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Despite the progress made in the development of new antiepileptic drugs (AEDs),

the biggest challenges that epilepsy presents to drug development have remained

unchanged for the last 80 years: finding a treatment with potential for modifying disease

progression and reducing the percentage of patients resistant to all pharmacological

interventions. The mechanism of action of the majority of AEDs is based on blocking

Na+ and/or Ca2+ channels, promotion of GABA or inhibition of glutamate signaling. In

order for further progress to be made, however, a fuller picture of epilepsy will need to

be considered, including changes to blood–brain barrier permeability, synaptic plasticity,

network reorganization, and gliosis. In particular, brain inflammation has attracted much

attention over recent years. Emerging evidence demonstrates a causal role for brain

inflammation in lowering seizure thresholds and driving epileptogenesis. Consistent with

this, intervening in pro-inflammatory cascades has shown promise in animal models of

epilepsy, with clinical trials of anti-inflammatory agents already underway. The ATP-gated

purinergic P2X7 receptor (P2X7) has been proposed as a novel drug target for a host of

neurological conditions, including epilepsy. Constitutive expression of P2X7 in the CNS

is mainly on microglia, but neuronal and astroglial expression has also been suggested.

Its function as a gatekeeper of inflammation is most clearly understood, however, it

also plays a number of other important roles pertinent to icto- and epileptogenesis:

depolarization of the cell membrane, release of macromolecules, induction of apoptosis

and synaptic reorganization. Changes in P2X7 expression have been reported following

prolonged seizures (status epilepticus) and during chronic epilepsy in both experimental

models and patients. While much of the early work focused on the study of P2X7

during status epilepticus, there is now mounting data showing involvement of this

receptor during epilepsy. The present short review will discuss the most recent findings

concerning P2X7 expression and function during epilepsy and the clinical potential for

P2X7 antagonists as novel AEDs.

Keywords: epilepsy, seizures, drug-refractory, inflammation, ATP, P2X7 receptor

Abbreviations: BBB, blood–brain barrier; IL-1ß, interleukin-1ß; NO, nitric oxide; PGE2, prostaglandin E2; ROS, reactive
oxygen species; SE, status epilepticus; TBI, traumatic brain injury; TNFα, tumor necrosis factor-alpha.
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EPILEPSY

Epilepsy encompasses a complex group of chronic neurological
diseases, characterized by the manifestation of recurrent seizures
and has an incidence of ∼1% with over 60 million people
worldwide suffering from the disease (Moshé et al., 2015).
Epilepsy affects people of all ages, with incidence highest in
the young and elderly (Bialer and White, 2010). Patients with
epilepsy have a life expectancy reduced by 2–10% compared with
the general population, a death rate 2–3 times higher, and a 4-fold
risk of a host of co-morbidities such as depression and anxiety
which impact upon quality of life (Moshé et al., 2015). Epilepsy
can be acquired as a result of a brain insult, such as head trauma,
stroke, or an episode of status epilepticus (SE). Equally, it can
result from genetic polymorphisms, copy number variants, or de
novomutations, often involving changes in ion channel function
(Rees, 2010; Pitkänen and Lukasiuk, 2011). The most common
form of acquired epilepsy in adults is temporal lobe epilepsy
(TLE), in which seizures arise from brain structures such as
the hippocampus and amygdala (Chang and Lowenstein, 2003).
Hippocampal sclerosis, characterized by a pattern of selective
neuronal loss and reactive gliosis (Chang and Lowenstein, 2003)
is the most common pathological finding in the brain of TLE
patients.

Epileptogenesis is the process of structural and functional
changes which transforms the normal brain to one that can
generate the abnormal neuronal activity underlying seizures.
Classically, the process of epileptogenesis is understood to
occur during the latent period between an initial insult and first
spontaneous seizure. More recent concepts of epileptogenesis,
however, describe an ongoing process continuing to drive
progression of the disease beyond its emergence (Pitkänen
and Engel, 2014). Epileptogenesis is characterized by a
number of pathological changes, such as delayed, ongoing
neurodegeneration, synaptic plasticity, increased blood–brain
barrier (BBB) permeability, extracellular matrix reorganization,
neurogenesis, and chronic inflammation (Pitkänen and
Lukasiuk, 2011). Currently available treatments, as discussed
below, act to suppress seizures, but have little impact on the
process of epileptogenesis.

CURRENT TREATMENT

For newly diagnosed patients suffering from epilepsy,
antiepileptic drugs (AEDs) are the frontline treatment (Wiebe
and Jette, 2012). While the model of epilepsy as an imbalance
between excitation and inhibition has served as the backbone
for rational drug design, new AEDs have continued to enter the
market, improving control of seizures, limiting adverse effects
and broadening the available pharmacological armamentarium.
This has offered greater scope for physicians to prescribe drugs
tailored to the particular needs of a patient, such as avoiding
complications with pregnancy (Patel and Pennell, 2016) or
the exacerbation of co-morbidities, such as depression (Blond
et al., 2016). Across a span of almost 80 years, however, the
percentage of patients refractory to all available AEDs has
steadfastly refused to move from 30% (Moshé et al., 2015), with

TLE particularly resistant to treatment (Pitkänen and Lukasiuk,
2011). While currently there are more than 25 AEDs available
on prescription, despite the superficial diversity, all current
treatments rely on three main mechanisms of action based on
rebalancing excitatory/inhibitory drive: blockade of Na+ and/or
Ca2+ channels, promotion of GABAergic neurotransmission, or
accessory antagonism of glutamate receptors (Bialer and White,
2010). Where AEDs do successfully control seizures, they may
exacerbate co-morbidities or cause severe adverse effects (Elger,
2016). Further, available AEDs act mainly symptomatically,
controlling seizures but having no effect on disease progression.
Typically, patients are dependent on drugs for the entire duration
of their life. Where they become refractory to treatment, surgical
intervention remains, in the majority of cases, the only available
avenue (Wiebe and Jette, 2012). There is therefore a pressing
need for the development of new treatment strategies with a non-
classical mechanism of action, which show efficacy in refractory
patients, have a reduced burden of adverse effects, impact upon
associated co-morbidities and retard disease progression. In
recent years, the paradigm of epilepsy research has broadened,
taking into account the importance of brain inflammation as
a possible driver of hyperexcitability and neurodegeneration
during epileptogenesis (Vezzani et al., 2016).

BRAIN INFLAMMATION IN ICTO- AND
EPILEPTOGENESIS

Brain inflammation, implicated in a host of neurological
disorders (Ransohoff, 2016), has been shown to drive increases
in BBB permeability (Rochfort and Cummins, 2015), facilitate
glutamatergic neurotransmission (Vezzani and Viviani, 2015),
initiate pro-apoptotic signaling pathways, promote selective
neuronal death and subsequent rewiring of networks, and
stimulate astro- and microgliosis (Ransohoff, 2016). Release
of pro-inflammatory cytokines, such as interleukin-1ß (IL-1β)
and tumor necrosis factor-alpha (TNFα) increases both in
experimental models of epilepsy and in patients (Vezzani et al.,
2016). Further, numerous experimental and clinical findings
demonstrate that brain inflammation plays a key role in the
generation of seizures and the pathogenesis of epilepsy (Vezzani
et al., 2016). Experiments showing pro-convulsive effects of pro-
inflammatory molecules, such as IL-1β (Balosso et al., 2008)
or high mobility group box 1 protein (HMGB1; Maroso et al.,
2010) provide evidence that inflammation is capable of driving
hyperexcitability. Conversely, anticonvulsive effects of drugs
which interfere with inflammatory signaling (Vezzani et al.,
2000; Balosso et al., 2008; Marchi et al., 2009; Maroso et al.,
2010; Bedner et al., 2015) demonstrate the potential for targeting
inflammatory signaling pathways in epilepsy.

