta-Neuromag magnetically shielded room.

Three major reasons motivated the choice of this dataset:
(1) It is publicly available. (2) The spatio-temporal dynamic
of the MEG signal for face vs. scramble stimuli has been well
studied. The event-related potential analysis of EEG/MEG shows
that N170 occurs 130 − 200ms after stimulus presentation
and reflects the neural processing of faces (Bentin et al.,
1996; Henson et al., 2011). Therefore, the N170 component
can be considered the ground truth for our analysis. (3)
In the literature, non-parametric mass-univariate analysis
such as cluster-based permutation tests is unable to identify
narrowly distributed effects in space and time (e.g., an N170
component; Groppe et al., 2011a,b). These facts motivate us to
employ multivariate approaches that are more sensitive to these
effects.

As in Olivetti et al. (2014), we created a balanced face vs.
scrambled MEG dataset by randomly drawing from the trials of
unscrambled (famous or unfamiliar) faces and scrambled faces
in equal number. The samples in the face and scrambled face
categories are labeled as 1 and −1, respectively. The raw data is
high-pass filtered at 1Hz, down-sampled to 250Hz, and trimmed
from 200ms before the stimulus onset to 800ms after the stimulus.
Thus, each trial has 250 time-points for each of the 306 MEG

2The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.
henson/wakemandg_hensonrn/.
3The competition data are available at http://www.kaggle.com/c/decoding-the-
human-brain.
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FIGURE 2 | (A) The red circles show the dipole position, and the red stick shows the dipole direction. (B) The spatio-temporal pattern of the discriminative

ground-truth effect.

sensors (102 magnetometers and 204 planar gradiometers)4. To
create the feature vector of each sample, we pooled all of the
temporal data of 306 MEG sensors into one vector (i.e., we have
p = 250×306 = 76500 features for each sample). Before training
the classifier, all of the features are standardized to have a mean
of 0 and standard-deviation of 1.

2.7. Classification and Evaluation
In all experiments, Lasso (Tibshirani, 1996b) classifier with
ℓ1 penalization is used for decoding. Lasso is a very popular
classification method in the context of brain decoding, mainly
because of its sparsity assumption. The choice of Lasso, as a
simple model with only one hyper-parameter, helps us to better
illustrate the importance of including the interpretability in the
model selection (see the supplementary materials for the results
of the elastic-net; Zou and Hastie, 2005 classifier). The solution
of decoding is computed by solving the following optimization
problem:

2̂ = argmin
2

L(X2,Y)+ λ ‖2‖1 (16)

where ‖.‖1 represents the ℓ1-norm, and λ is the hyper-parameter
that specifies the level of regularization. Therefore, the aim of the
model selection is to find the best value for λ on the training set
S. Here, we try to find the best regularization parameter value
among λ = {0.001, 0.01, 0.1, 1, 10, 50, 100, 250, 500, 1000}.
4The preprocessing scripts in python andMATLAB are available at: https://github.
com/FBK-NILab/DecMeg2014/.

We use the out-of-bag (OOB) (Wolpert and Macready, 1999;
Breiman, 2001) method for computing δ8, ψ8, β̃8, η̃8, and ζ8
for different values of λ. In OOB, given a training set (X,Y),
m replications of bootstrap (Efron, 1992) are used to create
perturbed training and validation sets (we set m = 50)5. In all
of our experiments, we set ω1 = ω2 = 1 and κ = 0.6 in the
computation of ζ8. Furthermore, we set δ8 = 1−EPEwhere EPE
indicates the expected prediction error; it is computed using the
procedure explained in Appendix 6.4. Employing OOB provides
the possibility of computing the bias and variance of the model as
contributing factors in EPE.

3. RESULTS

3.1. Performance-Interpretability Dilemma:
A Toy Example
In the definition of 8∗ on the toy dataset discussed in
Section 2.6.1, x1 is the decisive variable and x2 has no effect on the
classification of samples into target classes. Therefore, excluding
the effect of noise and based on the theory of the maximal margin
classifier (Vapnik and Kotz, 1982), E2∗ ∝ [1, 0]T is the true
solution to the decoding problem. By accounting for the effect
of noise, solving the decoding problem in (X,Y) space yields
Ê
2 ∝ [1/

√
5, 2/
√
5]T as the parameters of the linear classifier.

Although the estimated parameters on the noisy data provide

5TheMATLAB code used for experiments is available at https://github.com/smkia/
interpretability/.
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the best generalization performance for the noisy samples, any
attempt to interpret this solution fails, as it yields the wrong
conclusion with respect to the ground truth (it says x2 has twice
the influence of x1 on the results, whereas it has no effect).
This simple experiment shows that the most accurate model is
not always the most interpretable one, primarily because the
contribution of the noise in the decoding process (Haufe et al.,
2013). On the other hand, the true solution of the problem E2∗
does not provide the best generalization performance for the
noisy data.