ATP AND PURINERGIC SIGNALING

ATP, besides its well-established role in cellular energy transfer,
also functions as an important intercellular signaling molecule
(Burnstock, 2013). ATP signaling is mediated by “purinergic”
P2 receptors (P2Rs), classified into two subfamilies: the P2X
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homo- or heterotrimeric ionotropic receptors and the P2Y seven-
transmembrane-spanningmetabotropic receptors. P2X receptors
are fast acting and have a lower affinity for ATP, whereas
P2Y receptors are slower acting and respond to nanomolar
ATP concentrations. To date, seven mammalian P2X subunits
and eight P2Y receptors have been discovered (Abbracchio
et al., 2009). Under physiological conditions, ATP mediates
communication between glial cells and neurons, regulating
processes such as synaptic transmission, glial Ca2+ waves
(Burnstock, 2013), and sleep cycles (Chikahisa and Séi, 2011).
Following an insult, ATP is released into the extracellular
space at higher concentrations. This occurs either through
the compromised cell membrane of damaged and apoptotic
cells, or through exocytotic or non-exocytotic release (Dale
and Frenguelli, 2009; Idzko et al., 2014), where it initiates
inflammatory signaling cascades, principally via P2X7 (Volonté
et al., 2012; see more details below). Once released, ATP is rapidly
metabolized by ectonucleotidases into different breakdown
products including ADP, AMP, and adenosine, each provoking
different cellular responses through their activation of different
purinergic receptors (Abbracchio et al., 2009).

P2X7 EXPRESSION AND FUNCTION IN
THE CNS

Constitutive expression of P2X7 in the CNS is largely restricted
to microglia, ependymal cells and oligodendrocytes (Skaper,
2011), although, expression in neurons and astrocytes has also
been reported (Armstrong et al., 2002; Engel et al., 2012).
The principal site for neuronal P2X7 expression seems to be
at presynaptic terminals (Miras-Portugal et al., 2003) where it
may contribute to the regulation of neurotransmitter release,
including GABA and glutamate (Sperlágh et al., 2002). The
picture is not entirely clear, however, with contradictory results
regarding P2X7 expression and function in both neurons and
astrocytes (Sim et al., 2004; Jabs et al., 2007). Recent studies
have demonstrated a role for post-transcriptional regulation
in mediating cell-type specific changes in P2X7 expression in
response to cues in the cellular environment. Jimenez-Mateos
et al. (2015) report that microRNA-22 inhibits the translation of
P2rx7 mRNA into protein in response to mild, non-cell death
causing seizures.

While thought mainly to be activated under pathological
conditions, P2X7 is believed to be important in cytokine release
during normal brain functioning, with P2X7-deficient mice
showing reduced cytokine production (Solle et al., 2001). Three
distinct features of P2X7 equip it for responding to injury
or stress in the CNS: relatively low affinity for ATP, slow
desensitization dynamics, and the ability to permeablize the cell
membrane to molecules up to 900 Daltons in size (Sperlágh
and Illes, 2014). The low sensitivity of P2X7, depending on
the extracellular Ca2+ and Mg2+ concentrations, make it less
responsive to the micromolar fluctuations in ATP concentration
associated with signaling under physiological conditions (Jiang,
2009). This allows the receptor to function mainly in response to
the millimolar concentrations of ATP associated with cell death

and excitotoxic stress (Fiebich et al., 2014). Following prolonged
activation, P2X7 permeabilizes the cell membrane. It is currently
unclear whether this mechanism is via the recruitment of other
channels, such as pannexin 1 or the dilation of the P2X7 ion
channel itself (Idzko et al., 2014). The consequences however,
include a reduction in membrane potential, facilitation of
glutamate release via exocytotic or non-exocytotic mechanisms,
permeability of the membrane to macromolecules, activation of
pro-apoptotic signaling cascades (Beamer et al., 2016), reduction
of the action potential threshold via molecular changes at the
axon initial segment (Del Puerto et al., 2015), and, as will be
described in detail below, initiation of inflammatory cascades
(Beamer et al., 2016). Increases in membrane permeability also
facilitate the release of ATP itself (Suadicani et al., 2006), though
the extent of the contribution of the P2X7 to the release of
its own ligand is yet to be determined. All of these processes
have the potential to contribute to an epileptic phenotype.
Interestingly, P2X7 expression seems to be closely associated
with ectonucleotidase tissue-non-specific alkaline phosphatase
(TNAP) activity, with mice deficient in TNAP showing decreased
P2X7 expression. Furthermore, deficiency in TNAP leads to the
development of recurrent seizures which are partially mediated
by P2X7 (Sebastián-Serrano et al., 2016).

P2X7 IN BRAIN INFLAMMATION

P2X7 regulates a variety of signaling pathways contributing to
inflammation, with downstream effectors likely to be cell-type
dependent. Much of the work performed delineating P2X7-
signaling has been carried out on peripheral immune cells and in
transfected human embryonic kidney 293 (HEK-293) cell lines,
but evidence for P2X7 involvement in inflammatory pathways
in the CNS is increasing (Beamer et al., 2016; Burnstock, 2016).
The principal, and best elucidated, mechanism by which P2X7
contributes to neuroinflammation is via the activation of the
NLRP3 inflammasome; a protein complex consisting of caspase-
1, apoptosis-associated speck-like protein containing a CARD
(ASC), and nod-like receptor protein 3 (NLRP3; Volonté et al.,
2012). Mechanisms for P2X7-mediated inflammasome activation
include facilitating increases in cell membrane permeability
which may trigger inflammasome activation via the resulting
decrease in intracellular K+ concentration (Muñoz-Planillo et al.,
2013). The inflammasome initiates the cleavage of precursor
interleukin molecules into the mature leaderless cytokines, IL-
1β, and IL-18, prior to their release into the extracellular space
(Beamer et al., 2016). Evidence has also accumulated for ATP-
driven, P2X7-dependent release of reactive oxygen species (ROS)
from mitochondria, particularly in microglia (Apolloni et al.,
2013). Other pathways in which P2X7 activation contributes to
the neuroinflammatory response may include inflammasome-
independent release of prostaglandin E2 (PGE2) or the activation
of membrane metalloproteinases, such as activity of disintegrin-
like metalloproteinase 10 (ADAM10) and ADAM17, leading to
the removal of chemokine (C-X-C motif) ligand 16 (CXCL16),
cluster of differentiation 44 (CD44), soluble amyloid precursor
protein (APP), and the IL-6 receptor from the cell membrane,
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thereby decreasing the sensitivity of the cell to anti-inflammatory
mediators (Beamer et al., 2016).

P2X7 AS A DRUG TARGET IN EPILEPSY

While interest in the importance of purinergic signaling during
seizures and epilepsy is increasing, the majority of studies, to
date, have focused on the contribution of the ionotropic P2X
subfamily, in particular, P2X7 (Engel et al., 2016; Rassendren and
Audinat, 2016). Much of the early work trying to establish the
role of P2X7 in ictogenesis and epileptogenesis was limited to
the description of expressional changes of the receptor during
and after seizures using techniques such as Western blotting
and immunohistochemistry (Vianna et al., 2002; Rappold et al.,
2006; Doná et al., 2009). Since 2010, however, there has been
an explosion of data re-examining expressional changes of the
receptor after SE and during epilepsy and to determine the
functional contribution of P2X7 to seizures (Engel et al., 2016).
To establish whether P2X7 blockade alters seizure severity and
seizure-induced pathology, the animal models of choice have
beenmouse models of chemically-induced SE [e.g., by kainic acid
(KA) or pilocarpine; Engel et al., 2016]. More recent studies have
now also evaluated the effects of P2X7 antagonists in traditional
seizure models such as the pentylenetetrazol (PTZ)- andmaximal
electroshock (MES) seizure threshold test as well as the PTZ-
kindling model in rats (Fischer et al., 2016). There is now ample
data available demonstrating the impact of P2X7 antagonism on
seizure pathology during SE. This has already been extensively
reviewed and will not be discussed here (Engel et al., 2016).
Over recent years, the focus of research has shifted toward the
study of P2X7 signaling during the process of epileptogenesis and
epilepsy. This has mainly been due to technical advances in the
field, such as the development of more specific, BBB-penetrating,
and more brain stable P2X7 antagonists (Rech et al., 2016).

P2X7 EXPRESSION IN EPILEPSY

Data showing increased expression of P2X7 during epilepsy
has been obtained from both experimental models of epilepsy
and patients. Furthermore, the recent use of transgenic P2rx7-
GFP reporter mice coupled with GFP-guided patch-clamp (Engel
et al., 2012; Jimenez-Pacheco et al., 2016) has made it possible
to establish the cell-specific expression pattern of P2X7 without
relying solely on the use of antibodies (Sim et al., 2004).
In one of the first studies using a rat model of pilocarpine-
induced epilepsy, Vianna et al. (2002) provided evidence for
an increase in hippocampal P2X7 expression, with strong
P2X7 immunoreactivity in mossy fibers. These results were
later added to by the same group in a second study showing
increased hippocampal P2X7 immunoreactivity in microglia and
glutamatergic nerve terminals (Doná et al., 2009). Elevated P2X7
protein levels have also been shown in the hippocampus and
cortex in the intra-amygdala (i.a.) KA mouse model of epilepsy
(Jimenez-Pacheco et al., 2013, 2016), in surgically resected
hippocampus and neocortex from drug-refractory TLE patients
(Jimenez-Pacheco et al., 2016) and in neocortical nerve terminals

of TLE and non-TLE epilepsy patients (Barros-Barbosa et al.,
2016). By using P2rx7-GFP reporter mice, our group has also
now determined cell-specific patterns of P2rx7 transcription
during epilepsy. In the i.a. KA model, cortical and hippocampal
P2rx7 induction was mainly restricted to neurons and microglia.
In the cortex, GFP induction was predominantly present in
cortical layers V and VI (Jimenez-Pacheco et al., 2013), while
in the hippocampus, increased GFP was most prominent in the
hippocampal subfield CA1 followed by the dentate gyrus and
subfield CA3 (Jimenez-Pacheco et al., 2016). These results have
been confirmed by GFP-guided patch-clamp showing increased
P2X7 currents in GFP-positive cells when compared to GFP-
negative cells from the same animal (Jimenez-Pacheco et al.,
2016). This step rules out possible artifacts due to the genetic
approach used. In the same study, P2X7 expression was increased
in synaptosomes from epileptic mice and showed altered calcium
responses when challenged with P2X7 agonists (Jimenez-Pacheco
et al., 2016). As observed previously in the i.a. KA model
(Engel et al., 2012), GFP reporter activity in epileptic mice
was absent in astrocytes, suggesting P2X7 is not increased in
these glial cells during epilepsy (Jimenez-Pacheco et al., 2013,
2016).

P2X7 DURING EPILEPTOGENESIS

What is the mechanistic link between P2X7 activation and
epileptogenesis? ATP, released in high concentrations from
damaged cells after an initial brain insult such as stroke, brain
trauma, ischemia, infection, or seizures themselves, may act
as an acute “danger signal,” activating microglia (and possibly
astrocytes and/or neurons) leading to the cleavage and release
of mature, leaderless pro-inflammatory cytokines, in particular
IL-1β, and other inflammatory molecules (Dale and Frenguelli,
2009; Rodrigues et al., 2015). Continuing brain inflammation
may then promote astro- and microgliosis enhancing release
of ATP and other gliotransmitters associated with a further
increase (possibly via P2X7 upregulation) of the production
of various pro-inflammatory cytokines (including IL-1ß,
IL-6, and TNFα), danger molecules (e.g., HMGB1, S100ß
protein), and other inflammatory mediators (e.g., nitric oxide,
ROS, and PGE2). Alterations in membrane permeability,
modifications of ion channel function, changes in glutamate
receptor subunit expression or reduction of GABA-mediated
inhibition, may, in turn, promote neuronal hyperexcitability
and, as a consequence, rhythmic burst firing and epileptiform
discharges, finally culminating in focal or generalized seizures
(Di Maio, 2014). Injury and/or loss of neurons and synaptic
remodeling (mossy fiber sprouting), breakdown of the BBB,
lymphocyte accumulation and angiogenesis, all processes
associated with an increase in P2X7 activity (Sperlágh and
Illes, 2014), may also contribute to epileptogenesis and
seizure initiation (Friedman and Dingledine, 2011). Chronic
inflammation and recurrent seizures per se may promote the
release of ATP and pro-inflammatory cytokines and activate
immune responses which sustain seizure recurrence. This
leads to a vicious cycle of P2X7 activation, inflammation,
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and lowering of the seizure threshold (Librizzi et al., 2012;
Figure 1).

The first evidence for the antiepileptogenic potential of P2X7
antagonism was produced using the PTZ-kindling model in
rats, a well-established model of epileptogenesis (Soni et al.,
2015). In this model, repeated injections of PTZ, with an initial
sub-convulsive dose, induce a progressive increase in seizure
activity, culminating in the development of generalized tonic-
clonic seizures (Fischer andKittner, 1998; Dhir, 2012). Treatment
with the P2X7 antagonist BBG significantly decreased the
mean kindling score and restored behavioral deficits, including
cognition and motor coordination (Soni et al., 2015). This effect
was potentiated by the co-administration of ceftriaxone via up-
regulation of the glutamate transporter, GLT-1. Drug washout
experiments, however, were not performed. In a more recent
study, also using the PTZ-kindling model in rats, the two potent
and brain-permeable P2X7 antagonists, JNJ-47965567 and AFC-
5128 (15mg/kg s.c. 30min, or 30mg/kg i.p. 45min before PTZ,
respectively), significantly delayed kindling development. This
effect was long-lasting, however, the compounds were unable
to prevent or reverse the process of epileptogenesis (Fischer
et al., 2016). In another study using the i.a. KA model, we
found that hippocampal P2X7 up-regulation, achieved through

the inhibition of a P2X7-suppressing microRNA (microRNA-
22), resulted in a more severe epileptic phenotype (Jimenez-
Mateos et al., 2015). Increased P2X7 expression was accompanied
by increased cytokine levels (IL-1β and TNFα), astrogliosis and
cognitive impairment. Interestingly, microgliosis was reduced in
these mice (Jimenez-Mateos et al., 2015). In contrast to these
results, the blockade of P2X7 by AZ10606120 (3µg i.c.v. 30min
post-pilocarpine) or BBG (50mg/kg i.p. 30min post-pilocarpine;
repeated once per day for 4 days) increased the number of
seizures and their severity in rats observed for the 28 following
days post-pilocarpine-induced SE (Rozmer et al., 2016), but
P2X7 brain occupancy studies were not performed. This is
somewhat surprising as AZ10606120 administered shortly after
the induction of seizures revealed marked neuroprotective effects
in hippocampal neurons (Rozmer et al., 2016), and previous
studies by our group using the i.a. KA model have shown that
protecting the brain from seizure-induced cell death resulted
in a less severe epileptic phenotype (Engel et al., 2010). We
do not know what the reasons for the observed differences
are. As seen before for SE studies (Kim and Kang, 2011),
however, P2X7 antagonism seems to provoke the opposite effect
when applied to the KA or pilocarpine model, likely due to
differences in the mechanism of induction. Moreover, differences