To illustrate the effect of incorporating the interpretability in
the model selection, a Lasso model with different λ values is
used for classifying the toy data. In this example, because E2∗
is known, the exact value of interpretability can be computed
using Equation (5). Table 1 compares the resultant performance
and interpretability from Lasso. Lasso achieves its highest

performance (δ8 = 0.9884) at λ = 10 with Ê2 ∝
[0.4636, 0.8660]T (indicated by the black dashed line in Figure 3).
Despite having the highest performance, this solution suffers
from a lack of interpretability (η8 = 0.4484). By increasing λ, the
interpretability improves so that for λ = 500, 1000 the classifier
reaches its highest interpretability by compensating for 0.06 of its
performance. Our observation highlights two main points:

1. In the case of noisy data, the interpretability of a decoding
model can be possibly incoherent with its performance.
Thus, optimizing the parameter of the model based
on its performance does not necessarily improve its
interpretability. This observation confirms the previous
finding by Rasmussen et al. (2012) regarding the trade-
off between the spatial reproducibility (as a measure for
the interpretability) and the prediction accuracy in brain
decoding.

2. If the right criterion is used in the model selection, employing
proper regularization technique (sparsity prior, in the case of
toy data) leads to more interpretable decoding models.

3.2. Decoding on Simulated MEG Data
With the main aim of comparing the quality of the heuristically
approximated interpretability with respect to its actual value, we
solve the decoding problem on the simulated MEG data where
the ground-truth discriminative effect is known. The ground
truth effect E2∗ is used to compute the actual interpretability
of the decoding model. On the other hand, interpretability is
approximated by means of E2cERF . The whole data simulation
and decoding processes are repeated 25 times and the results
are summarized in Figure 4. Figures 4A,B show the actual

TABLE 1 | Comparison between δ8, η8, and ζ8 for different λ values on the toy example shows the performance-interpretability dilemma, in which the

most accurate classifier is not the most interpretable one.

λ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000

δ(8) 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840 0.9310 0.9292 0.9292

η(8) 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845 0.9968 1 1

ζ (8) 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842 0.9639 0.9646 0.9646

Ê
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The bold indicates the best values of different criteria.

FIGURE 3 | Noisy samples of toy data. The red dashed line shows the true separator based on the generative model (8∗). The black dashed line shows the most

accurate classification solution. Because of the contribution of noise, any interpretation of the parameters of the most accurate classifier yields a misleading

conclusion with respect to the true underlying phenomenon (Haufe et al., 2013).
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(η8) and the approximated (η̃8) interpretability for different
λ values. Even though η̃8 consistently overestimates η8,
there is a significant co-variation (Pearson’s correlation p-value
= 9 × 10−4) between two measures as λ increases. Thus,
despite overestimation problem of the heuristically approximated
interpretability values, they are still reliable measures for
quantitative comparison between interpretability level of brain
decoding models with different hyper-parameters. For example,
both η8 and η̃8 suggest the decoding model with λ = 50 as the
most interpretable model.

Figure 4C shows brain decoding models at λ = 10 and
λ = 50 yield equivalent generalization performances (Wilcoxon
rank sum test p-value = 0.08), while the MBM resulted from
λ = 50 has significantly higher interpretability (Wilcoxon rank
sum test p-value= 4× 10−9). The advantage of this difference in
interpretability levels is visualized in Figure 5 where topographic
maps are plotted for the weights of brain decoding models with
different λ values by averaging the classifier weights in the time
interval of 100–200 ms. The visual comparison shows MBM at
λ = 50 is more similar to the ground-truth map (see Figure 2B)
than the MBMs computed at other λ values. This superiority is
well-reflected in the corresponding approximated interpretability

values, that confirms the effectiveness of the interpretability
criterion in measuring the level of information in the MBMs.

The results of this experiment confirm again the fact that
the generalization performance is not a reliable criterion to
measure the level of information learned by a linear classifier.
For example consider the decoding model with λ = 1 in which
the performance of the model is significantly above the chance
level (see Figure 4C) while the corresponding MBM (Figure 5A)
is completely misrepresents the ground-truth effect (Figure 2B).

3.3. Single-Subject Decoding on MEG Data
To investigate the behavior of the proposed model selection
criterion ζ8, we benchmark it against the commonly used
performance criterion δ8 in a single-subject decoding scenario.
Assuming (Xi,Yi) for i = 1, . . . , 16 are MEG trial/label pairs
for subject i, we separately train a Lasso model for each subject
to estimate the parameter of the linear function 8̂i, where Yi =
Xi2̂i. We represent the optimized solution based on δ8 and ζ8
by 8̂δi and 8̂

ζ
i , respectively. We also denote the MBM associated

with 8̂δi and 8̂
ζ
i by Ê2δi and Ê2

ζ
i , respectively. Therefore, for each

subject, we compare the resulting decoders andMBMs computed
based on these two model selection criteria.

FIGURE 4 | (A) The actual η8, and (B) the heuristically approximated interpretability η̃8 of decoding models across different λ values. There is a significant

co-variation (Pearson’s correlation p-value = 9× 10−4) between η8 and η̃8. (C) The generalization performance of decoding models. The box gives the quartiles,

while the whiskers give the 5 and 95 percentiles.