FIGURE 1 | ATP-driven P2X7 activation as possible contributor to epileptogenesis and epilepsy. Brain inflammation has been suggested as a crucial

etiopathogenic mechanism of epilepsy contributing to seizure generation and the development of epilepsy (Vezzani et al., 2016). Brain injury (stroke, trauma,

ischemia)-induced cell damage and/or cell death associated with an up-regulation of P2X7 on microglia and possibly neurons, leads to a massive release of ATP

which then acts as a danger signal resulting in the activation of astrocytes and microglia. The P2X7 in particular has been described as a major regulator of the

synthesis and secretion of cytokines (IL-1ß, TNFα) and other inflammatory mediators (NO, ROS, PGE2) via microglial cells. However, the P2X7 may also trigger the

release of gliotransmitters (Glio-TM) and ATP from astrocytes and neuronal terminals. Continuing brain inflammation is characterized by astro- and microgliosis with

enhanced release of ATP and pro-inflammatory mediators/molecules causing changes in neuronal membrane integrity, modifications of ion channels and

consequently neuronal hyperexcitability. This will lead to increased brain susceptibility to seizures initiated by paroxysmal depolarization shifts (PDS), rhythmic burst

firing, and epileptiform discharges finally producing focal or generalized seizures. Recurrent seizures per se promote the release of ATP and pro-inflammatory

cytokines and activate immune response that sustains seizure recurrence leading to a vicious cycle of increased inflammation and hyperexcitability. Other pathological

mechanism may be involved in epileptogenesis and seizure initiation, such as injury and/or loss of neurons, synaptic remodeling (mossy fiber sprouting), BBB

breakdown, and lymphocyte accumulation.
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in cell death, limited in the pilocarpine-induced SE mouse
model (Engel et al., 2016), may result in differences in the
availability of extracellular ATP. Differences in drugs, doses of
drugs and route of delivery may also add to variation between
studies.

P2X7 DURING EPILEPSY

While increased P2X7 protein levels during epilepsy have
been widely reported (Engel et al., 2016), until recently, no
evidence existed for an impact of P2X7 antagonism on the

epileptic phenotype at all and, therefore, whether P2X7 blockade
represents a possible new treatment strategy for epilepsy. Two
new studies however, both published in 2016 (Amhaoul et al.,
2016; Jimenez-Pacheco et al., 2016), have now attempted to shed
some light on this unresolved issue (Table 1). Both studies used
KA as a trigger for epilepsy; while one study used the multiple
low-dose KA model in rats (Amhaoul et al., 2016), the other,
using the i.a. KA model in mice (Jimenez-Pacheco et al., 2016).
To investigate the impact of P2X7 antagonism in chronically
epileptic rats, the specific P2X7 antagonist JNJ-42253432 (0.6
g/kg/2ml) was administered via subcutaneous (s.c.) injection for
1 week via mini-pumps in rats, 3 months following KA-induced

TABLE 1 | Summary of the main findings related to P2X7 expression and function during epileptogenesis and epilepsy in experimental models of epilepsy

and patients.

Process Epilepsy model/Patients Techniques and P2X7

antagonists

Main results References

Epileptogenesis PTZ kindling (30mg/kg i.p

every second day for 27

days) in rats

Seizure behavior; Rotarod; Morris

Water Maze; Object recognition;

BBG (15 and 30mg/kg i.p.) 30min

before PTZ injection

P2X7 blocking reduced seizure score and

improved motor performance and cognitive

deficits

Soni et al., 2015

Epileptogenesis i.a. KA-induced epilepsy in

mice

GFP-P2rx7 reporter mouse;

patch-clamp; WB; EEG;

P2X7-regulating microRNA-22

blockade

Increased P2X7 levels and function leads to

increased seizure frequency and increased

inflammation (astrocytosis)

Jimenez-Mateos

et al., 2015

Epileptogenesis Pilo i.p.- and KA

i.p.-induced epilepsy in

mice and rats

Seizure behavior, IH; one single

AZ10606120 (3µg/2µl i.c.v.)

post-SE or BBG (50mg/kg i.p.) 1

injection per day for 4 days post-SE

P2X7 blockade prevented neuronal

degeneration after SE, but increased the

number and severity of seizures during epilepsy

Rozmer et al.,

2016

Epileptogenesis PTZ kindling (35mg/kg i.p.)

in rats for 25 days; MES-T

and PTZ-T test in mice

Ca2+ fluorometry; RT-PCR; WB; IH;

JNJ-47965567 (15), AFC-5128 (30),

BBG (50), tanshinone (30mg/kg i.p.)

before PTZ

P2X7 blocking reduced kindling development

and glial activation; none of the compounds

revealed anticonvulsant effects in the acute

seizure tests in mice

Fischer et al., 2016

Epilepsy Pilo i.p.-induced epilepsy in

rats

Ca2+ fluorometry; WB; IH Abnormal biphasic response to ATP (short

increase followed by abrupt decrease);

increased expression of P2X7 and mossy fiber

sprouting (HIP) during epilepsy

Vianna et al., 2002

Epilepsy Pilo i.p.-induced epilepsy in

rats

WB; IH immunohistochemistry Diffuse P2X7 expression almost exclusively in

nerve terminals during epilepsy

Doná et al., 2009

Epilepsy i.a. KA-induced epilepsy in

mice; TLE epilepsy patients

WB; GFP-P2rx7 reporter mouse Increased P2X7 expression in neurons and

microglia in cortex in mice; increased P2X7

expression in cortex in TLE patients

Jimenez-Pacheco

et al., 2013

Epilepsy MTLE and non-MTLE

patients

WB; IH; neurotransmitter up-take

experiments in isolated nerve

terminals

Increased P2X7 levels in neocortical nerve

terminals in epilepsy patients; P2X7 activation

down-modulates GABA uptake by neocortical

nerve terminals of epileptic patients

Barros-Barbosa

et al., 2016

Epilepsy Multiple, low-dose KA (total

KA = 22.2 ± 2.02mg/kg

i.p.) induced epilepsy in rats

Seizure behavior; EEG;

JNJ-47965567 during 1 week via

osmotic mini-pump (0.6 g/kg/2ml)

P2X7 blocking led to decreased seizure

severity, however, no change in total numbers

of seizures; no change in inflammation after

P2X7 antagonist treatment

Amhaoul et al.,

2016

Epilepsy i.a. KA-induced epilepsy in

mice; TLE epilepsy patients

GFP-P2rx7 reporter mouse;

patch-clamp; WB; RT-PCR; EEG;

seizure behavior; JNJ-47965567

during epilepsy (30mg/kg twice daily

for 5 days)

Increased expression of P2X7 in microglia and

neurons (HIP); increased P2X7 function in

synaptosomes; increased P2X7 levels in TLE

patients (HIP); reduced seizure frequency

during P2X7 inhibitor treatment and during

washout period; P2X7 blocking decreased

inflammation (astrogliosis and microgliosis)

Jimenez-Pacheco

et al., 2016

BBG, brilliant blue G; EC, entorhinal cortex; EEG, electroencephalogram; HIP, hippocampus; IH, immunohistochemistry and/or immunofluorescence; KA, kainic acid; MES-T, maximal

electroshock seizure threshold test; MTLE, mesial temporal-lobe epilepsy; Pilo, pilocarpine; PTZ-T, pentylenetetrazol seizure threshold test; RT-PCR, quantitative real-time polymerase

chain reaction; SE, status epilepticus; TLE, temporal-lobe epilepsy: TNFα, tumor necrosis factor-alpha; WB, Western blot.
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SE. Epileptic rats treated with JNJ-42253432 experienced the
same number of seizure episodes during treatment, however, the
severity of these episodes was reduced. The authors concluded
that rather than suppressing seizures, P2X7 antagonism leads to a
shift in seizure severity, resulting in a milder epileptic phenotype.
P2X7 blockade did not alter microgliosis in their study and
no drug washout was performed to assess whether changes
in the seizure phenotype persists following drug withdrawal
(Amhaoul et al., 2016). In the second study, to test whether
P2X7 blockade could ameliorate the epileptic phenotype in
mice, epileptic mice were treated with another specific P2X7
antagonist, JNJ-47965567 (30mg/kg i.p.), twice daily for 5 days,
followed by a 5-day washout period. In this study, JNJ-47965567
treatment reduced the total amount of epileptic seizures by
over 50% during the drug phase. Seizure severity, however,
was unchanged. Remarkably, rather than returning to baseline,
seizure rates in treated mice continued to decrease during the
washout period implying that P2X7 antagonism could modify
disease progression (Jimenez-Pacheco et al., 2016). This is
even more outstanding as seizure rates in epileptic animals
treated with conventional AEDs or anti-inflammatory drugs, if
effective, returned to baseline immediately after drug cessation
(Grabenstatter et al., 2007; Maroso et al., 2010; Klein et al.,
2015). In addition, P2X7 antagonist-treated mice demonstrated
a strong reduction in astrogliosis and microgliosis, even when
analyzed after washout (Jimenez-Pacheco et al., 2016). We do
not know how P2X7 blockade reduces epileptic seizures during
and beyond treatment. While effects during treatment may be
related to the reduction of neuronal excitability by changes in
intracellular ion concentrations or changes in neurotransmitter
release (Barros-Barbosa et al., 2016), the most likely explanation
for the observed disease-modifying effect is a reduction in
astrogliosis and microgliosis. P2X7 has been shown to activate
astrocytes. Astrogliosis itself can contribute to a lowering of
the seizure threshold via dysregulation of extracellular ionic
balance, impaired neurotransmitter reuptake, and release of
pro-inflammatory cytokines and purines, including ATP and
adenosine (Bedner et al., 2015; Robel et al., 2015). P2X7 has
also been shown to drive microglial activation directly, thereby
increasing the release of cytokines such as IL-1β (Monif et al.,
2009). Chronic brain inflammation in turn leads to increased
extracellular concentrations of ATP and P2X7 activity. P2X7
antagonists may therefore act as a break interrupting the vicious
cycle of increased neuroinflammation and hyperexcitability
(Figure 1).

CONCLUSIONS AND FUTURE
DIRECTIONS

Mounting data obtained from both experimental animal models
and patients has now convincingly demonstrated a causal role
for P2X7 signaling during seizures and epilepsy. Whether P2X7
antagonism has an anticonvulsive or neuroprotective effect,
however, is still not completely understood and seems to
depend, at least in part, on the animal model used. While

mixed results have been obtained regarding the effect of P2X7
antagonists when administered prior to or soon after the
induction of SE, the effect of administration following the
emergence of chronic epilepsy seems to consistently ameliorate
the epileptic phenotype. How to bring P2X7 antagonists further
toward a possible clinical application? The development of BBB
permeable, brain stable and highly specific P2X7 antagonists
has been an important step forward, however, several urgent
questions remain to be resolved. (i) Adverse effects of P2X7
antagonism seem to be pertinent to the pilocarpine model,
however, we must dissect why P2X7 antagonism results in a
different phenotype according to the animal model used. (ii)
We still do not know when ATP is released and what local
concentrations are reached. Attempts have been made (Doná
et al., 2016), however, the techniques used may lack sufficient
temporal resolution to detect seizure-induced ATP release in
the brain. (iii) What are the cell-specific contributions of P2X7
to disease progression? Various publications have suggested
an upregulation of the receptor in neurons, however, the
consequences of this up-regulation are unknown. (iv) Does
P2X7 blockade lead to neuroprotection or is the reduction in
cell death observed during SE a mere consequence of their
anticonvulsive properties? (v) How can patients who could
potentially benefit from P2X7 blockade be identified? Are
there any biomarkers which would predict a pathological P2X7
activation in the brain? (vi) What is the optimal treatment
regimen, dose and time window for application? Previous studies
have suggested that a positive outcome may depend on the
time-point of intervention (Roth et al., 2014; Kaiser et al.,
2016). (vii) Finally, do P2X7 antagonists work where other
AEDs fail, or show synergistic effects with these compounds?
Could they have utility as adjunctive treatment in conjunction
with current AEDs as demonstrated in the i.a. KA model and
MES seizure threshold test (Engel et al., 2012; Fischer et al.,
2016)?

In conclusion, while a possible benefit for P2X7 antagonism
during acute seizures and epileptogenesis remains controversial,
recent research has shown the potential of P2X7 antagonists for
the treatment of epilepsy, thereby providing a much needed new
target with a new mechanism of action distinct from currently
used AEDs. The availability of new tools and drugs will hopefully
shed light on outstanding unanswered questions and accelerate
progress toward possible future clinical use.

AUTHOR CONTRIBUTIONS

EB, wrote the manuscript; WF, designed the figure and edited the
manuscript; TE, wrote and edited the manuscript.

ACKNOWLEDGMENTS

This work was supported by funding from Science Foundation
Ireland (13/SIRG/2098 to TE) and from the Health Research
Board (HRA-POR-2015-1243 to TE).

Frontiers in Neuroscience | www.frontiersin.org 7 February 2017 | Volume 11 | Article 21

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Beamer et al. P2X7 Receptor and Epilepsy

REFERENCES

Abbracchio, M. P., Burnstock, G., Verkhratsky, A., and Zimmermann, H. (2009).
Purinergic signalling in the nervous system: an overview. Trends Neurosci. 32,
19–29. doi: 10.1016/j.tins.2008.10.001

Amhaoul, H., Ali, I., Mola, M., Van Eetveldt, A., Szewczyk, K., Missault, S.,
et al. (2016). P2X7 receptor antagonism reduces the severity of spontaneous
seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology 105,
175–185. doi: 10.1016/j.neuropharm.2016.01.018

Apolloni, S., Amadio, S., Montilli, C., Volonté, C., and D’ambrosi, N. (2013).
Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the
SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet.

22, 4102–4116. doi: 10.1093/hmg/ddt259
Armstrong, J. N., Brust, T. B., Lewis, R. G., and Macvicar, B. A. (2002). Activation

of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic
transmission through p38 mitogen-activated protein kinase. J. Neurosci. 22,
5938–5945.