FIGURE 5 | Topographic maps of weights of brain decoding models for (A) λ = 1, (B) λ = 10, (C) λ = 50, and (D) λ = 100.
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Figure 6A represents the mean and standard-deviation of the
performance and interpretability of Lasso across 16 subjects for
different λ values. The performance and interpretability curves
further illustrate the performance-interpretability dilemma of
Lasso classifier in the single-subject decoding scenario, in
which increasing the performance delivers less interpretability.
The average performance across subjects is improved when
λ approaches 1, but on the other side, the reproducibility
and the representativeness of models declines significantly (see
Figure 6B; Wilcoxon rank sum test p-value = 9 × 10−4

and 8 × 10−7, respectively). In fact, in this dataset a higher
amount of sparsity increases the gap between the generalization
performance and interpretability.

One possible reason behind the performance-interpretability
dilemma in this experiment is illustrated in Figure 6C. The
figure shows the mean and standard deviation of bias, variance,
and EPE of Lasso across 16 subjects. The plot shows while
the change in bias is correlated with that of EPE (Pearson’s
correlation coefficient = 0.9993), there is anti-correlation
between the trends of variance and EPE (Pearson’s correlation
coefficient= −0.8884). Furthermore, it proposes that the effect
of variance is overwhelmed by bias in the computation of EPE,
where the best performance (minimum EPE) at λ = 1 has the
lowest bias, its variance is higher than for λ = 0.001, 0.01, 0.1.
While this tiny increase in the variance has negligible effect on
the EPE of the model, Figure 6B shows its significant (Wilcoxon
rank sum test p-value = 8 × 10−7) negative effect on the
reproducibility of maps from λ = 0.1 to λ = 1.

Table 2 summarizes the performance, reproducibility,

representativeness, and interpretability of 8̂δi and 8̂
ζ
i for

16 subjects. The average result over 16 subjects shows that
employing ζ8 instead of δ8 in model selection provides
higher reproducibility, representativeness, and (as a result)
interpretability compensating for 0.04 of performance. The last
column of table (δcERF) summarizes the performance of decoding
models over 16 subjects when E2cERF is used as classifier weights.
The comparison illustrates a significant difference (Wilcoxon
rank sum test p-value = 1.5 × 10−6) between δcERF and δ(8)s.

These facts demonstrate that Ê2ζ is a good compromise between
Ê
2δ and E2cERF in terms of classification performance and model
interpretability.

These results are further analyzed in Figure 7 where 8̂δi and

8̂
ζ
i are compared subject-wise in terms of their performance

and interpretability. The comparison shows that adopting ζ8
instead of δ8 as the criterion for model selection yields higher
interpretable models by compensating a negligible degree of
performance in 14 out of 16 subjects. Figure 7A shows that
employing δ8 provides on average slightly higher accurate
models (Wilcoxon rank sum test p-value= 0.012) across subjects
(0.83 ± 0.05) than using ζ8 (0.79 ± 0.04). On the other side,
Figure 7B shows that employing ζ8 and compensating by 0.04
in the performance provides (on average) substantially higher
(Wilcoxon rank sum test p-value= 5.6 × 10−6) interpretability
across subjects (0.62 ± 0.05) compared to δ8 (0.31 ± 0.12). For
example, in the case of subject 1 (see Table 2), using δ8 in model
selection to select the best λ value for the Lasso yields a model
with δ8 = 0.81 and η̃8 = 0.26. In contrast, using ζ8 delivers a
model with δ8 = 0.78 and η̃8 = 0.63. This inverse relationship
between performance and interpretability is direct consequence
of over-fitting of model to the noise structure in a small-sample
size brain decoding problem (see Section 3.1).

The advantage of the exchange between the performance
and the interpretability can be seen in the quality of MBMs.

Figures 8A,B show Ê2δ1 and Ê2ζ1 of subject 1, i.e., the spatio-
temporal multivariate maps of the Lasso models with maximum
values of δ8 and ζ8, respectively. The maps are plotted for 102
magnetometer sensors. In each case, the time course of weights
of classifiers associated with theMEG2041 andMEG1931 sensors
are plotted. Furthermore, the topographic maps represent the
spatial patterns of weights averaged between 184ms and 236ms

after stimulus onset. While Ê2δ1 is sparse in time and space, it fails
to accurately represent the spatio-temporal dynamic of the N170
component. Furthermore, the multicollinearity problem arising
from the correlation between the time course of the MEG2041
andMEG1931 sensors causes extra attenuation of the N170 effect

FIGURE 6 | (A) Mean and standard-deviation of the performance (δ8), interpretability (η8), and ζ8 of Lasso over 16 subjects. (B) Mean and standard-deviation of the

reproducibility (ψ8), representativeness (β8), and interpretability (η8) of Lasso over 16 subjects. The interpretability declines because of the decrease in both

reproducibility and representativeness (see Proposition 1). (C) Mean and standard-deviation of the bias, variance, and EPE of Lasso over 16 subjects. While the

change in bias is correlated with that of EPE (Pearson’s correlation coefficient = 0.9993), there is anti-correlation between the trend of variance and EPE (Pearson’s

correlation coefficient = −0.8884).
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TABLE 2 | The performance, reproducibility, representativeness, and interpretability of 8̂δ
i
and 8̂

ζ

i
over 16 subjects.