Balosso, S., Maroso, M., Sanchez-Alavez, M., Ravizza, T., Frasca, A., Bartfai, T.,
et al. (2008). A novel non-transcriptional pathway mediates the proconvulsive
effects of interleukin-1β. Brain 131, 3256–3265. doi: 10.1093/brain/awn271

Barros-Barbosa, A. R., Fonseca, A. L., Guerra-Gomes, S., Ferreirinha, F., Santos, A.,
Rangel, R., et al. (2016). Up-regulation of P2X7 receptor-mediated inhibition of
GABA uptake by nerve terminals of the human epileptic neocortex. Epilepsia
57, 99–91 doi: 10.1111/epi.13263

Beamer, E., Gölöncsér, F., Horváth, G., Beko, K., Otrokocsi, L., Koványi,
B., et al. (2016). Purinergic mechanisms in neuroinflammation: an
update from molecules to behavior. Neuropharmacology 104, 94–104.
doi: 10.1016/j.neuropharm.2015.09.019

Bedner, P., Dupper, A., Hüttmann, K., Müller, J., Herde, M. K., Dublin, P., et al.
(2015). Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain
138, 1208–1222. doi: 10.1093/brain/awv067

Bialer, M., andWhite, H. S. (2010). Key factors in the discovery and development of
new antiepileptic drugs. Nat. Rev. Drug Discov. 9, 68–82. doi: 10.1038/nrd2997

Blond, B. N., Detyniecki, K., and Hirsch, L. J. (2016). Assessment of treatment side
effects and quality of life in people with epilepsy. Neurol. Clin. 34, 395–410.
doi: 10.1016/j.ncl.2015.11.002

Burnstock, G. (2013). Introduction to purinergic signalling in the brain. Adv. Exp.
Med. Biol. 986, 1–12. doi: 10.1007/978-94-007-4719-7_1

Burnstock, G. (2016). P2X ion channel receptors and inflammation. Purinergic
Signal. 12, 59–67. doi: 10.1007/s11302-015-9493-0

Chang, B. S., and Lowenstein, D. H. (2003). Epilepsy. N. Engl. J. Med. 349,
1257–1266. doi: 10.1056/NEJMra022308

Chikahisa, S., and Séi, H. (2011). The role of ATP in sleep regulation. Front. Neurol.
2:87. doi: 10.3389/fneur.2011.00087

Dale, N., and Frenguelli, B. G. (2009). Release of adenosine and ATP
during ischemia and epilepsy. Curr. Neuropharmacol. 7, 160–179.
doi: 10.2174/157015909789152146

Del Puerto, A., Fronzaroli-Molinieres, L., Perez-Alvarez, M. J., Giraud, P., Carlier,
E., Wandosell, F., et al. (2015). ATP-P2X7 receptor modulates axon initial
segment composition and function in physiological conditions and brain
injury. Cereb. Cortex 25, 2282–2294. doi: 10.1093/cercor/bhu035

Dhir, A. (2012). Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr. Protoc.
Neurosci. Chapter 9, Unit 9 37. doi: 10.1002/0471142301.ns0937s58

Di Maio, R. (2014). Neuronal mechanisms of epileptogenesis. Front. Cell Neurosci.
8:29. doi: 10.3389/fncel.2014.00029

Doná, F., Conceicao, I. M., Ulrich, H., Ribeiro, E. B., Freitas, T. A., Nencioni, A. L.,
et al. (2016). Variations of ATP and its metabolites in the hippocampus of rats
subjected to pilocarpine-induced temporal lobe epilepsy. Purinergic Signal. 12,
295–302. doi: 10.1007/s11302-016-9504-9

Doná, F., Ulrich, H., Persike, D. S., Conceicao, I. M., Blini, J. P., Cavalheiro, E. A.,
et al. (2009). Alteration of purinergic P2X4 and P2X7 receptor expression in rats
with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res. 83, 157–167.
doi: 10.1016/j.eplepsyres.2008.10.008

Elger, C. E. (2016). Epilepsy in 2015: classic antiepileptic drugs under fire, and new
options emerge. Nat. Rev. Neurol. 12, 72–74. doi: 10.1038/nrneurol.2016.1

Engel, T., Alves, M., Sheedy, C., and Henshall, D. C. (2016). ATPergic
signalling during seizures and epilepsy. Neuropharmacology 104, 140–153.
doi: 10.1016/j.neuropharm.2015.11.001

Engel, T., Gomez-Villafuertes, R., Tanaka, K., Mesuret, G., Sanz-Rodriguez, A.,
Garcia-Huerta, P., et al. (2012). Seizure suppression and neuroprotection by
targeting the purinergic P2X7 receptor during status epilepticus inmice. FASEB
J. 26, 1616–1628. doi: 10.1096/fj.11-196089

Engel, T., Murphy, B. M., Hatazaki, S., Jimenez-Mateos, E. M., Concannon,
C. G., Woods, I., et al. (2010). Reduced hippocampal damage and epileptic
seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J.

24, 853–861. doi: 10.1096/fj.09-145870
Fiebich, B. L., Akter, S., and Akundi, R. S. (2014). The two-hit hypothesis for

neuroinflammation: role of exogenous ATP in modulating inflammation in the
brain. Front. Cell. Neurosci. 8:260. doi: 10.3389/fncel.2014.00260

Fischer, W., Franke, H., Krügel, U., Müller, H., Dinkel, K., Lord, B., et al. (2016).
Critical evaluation of P2X7 receptor antagonists in selected seizure models.
PLoS ONE 11:e0156468. doi: 10.1371/journal.pone.0156468

Fischer, W., and Kittner, H. (1998). Influence of ethanol on the
pentylenetetrazol-induced kindling in rats. J. Neural. Transm. 105, 1129–1142.
doi: 10.1007/s007020050117

Friedman, A., and Dingledine, R. (2011). Molecular cascades that mediate
the influence of inflammation on epilepsy. Epilepsia 52(Suppl. 3), 33–39.
doi: 10.1111/j.1528-1167.2011.03034.x

Grabenstatter, H. L., Clark, S., and Dudek, F. E. (2007). Anticonvulsant effects of
carbamazepine on spontaneous seizures in rats with kainate-induced epilepsy:
comparison of intraperitoneal injections with drug-in-food protocols. Epilepsia
48, 2287–2295. doi: 10.1111/j.1528-1167.2007.01263.x

Idzko, M., Ferrari, D., Riegel, A. K., and Eltzschig, H. K. (2014). Extracellular
nucleotide and nucleoside signaling in vascular and blood disease. Blood 124,
1029–1037. doi: 10.1182/blood-2013-09-402560

Jabs, R., Matthias, K., Grote, A., Grauer, M., Seifert, G., and Steinhauser, C. (2007).
Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells
of the hippocampal CA1 region. Glia 55, 1648–1655. doi: 10.1002/glia.20580

Jiang, L. H. (2009). Inhibition of P2X(7) receptors by divalent cations: old action
and new insight. Eur. Biophys. J. 38, 339–346. doi: 10.1007/s00249-008-0315-y

Jimenez-Mateos, E. M., Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C.,
Olivos-Ore, L. A., Reschke, C. R., et al. (2015). MicroRNA targeting of the P2X7
purinoceptor opposes a contralateral epileptogenic focus in the hippocampus.
Sci. Rep. 5:17486. doi: 10.1038/srep17486

Jimenez-Pacheco, A., Diaz-Hernandez, M., Arribas-Blazquez, M., Sanz-Rodriguez,
A., Olivos-Ore, L. A., Artalejo, A. R., et al. (2016). Transient P2X7
receptor antagonism produces lasting reductions in spontaneous seizures and
gliosis in experimental temporal lobe epilepsy. J. Neurosci. 36, 5920–5932.
doi: 10.1523/JNEUROSCI.4009-15.2016

Jimenez-Pacheco, A., Mesuret, G., Sanz-Rodriguez, A., Tanaka, K., Mooney, C.,
Conroy, R., et al. (2013). Increased neocortical expression of the P2X7 receptor
after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist
A-438079. Epilepsia 54, 1551–1561. doi: 10.1111/epi.12257

Kaiser, M., Penk, A., Franke, H., Krügel, U., Nörenberg, W., Huster, D.,
et al. (2016). Lack of functional P2X7 receptor aggravates brain edema
development after middle cerebral artery occlusion. Purinergic Signal. 12,
453–463. doi: 10.1007/s11302-016-9511-x

Kim, J. E., and Kang, T. C. (2011). The P2X7 receptor-pannexin-1 complex
decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in
mice. J. Clin. Invest. 121, 2037–2047. doi: 10.1172/JCI44818

Klein, S., Bankstahl, M., and Löscher, W. (2015). Inter-individual variation
in the effect of antiepileptic drugs in the intrahippocampal kainate model
of mesial temporal lobe epilepsy in mice. Neuropharmacology 90, 53–62.
doi: 10.1016/j.neuropharm.2014.11.008

Librizzi, L., Noè, F., Vezzani, A., De Curtis, M., and Ravizza, T. (2012). Seizure-
induced brain-borne inflammation sustains seizure recurrence and blood-brain
barrier damage. Ann. Neurol. 72, 82–90. doi: 10.1002/ana.23567

Marchi, N., Fan, Q., Ghosh, C., Fazio, V., Bertolini, F., Betto, G., et al.
(2009). Antagonism of peripheral inflammation reduces the severity of status
epilepticus. Neurobiol. Dis. 33, 171–181. doi: 10.1016/j.nbd.2008.10.002

Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A. M., et al.
(2010). Toll-like receptor 4 and high-mobility group box-1 are involved in
ictogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–419.
doi: 10.1038/nm.2127

Miras-Portugal, M. T., Díaz-Hernandez, M., Giráldez, L., Hervás, C., Gómez-
Villafuertes, R., Sen, R. P., et al. (2003). P2X7 receptors in rat brain: presence

Frontiers in Neuroscience | www.frontiersin.org 8 February 2017 | Volume 11 | Article 21

https://doi.org/10.1016/j.tins.2008.10.001
https://doi.org/10.1016/j.neuropharm.2016.01.018
https://doi.org/10.1093/hmg/ddt259
https://doi.org/10.1093/brain/awn271
https://doi.org/10.1111/epi.13263
https://doi.org/10.1016/j.neuropharm.2015.09.019
https://doi.org/10.1093/brain/awv067
https://doi.org/10.1038/nrd2997
https://doi.org/10.1016/j.ncl.2015.11.002
https://doi.org/10.1007/978-94-007-4719-7_1
https://doi.org/10.1007/s11302-015-9493-0
https://doi.org/10.1056/NEJMra022308
https://doi.org/10.3389/fneur.2011.00087
https://doi.org/10.2174/157015909789152146
https://doi.org/10.1093/cercor/bhu035
https://doi.org/10.1002/0471142301.ns0937s58
https://doi.org/10.3389/fncel.2014.00029
https://doi.org/10.1007/s11302-016-9504-9
https://doi.org/10.1016/j.eplepsyres.2008.10.008
https://doi.org/10.1038/nrneurol.2016.1
https://doi.org/10.1016/j.neuropharm.2015.11.001
https://doi.org/10.1096/fj.11-196089
https://doi.org/10.1096/fj.09-145870
https://doi.org/10.3389/fncel.2014.00260
https://doi.org/10.1371/journal.pone.0156468
https://doi.org/10.1007/s007020050117
https://doi.org/10.1111/j.1528-1167.2011.03034.x
https://doi.org/10.1111/j.1528-1167.2007.01263.x
https://doi.org/10.1182/blood-2013-09-402560
https://doi.org/10.1002/glia.20580
https://doi.org/10.1007/s00249-008-0315-y
https://doi.org/10.1038/srep17486
https://doi.org/10.1523/JNEUROSCI.4009-15.2016
https://doi.org/10.1111/epi.12257
https://doi.org/10.1007/s11302-016-9511-x
https://doi.org/10.1172/JCI44818
https://doi.org/10.1016/j.neuropharm.2014.11.008
https://doi.org/10.1002/ana.23567
https://doi.org/10.1016/j.nbd.2008.10.002
https://doi.org/10.1038/nm.2127
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Beamer et al. P2X7 Receptor and Epilepsy

in synaptic terminals and granule cells. Neurochem. Res. 28, 1597–1605
doi: 10.1023/A:1025690913206

Monif, M., Reid, C. A., Powell, K. L., Smart, M. L., and Williams,
D. A. (2009). The P2X7 receptor drives microglial activation and
proliferation: a trophic role for P2X7R pore. J. Neurosci. 29, 3781–3791.
doi: 10.1523/JNEUROSCI.5512-08.2009

Moshé, S. L., Perucca, E., Ryvlin, P., and Tomson, T. (2015). Epilepsy: new
advances. Lancet 385, 884–898. doi: 10.1016/S0140-6736(14)60456-6

Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B. L., Rajendiran,
T. M., and Nunez, G. (2013). K+ efflux is the common trigger of NLRP3
inflammasome activation by bacterial toxins and particulate matter. Immunity

38, 1142–1153. doi: 10.1016/j.immuni.2013.05.016
Patel, S. I., and Pennell, P. B. (2016). Management of epilepsy during pregnancy: an

update. Ther. Adv. Neurol. Disord. 9, 118–129. doi: 10.1177/1756285615623934
Pitkänen, A., and Engel, J. Jr. (2014). Past and present definitions of

epileptogenesis and its biomarkers. Neurotherapeutics 11, 231–241.
doi: 10.1007/s13311-014-0257-2

Pitkänen, A., and Lukasiuk, K. (2011). Mechanisms of epileptogenesis
and potential treatment targets. Lancet Neurol. 10, 173–186.
doi: 10.1016/S1474-4422(10)70310-0

Ransohoff, R. M. (2016). How neuroinflammation contributes to
neurodegeneration. Science 353, 777–783. doi: 10.1126/science.aag2590

Rappold, P. M., Lynd-Balta, E., and Joseph, S. A. (2006). P2X7 receptor
immunoreactive profile confined to resting and activated microglia in the
epileptic brain. Brain Res. 1089, 171–178. doi: 10.1016/j.brainres.2006.03.040

Rassendren, F., and Audinat, E. (2016). Purinergic signaling in epilepsy.
J. Neurosci. Res. 94, 781–793. doi: 10.1002/jnr.23770

Rech, J. C., Bhattacharya, A., Letavic, M. A., and Savall, B. M. (2016). The evolution
of P2X7 antagonists with a focus on CNS indications. Bioorg. Med. Chem. Lett.