Subs Criterion: δ(8) Criterion: ζ (8) δcERF

δ(8) ζ (8) η̃(8) β̃(8) ψ (8) δ(8) ζ (8) η̃(8) β̃(8) ψ (8)

1 0.81 0.53 0.26 0.42 0.62 0.78 0.70 0.63 0.76 0.83 0.56

2 0.80 0.70 0.60 0.72 0.83 0.80 0.70 0.60 0.72 0.83 0.54

3 0.81 0.63 0.45 0.64 0.71 0.78 0.71 0.64 0.78 0.83 0.57

4 0.84 0.52 0.20 0.31 0.66 0.76 0.70 0.64 0.77 0.83 0.55

5 0.80 0.54 0.29 0.44 0.65 0.78 0.69 0.61 0.73 0.83 0.54

6 0.79 0.52 0.24 0.39 0.63 0.74 0.67 0.61 0.74 0.82 0.57

7 0.84 0.55 0.27 0.40 0.66 0.81 0.70 0.59 0.71 0.84 0.56

8 0.87 0.55 0.24 0.35 0.68 0.85 0.68 0.52 0.61 0.84 0.56

9 0.80 0.55 0.31 0.46 0.67 0.77 0.67 0.57 0.69 0.82 0.57

10 0.79 0.53 0.26 0.41 0.64 0.77 0.68 0.58 0.70 0.83 0.59

11 0.74 0.65 0.56 0.68 0.82 0.74 0.65 0.56 0.68 0.82 0.53

12 0.80 0.55 0.29 0.46 0.64 0.79 0.70 0.61 0.74 0.83 0.58

13 0.83 0.50 0.18 0.29 0.61 0.77 0.70 0.63 0.76 0.82 0.59

14 0.90 0.58 0.27 0.39 0.68 0.81 0.78 0.74 0.89 0.84 0.62

15 0.92 0.63 0.34 0.48 0.71 0.89 0.78 0.66 0.77 0.86 0.63

16 0.87 0.55 0.23 0.37 0.62 0.81 0.74 0.67 0.81 0.83 0.65

Mean 0.83±0.05 0.57± 0.05 0.31± 0.12 0.45± 0.13 0.68± 0.07 0.79± 0.04 0.70 ± 0.04 0.62 ± 0.05 0.74 ± 0.06 0.83 ± 0.01 0.58± 0.03

The bold indicates the best mean values over different criteria.

FIGURE 7 | (A) Comparison between generalization performances of 8̂δ
i
and 8̂

ζ

i
. Adopting ζ8 instead of δ8 in model selection yields (on average) 0.04 less accurate

classifiers over 16 subjects. (B) Comparison between interpretabilities of 8̂δ
i
and 8̂

ζ

i
. Adopting ζ8 instead of δ8 in model selection yields on average 0.31 more

interpretable classifiers over 16 subjects.

in theMEG1931 sensor. Therefore, themodel is unable to capture
the spatial pattern of the dipole in the posterior area. In contrast,
Ê
2
ζ
1 represents the dynamic of the N170 component in time. In

addition, it also shows the spatial pattern of two dipoles in the

posterior and temporal areas. In summary, Ê2ζ1 suggests a more
representative pattern of the underlying neurophysiological effect

than Ê2δ1.
In addition, optimizing the hyper-parameters of brain

decoding based on ζ8 offers more reproducible brain decoders.
According to Table 2, using ζ8 instead of δ8 provides (on
average) 0.15 more reproducibility over 16 subjects. To illustrate
the advantage of higher reproducibility on the interpretability

of maps, Figure 9 visualizes Ê2δ1 and Ê2ζ1 over 4 perturbed

training sets. The spatial maps (Figures 9A,C) are plotted for
the magnetometer sensors averaged in the time interval between
184ms and 236ms after stimulus onset. The temporal maps
(Figures 9B,D) are showing the multivariate temporal maps of

MEG1931 and MEG2041 sensors. While Ê2δ1 is unstable in time

and space across the 4 perturbed training sets, Ê2ζ1 provides more
reproducible maps.

3.4. Mass-Univariate Hypothesis Testing on
MEG Data
It is shown by Groppe et al. (2011a,b) that non-parametric
mass-univariate analysis is unable to detect narrowly distributed
effects in space and time (e.g., an N170 component). To
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FIGURE 8 | Comparison between spatio-temporal multivariate maps of (A) the most accurate, and (B) the most interpretable classifiers for Subject 1. Ê2ζ1
provides a better spatio-temporal representation of the N170 effect than Ê2δ1.

illustrate the advantage of the proposed decoding framework
for spotting these effects, we performed a non-parametric
cluster-based permutation test (Maris and Oostenveld, 2007)
on our MEG dataset using Fieldtrip toolbox (Oostenveld et al.,
2010). In a single subject analysis scenario, we considered
the trials of MEG recordings as the unit of observation in
a between-trials experiment. Independent-samples t-statistics
are used as the statistics for evaluating the effect at the
sample level and to construct spatio-temporal clusters. The

maximum of the cluster-level summed t-value is used for the
cluster level statistics; the significance probability is computed
using a Monte Carlo method. The minimum number of
neighboring channels for computing the clusters is set to
2. Considering 0.025 as the two-sided threshold for testing
the significance level and repeating the procedure separately
for magnetometers and combined-gradiometers, no significant
result is found for any of the 16 subjects. This result
motivates the search for more sensitive (and, at the same
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FIGURE 9 | Comparison of the reproducibility of Lasso when δ8 and ζ8 are used in the model selection procedure. (A,B) show the spatio-temporal

patterns represented by Ê2δ1 across the 4 perturbed training sets. (C,D) show the spatio-temporal patterns represented by Ê2ζ1 across the 4 perturbed training sets.

Employing ζ8 instead of δ8 in the model selection yields on average 0.15 more reproduciblilty of MBMs.

time, more interpretable) alternatives for univariate hypothesis
testing.

4. DISCUSSIONS

4.1. Defining Interpretability: Theoretical
Advantages
An overview of the brain decoding literature shows frequent
co-occurrence of the terms interpretation, interpretable, and
interpretability with the terms model, classification, parameter,
decoding, method, feature, and pattern (see the quick meta-
analysis on the literature in the supplementary material);
however, a formal formulation of the interpretability is never
presented. In this study, our primary interest is to present
a simple and theoretical definition of the interpretability of
linear brain decoding models and their corresponding MBMs.
Furthermore, we show the way in which interpretability is related
to the reproducibility and neurophysiological representativeness
of MBMs. Our definition and quantification of interpretability

remains theoretical, as we assume that the true solution of the
brain decoding problem is available. Despite this limitation,
we argue that the presented definition provides a concrete
framework of a previously abstract concept and that it establishes
a theoretical background to explain an ambiguous phenomenon
in the brain decoding context. We support our argument
using an example in the time-domain MEG decoding in which
we show how the presented definition can be exploited to
heuristically approximate the interpretability. Our experimental
results on MEG data shows accounting for the approximated
measure of interpretability has a positive effect on the human
interpretation of brain decoding models. This example shows
how partial prior knowledge regarding the timing and location
of neural activity can be used to find more plausible multivariate
patterns in data. Furthermore, the proposed decomposition
of the interpretability of MBMs into their reproducibility
and representativeness explains the relationship between the
influential cooperative factors in the interpretability of brain
decoding models and highlights the possibility of indirect and
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partial evaluation of interpretability by measuring these effective
factors.

4.2. Application in Model Evaluation
Discriminative models in the framework of brain decoding
provide higher sensitivity and specificity than univariate
analysis in hypothesis testing of neuroimaging data. Although
multivariate hypothesis testing is performed based solely on
the generalization performance of classifiers, the emergent need
for extracting reliable complementary information regarding the
underlying neuronal activity motivated a considerable amount
of research on improving and assessing the interpretability of
classifiers and their associated MBMs. Despite ubiquitous use,
the generalization performance of classifiers is not a reliable
criterion for assessing the interpretability of brain decoding
models (Rasmussen et al., 2012; Varoquaux et al., 2017).
Therefore, considering extra criteria might be required. However,
because of the lack of a formal definition for interpretability,
different characteristics of linear classifiers are considered
as the decisive criterion in assessing their interpretability.
Reproducibility (Rasmussen et al., 2012; Conroy et al., 2013),
stability selection (Varoquaux et al., 2012; Wang et al., 2015),
sparsity (Dash et al., 2015; Shervashidze and Bach, 2015), and
neurophysiological plausibility (Afshin-Pour et al., 2011) are
examples of related criteria.

Our definition of interpretability helped us to fill this
gap by introducing a new multi-objective model selection
criterion as a weighted compromise between interpretability and
generalization performance of linear models. Our experimental
results on single-subject decoding showed that adopting the new
criterion for optimizing the hyper-parameters of brain decoding
models is an important step toward reliable visualization of
learned models from neuroimaging data. It is not the first time
in the neuroimaging context that a new metric is proposed
in combination with generalization performance for the model
selection. Several recent studies proposed the combination
of the reproducibility of the maps (Rasmussen et al., 2012;
Conroy et al., 2013; Strother et al., 2014) or the stability
of the classifiers (Yu, 2013; Lim and Yu, 2016; Varoquaux
et al., 2017) with the performance of discriminative models to
enhance the interpretability of decoding models. Our definition
of interpretability supports the claim that the reproducibility is
not the only effective factor in interpretability. Therefore, our
contribution can be considered a complementary effort with
respect to the state of the art of improving the interpretability of
brain decoding at the model selection level.