26, 3838–3845. doi: 10.1016/j.bmcl.2016.06.048
Rees, M. I. (2010). The genetics of epilepsy–the past, the present and future. Seizure

19, 680–683. doi: 10.1016/j.seizure.2010.10.029
Robel, S., Buckingham, S. C., Boni, J. L., Campbell, S. L., Danbolt,

N. C., Riedemann, T., et al. (2015). Reactive astrogliosis causes the
development of spontaneous seizures. J. Neurosci. 35, 3330–3345.
doi: 10.1523/JNEUROSCI.1574-14.2015

Rochfort, K. D., and Cummins, P.M. (2015). The blood-brain barrier endothelium:
a target for pro-inflammatory cytokines. Biochem. Soc. Trans. 43, 702–706.
doi: 10.1042/BST20140319

Rodrigues, R. J., Tomé, A. R., and Cunha, R. A. (2015). ATP as a multi-target
danger signal in the brain. Front. Neurosci. 9:148. doi: 10.3389/fnins.2015.
00148

Roth, T. L., Nayak, D., Atanasijevic, T., Koretsky, A. P., Latour, L. L., and
McGavern, D. B. (2014). Transcranial amelioration of inflammation and cell
death after brain injury. Nature 505, 223–228. doi: 10.1038/nature12808

Rozmer, K., Gao, P., Araujo, M. G., Khan, M. T., Liu, J., Rong, W., et al. (2016).
Pilocarpine-induced status epilepticus increases the sensitivity of P2X7 and
P2Y1 receptors to nucleotides at neural progenitor cells of the juvenile rodent
hippocampus. Cereb. Cortex. doi: 10.1093/cercor/bhw178. [Epub ahead of
print].

Sebastián-Serrano, Á., Engel, T., De Diego-García, L., Olivos-Oré, L. A., Arribas-
Blázquez, M., Martínez-Frailes, C., et al. (2016). Neurodevelopmental
alterations and seizures developed by mouse model of infantile
hypophosphatasia are associated with purinergic signalling deregulation.
Hum. Mol. Genet. 25, 4143–4156. doi: 10.1093/hmg/ddw248

Sim, J. A., Young, M. T., Sung, H. Y., North, R. A., and Surprenant, A. (2004).
Reanalysis of P2X7 receptor expression in rodent brain. J. Neurosci. 24,
6307–6314. doi: 10.1523/JNEUROSCI.1469-04.2004

Skaper, S. D. (2011). Ion channels on microglia: therapeutic targets
for neuroprotection. CNS Neurol. Disord. Drug Targets 10, 44–56.
doi: 10.2174/187152711794488638

Solle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., et al.
(2001). Altered cytokine production in mice lacking P2X(7) receptors. J. Biol.
Chem. 276, 125–132. doi: 10.1074/jbc.M006781200

Soni, N., Koushal, P., Reddy, B. V., Deshmukh, R., and Kumar, P. (2015).
Effect of GLT-1 modulator and P2X7 antagonists alone and in combination
in the kindling model of epilepsy in rats. Epilepsy Behav. 48, 4–14.
doi: 10.1016/j.yebeh.2015.04.056

Sperlágh, B., and Illes, P. (2014). P2X7 receptor: an emerging target in
central nervous system diseases. Trends Pharmacol. Sci. 35, 537–547.
doi: 10.1016/j.tips.2014.08.002

Sperlágh, B., Kofalvi, A., Deuchars, J., Atkinson, L., Milligan, C. J., Buckley,
N. J., et al. (2002). Involvement of P2X7 receptors in the regulation of
neurotransmitter release in the rat hippocampus. J. Neurochem. 81, 1196–1211.
doi: 10.1046/j.1471-4159.2002.00920.x

Suadicani, S. O., Brosnan, C. F., and Scemes, E. (2006). P2X7 receptors mediate
ATP release and amplification of astrocytic intercellular Ca2+ signaling.
J. Neurosci. 26, 1378–1385. doi: 10.1523/JNEUROSCI.3902-05.2006

Vezzani, A., Lang, B., and Aronica, E. (2016). Immunity and
Inflammation in Epilepsy. Cold Spring Harb. Perspect. Med. 6:a022699.
doi: 10.1101/cshperspect.a022699

Vezzani, A., Moneta, D., Conti, M., Richichi, C., Ravizza, T., De Luigi, A.,
et al. (2000). Powerful anticonvulsant action of IL-1 receptor antagonist on
intracerebral injection and astrocytic overexpression in mice. Proc. Natl. Acad.
Sci. U.S.A. 97, 11534–11539. doi: 10.1073/pnas.190206797

Vezzani, A., and Viviani, B. (2015). Neuromodulatory properties of inflammatory
cytokines and their impact on neuronal excitability. Neuropharmacology 96,
70–82. doi: 10.1016/j.neuropharm.2014.10.027

Vianna, E. P., Ferreira, A. T., Naffah-Mazzacoratti, M. G., Sanabria, E. R., Funke,
M., Cavalheiro, E. A., et al. (2002). Evidence that ATP participates in the
pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric,
immunohistochemical, and Western blot studies. Epilepsia 43(Suppl. 5),
227–229. doi: 10.1046/j.1528-1157.43.s.5.26.x

Volonté, C., Apolloni, S., Skaper, S. D., and Burnstock, G. (2012). P2X7 receptors:
channels, pores and more. CNS Neurol. Disord. Drug Targets 11, 705–721.
doi: 10.2174/187152712803581137

Wiebe, S., and Jette, N. (2012). Pharmacoresistance and the role of
surgery in difficult to treat epilepsy. Nat. Rev. Neurol. 8, 669–677.
doi: 10.1038/nrneurol.2012.181

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Beamer, Fischer and Engel. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2017 | Volume 11 | Article 21

https://doi.org/10.1023/A:1025690913206
https://doi.org/10.1523/JNEUROSCI.5512-08.2009
https://doi.org/10.1016/S0140-6736(14)60456-6
https://doi.org/10.1016/j.immuni.2013.05.016
https://doi.org/10.1177/1756285615623934
https://doi.org/10.1007/s13311-014-0257-2
https://doi.org/10.1016/S1474-4422(10)70310-0
https://doi.org/10.1126/science.aag2590
https://doi.org/10.1016/j.brainres.2006.03.040
https://doi.org/10.1002/jnr.23770
https://doi.org/10.1016/j.bmcl.2016.06.048
https://doi.org/10.1016/j.seizure.2010.10.029
https://doi.org/10.1523/JNEUROSCI.1574-14.2015
https://doi.org/10.1042/BST20140319
https://doi.org/10.3389/fnins.2015.00148
https://doi.org/10.1038/nature12808
https://doi.org/10.1093/cercor/bhw178
https://doi.org/10.1093/hmg/ddw248
https://doi.org/10.1523/JNEUROSCI.1469-04.2004
https://doi.org/10.2174/187152711794488638
https://doi.org/10.1074/jbc.M006781200
https://doi.org/10.1016/j.yebeh.2015.04.056
https://doi.org/10.1016/j.tips.2014.08.002
https://doi.org/10.1046/j.1471-4159.2002.00920.x
https://doi.org/10.1523/JNEUROSCI.3902-05.2006
https://doi.org/10.1101/cshperspect.a022699
https://doi.org/10.1073/pnas.190206797
https://doi.org/10.1016/j.neuropharm.2014.10.027
https://doi.org/10.1046/j.1528-1157.43.s.5.26.x
https://doi.org/10.2174/187152712803581137
https://doi.org/10.1038/nrneurol.2012.181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy
	Epilepsy
	Current Treatment
	Brain Inflammation In Icto- and Epileptogenesis
	ATP and Purinergic Signaling
	P2X7 Expression and Function In the CNS
	P2X7 in Brain Inflammation
	P2X7 as a Drug Target In Epilepsy
	P2X7 Expression in Epilepsy
	P2X7 During Epileptogenesis
	P2X7 During Epilepsy
	Conclusions and Future Directions
	Author Contributions
	Acknowledgments
	References