Furthermore, this work presents an effective approach for
evaluating the quality of different regularization strategies for
improving the interpretability of MBMs. As briefly reviewed in
Section 1, there is a trend of research within the brain decoding
context in which the prior knowledge is injected into the
decoding process via the penalization term in order to improve
the interpretability of decodingmodels. Thus far, in the literature,
there is no ad-hocmethod to directly compare the interpretability
of MBMs resulting from different penalization techniques.
Our findings provide a further step toward direct evaluation
of interpretability of the currently proposed penalization
strategies. Such an evaluation can highlight the advantages and

disadvantages of applying different strategies on different data
types and facilitates the choice of appropriate methods for a
certain application.

4.3. Regularization and Interpretability
Haufe et al. (2013) demonstrated that the weight in linear
discriminative models are unable to accurately assess the
relationship between independent variables, primarily because of
the contribution of noise in the decoding process. The authors
concluded that the interpretability of brain decoding cannot
be improved using regularization. The problem is primarily
caused by the decoding process per se, where it minimizes the
classification error only considering the uncertainty in the output
space (Zhang, 2005; Aggarwal and Yu, 2009; Tzelepis et al.,
2015) and not the uncertainty in the input space (or noise). Our
experimental results on the toy data (see Section 3.1) shows that
if the right criterion is used for selecting the best values for hyper-
parameters, appropriate choice of the regularization strategy can
still play a significant role in improving the interpretability of
results. For example, in the case of toy data, the true generative
function behind the sampled data is sparse (see Section 2.6.1),
but because of the noise in the data, the sparse model is not the
most accurate one. On the other hand, a more comprehensive
criterion (in this case, ζ8) that considers also the interpretability
of model parameters facilitates the selection of correct prior
assumptions about the distribution of the data via regularization.
This observation encourages the modification of the conclusion
inHaufe et al. (2013) as follows: if the performance of themodel is
the only criterion in the model selection, then the interpretability
cannot necessarily be improved by means of regularization.
This modification offers a practical shift in methodology, where
we propose to replace the post-processing of weights proposed
in Haufe et al. (2013) with refinement of hyper-parameter
selection based on the newly developedmodel selection criterion.

4.4. The Performance-Interpretability
Dilemma
The performance-interpretability dilemma refers to the
trade-off between the generalization performance and the
interpretability of a decoding model. In some applications of
brain decoding, such as BCI, a more accurate model (even with
no interpretability) is desired. On the other hand, when the brain
decoding is employed for hypothesis testing purpose, an astute
balance between two factors is more favorable. The presented
metric for model selection (ζ8) provides the possibility to
maintain this balance. An important question at this point is on
the nature of the performance-interpretability dilemma, whether
it is model-driven or data-driven? In other words, whether some
decoding models (e.g., sparse models) suffer from this deficit, or
it is independent from the decoding model and depends on the
distribution of data rather assumptions of the decoding model.

Our experiments shed light on the fact that the performance-
interpretability dilemma is driven by the uncertainty (Aggarwal
and Yu, 2009) in data. The uncertainty in data refers to the
difference between the true solution of decoding 8∗ and the
solution of decoding in sampled data space 8S, and is generally
consequence of noise in the input or/and output spaces. This
gap between 8∗ and 8S is also known as irreducible error (see
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Equation 2) in the learning theory, and it cannot fundamentally
be reduced by minimizing the error. Therefore, any attempt
toward improving the classification performance in the sampled
data space might increase the irreducible error. As an example,
our experiment on the toy data (see Section 3.1) shows the
effect of noise in input space on the performance-interpretability
dilemma. Improving the performance of the model (i.e., fitting
to 8S) diverges the estimated solution of decoding 8̂ from
its true solution 8∗, thus reduces the interpretability of the
decodingmodel. Furthermore, our experiments demonstrate that
incorporating the interpretability of decoding models in model
selection facilitates finding the best match between the decoding
model and the distribution of data. For example in classification
of toy data, the new model selection metric ζ8 selects the more
sparse model with a better match to the true distribution of data,
despite worse generalization performance.

4.5. Advantage over Mass-Univariate
Analysis
Mass-univariate hypothesis testing methods are among the
most popular tools for forward inference on neuroimaging
data in cognitive neuroscience field. Mass-univariate analyses
consist of univariate statistical tests on single independent
variables followed by multiple comparison correction. Generally,
multiple comparison correction reduces the sensitivity of mass-
univariate approaches because of the large number of univariate
tests involved. Cluster-based permutation testing (Maris and
Oostenveld, 2007) provides a more sensitive univariate analysis
framework by making the cluster assumption in the multiple
comparison correction. Unfortunately, this method is not able to
detect narrow spatio-temporal effects in the data (Groppe et al.,
2011a). As a remedy, brain decoding provides a very sensitive
tool for hypothesis testing; it has the ability to detect multivariate
patterns, but suffers from a low level of interpretability. Our study
proposes a possible solution for the interpretability problem of
classifiers, and therefore, it facilitates the application of brain
decoding in the analysis of neuroimaging data. Our experimental
results for the MEG data demonstrate that, although the non-
parametric cluster-based permutation test is unable to detect the
N170 effect in MEG data, employing ζ8 instead of δ8 in model
selection not only detects the stimuli-relevant information in
the data, but also assures both reproducible and representative
spatio-temporal mapping of the timing and the location of
underlying neurophysiological effect.

4.6. Limitations and Future Directions
Despite theoretical and practical advantages, the proposed
definition and quantification of interpretability suffer from
some limitations. All of the presented concepts are defined
for linear models, with the main assumption that 8∗ ∈ H

(where H is a class of linear functions). This fact highlights the
importance of linearizing the experimental protocol in the data
collection phase (Naselaris et al., 2011). Extending the definition
of interpretability to non-linear models demands future research
into the visualization of non-linear models in the form of brain
maps. Currently, our findings cannot be directly applied to

non-linear models. Furthermore, the proposed heuristic for the
time-domain MEG data applies only to binary classification. One
possible solution in multiclass classification is to separate the
decoding problem into several binary sub-problems. In addition
the quality of the proposed heuristic is limited for the small
sample size datasets. Of course the proposed heuristic is just an
example of possible options for assessing the neurophysiological
plausibility of MBMs in time-locked analysis of MEG data, thus,
improving the quality of heuristic would be of interest in future
researches. Finding physiologically relevant heuristics for other
acquisitionmodalities such as fMRI, or frequency domainMEEG
data, can be also considered as possible directions in future work.

5. CONCLUSIONS

We presented a novel theoretical definition for the
interpretability of linear brain decoding and associated
multivariate brain maps. We demonstrated how the
interpretability relates to the representativeness and
reproducibility of brain decoding. Although it is theoretical,
the presented definition provides a first step toward practical
solution for filling the knowledge extraction gap in linear
brain decoding. As an example of this major breakthrough,
and to provide a proof of concept, a heuristic approach
based on the contrast event-related field is proposed for
practical evaluation of the interpretability in multivariate
recovery of evoked MEG responses. We experimentally
showed that adding the interpretability of brain decoding
models as a criterion in the model selection procedure yields
significantly higher interpretable models by sacrificing a
negligible amount of performance. Our methodological and
experimental achievements can be considered a complementary
theoretical and practical effort that contributes to researches on
enhancing the interpretability of multivariate pattern analysis.
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A. APPENDICES

A.1. Proof of Proposition 1
Throughout this proof, we assume that all of the parameter
vectors are normalized in the unit hypersphere (see Figure A1

as an illustrative example in two dimensions). Let T =
{ Ê21, . . . , Ê2m} be a set m MBMs, for m perturbed training sets

where Ê2i ∈ R
p. Now, consider any arbitrary p − 1 dimensional

hyperplane A that contains E2µ. Clearly, A divides the p-
dimensional parameter space into two subspaces. Let ▽ and H

be binary operators where E2i▽ E2k indicates that E2i and E2k are in
the same subspace, and E2iH E2k indicates that they are in different
subspaces. Now, we define TU = { E2i | E2i▽ E2∗} and TL =
{ E2i | E2iH E2∗}. Let the cardinality of TL denoted by n(TL) be j

(n(TL) = j). Thus, n(TU) = m− j. Now, assume that ∡( Ê2i,A) =
α1, . . . ,αj are the angles between

Ê
2i ∈ TL and A, and (similarly)

αj+1, . . . ,αm for Ê2i ∈ TU and A. Based on Equation (6), let E2µL
and E2µU be the main maps of TL and TU , respectively. Therefore,

we obtain E2µ = E2µL+E2
µ
U∥

∥
∥ E2µL+E2

µ
U

∥
∥
∥

and ∡( E2µL ,A) = ∡( E2µU ,A) = α.

Furthermore, assume ∡( E2∗,A) = γ . As a result, ψ8 = cos(α)
and β8 = cos(γ ). According to Equation (4) and using a cosine
similarity definition, we have:

η8 =
1

m

m
∑

j=1

∣
∣
∣ E2∗. Ê2j

∣
∣
∣

=
cos(γ + α1)+ · · · + cos(γ + αj)+ cos(γ − αj+1)+ . . .

+ cos(γ − αm)
m

= cos(γ + α)+ cos(γ − α)
2

=
cos(γ ) cos(α)− sin(γ ) sin(α)+ cos(γ ) cos(α)

+ sin(γ ) sin(α)

2
= cos(γ ) cos(α) = β8 × ψ8.

(A1)

A similar procedure can be used to prove η̃8 = β̃8 × ψ8 by
replacing E2∗ with E2cERF .

A.2. Proof of Proposition 2
According toHaufe et al. (2013), for a linear discriminativemodel
with parameters 2̂, the unique equivalent generative model can
be computed as follows:

A ∝ 6X2̂ (A2)

In a binary (Y = {1,−1}) least squares classification scenario, we
have:

A ∝ 6X6
−1
X XTY = XTY = µ+ − µ− (A3)

where 6X represents the covariance of the input matrix X, and
µ+ and µ− are the means of positive and negative samples,

FIGURE A1 | Relation between representativeness, reproducibility, and

interpretability in two dimensions.

respectively. Therefore, the equivalent generative model for the
above classification problem can be derived by computing the
difference between the mean of samples in two classes that is
equivalent to the definition of cERF in time-domain MEG data.

A.3. The Distribution of Cosine Similarity
The aim of this section is to illustrate that the probability density
function (PDF) of the cosine similarity between two randomly
drawn vectors in the high dimensional space (large p) is very
close to normal distribution with zero mean and small variance.
To do this, we first need to find the distribution of dot product
in the uniform unit hyper-sphere. Let a and b be two uniformly
drawn random vectors from a unit hyper-sphere inR

p. Assuming
that γ is the angle between a and b, the distribution of cosine
similarity is equivalent to the dot product < a.b >. Without loss
of generality, let b be along the positive x-axis in the coordinate
system. Thus, the dot product < a.b > is the projection of a on
the x-axis, i.e., x coordinate of a. Therefore, for a certain value
of γ , the dot product is a p − 1 dimensional hyper-sphere that
is orthogonal to the x-axis (the red circle in Figure A2) and the
PDF of the dot product is the surface area of p dimensional hyper-
sphere constructed by the dot products for different γ values
(the dashed blue sphere in Figure A2). To compute the area of
this hyper-sphere we take the sum of the surface area of the p
dimensional conical frustums over small intervals dx (the gray
area in Figure A2):

Pr(−1 ≤ x ≤ 1) = 2p−2π
∫ 1

−1
(1− x2)p−2

dx

1− x2

= 2p−2π
∫ 1

−1
(1− x2)p−3dx

(A4)

where (1− x2)p−2 is the surface area of the base of the cone (e.g.,
the perimeter of the red circle in Figure A2) and dx

1−x2 is the slope
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FIGURE A2 | Two-dimensional geometrical illustration for computing

the PDF of cosine similarity.

size. Setting t = x+1
2 we have:

Pr(0 ≤ t ≤ 1) = 4p−2π
∫ 1

0
t
p−3
2 (1− t)

p−3
2 dt (A5)

which is a Beta distribution, where α = β = p−1
2 , that is a

symmetric and unimodal distribution with mean 0.5. Because
the PDF of x = 2t − 1 can be computed using a linear
transformation of the above density function, it can be shown
that the distribution of the dot product in unit hyper-sphere,
i.e., the cosine similarity, is also a symmetric and unimodal
distribution with 0 mean. Based on asymptotic assumption
of Spruill (2007), for a large values of p this distribution converges
to a normal distribution with σ 2 = 1

p . Therefore assuming

large p, the distribution of cosine similarity for uniformly
random vectors drawn from p-dimensional unit hyper-sphere is

approximatelyN (0,
√

1
p ).

A.4. Computing the Bias and Variance in
Binary Classification
Here, using the out-of-bag (OOB) technique, and based
on procedures proposed by Domingos (2000) and Valentini
and Dietterich (2004), we compute the expected prediction
error (EPE) for a linear binary classifier 8 under bootstrap
perturbation of the training set. Letm be the number of perturbed
training sets resulting from partitioning S = (X,Y) into Str =
(Xtr ,Ytr) and Svl = (Xvl,Yvl), i.e., training and validation sets.
If 8̂j is the linear classifier estimated from the jth perturbed
training set, then the main prediction 8µ(xi) for each sample in
the dataset can be computed as follows:

8µ(xi) =
{

1 if 1
ki

∑ki
j=1 8̂

j(xi) ≥ 1
2

0 otherwise
(A6)

where ki is the number of times that xi is present in the test set6.
The computation of bias is challenging because the optimal

model 8∗ is unknown. According to Tibshirani (1996a),
misclassification error is one of the loss measures that satisfies
a Pythagorean-type equality, and:

1

n

n
∑

i=1
L(8µ(xi),8

∗(xi)) =
1

n

n
∑

i=1
L(yi,8

µ(xi))

− 1

n

n
∑

i=1
L(yi,8

∗(xi)) (A7)

Because all terms of the above equation are positive, the mean
loss between the main prediction and the actual labels can be
considered as an upper-bound for the bias:

1

n

n
∑

i=1
L(8µ(xi),8

∗(xi)) ≤
1

n

n
∑

i=1
L(yi,8

µ(xi)) (A8)

Therefore, a pessimistic approximation of bias B(xi) can be
calculated as follows:

B(xi) =
{

0 if 8µ(xi) = yi
1 otherwise

(A9)

Then, the unbiased and biased variances (see Domingos, 2000 for
definitions) in each training set can be calculated by:

V
j
u(xi) =

{

1 if B(xi) = 0 and 8µ(xi) 6= 8̂j(xi)
0 otherwise

(A10)

V
j

b
(xi) =

{

1 if B(xi) = 1 and 8µ(xi) 6= 8̂j(xi)
0 otherwise

(A11)

Then, the expected prediction error of 8 can be computed as
follows (ignoring the irreducible error):

EPE8(X) =
1

n

n
∑

i=1
B(xi)

︸ ︷︷ ︸

Bias

+

1

nm

m
∑

j=1

n
∑

i=1
[V

j
u(xi)− V

j

b
(xi)]

︸ ︷︷ ︸

Variance

(A12)

6It is expected that each sample xi ∈ X appears (on average) ki ≈ m
3 times in the

test sets.
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