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The most BCI systems that rely on EEG signals employ Fourier based methods

for time-frequency decomposition for feature extraction. The band-limited multiple

Fourier linear combiner is well-suited for such band-limited signals due to its real-time

applicability. Despite the improved performance of these techniques in two channel

settings, its application in multiple-channel EEG is not straightforward and challenging.

As more channels are available, a spatial filter will be required to eliminate the noise and

preserve the required useful information. Moreover, multiple-channel EEG also adds the

high dimensionality to the frequency feature space. Feature selection will be required

to stabilize the performance of the classifier. In this paper, we develop a new method

based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The

real-valued EA encodes both the spatial filter estimates and the feature selection into

its solution and optimizes it with respect to the classification error. Three Fourier based

designs are tested in this paper. Our results show that the combination of Fourier based

method with covariance matrix adaptation evolution strategy (CMA-ES) has the best

overall performance.

Keywords: BCI, evolutionary algorithm, Fourier linear combiner, feature optimization

1. INTRODUCTION

Brain-computer interface (BCI) is defined as an alternative communication pathway which
translates the measured brain activity into control commands (Pfurtscheller et al., 2008). Among
the existing brain activity measurement techniques, EEG has been extensively employed for
BCI applications due to its non-invasiveness, ease of implementation, and cost-efficiency (Lotte
et al., 2007). Recently, the dry-electrodes and wireless EEG systems have also been studied in
various experimental settings which has further expanded the scope of EEG based BCI systems
(Tangermann et al., 2012; Gao et al., 2014).

The motor imagery has been one of the successful methods for EEG based BCI systems
(McFarland et al., 2010; Hill et al., 2014). The application of motor imagery task to BCI systems has
enabled subjects to sufficiently control a moving cursor in 2D space or a quadcopter in 3D space
(Wolpaw et al., 2004; LaFleur et al., 2013). As shown inMuller-Gerking et al. (1999) and Guger et al.
(2003), a contra-lateral amplitude decrease in α band can be found in most subjects during motor
imagery tasks. Therefore, the motor imagery based BCI systems require transforming the recorded
EEG signal into frequency domain in quasi real-time. Then the extracted frequency domain features
are fed to machine learning algorithms for classification (Lotte et al., 2007; Robinson et al., 2013).
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As frequency analysis of EEG is a major concern, many
approaches such as the band pass filter bank, autoregressive (AR)
model, Fourier transform, and Wavelet transform have been
employed (Turnip and Hong, 2012;Wang et al., 2012b; Robinson
et al., 2013; Hsu, 2014; Khan et al., 2014). However, all these
methods have certain limitations. The frequency resolution of a
band-pass filter is constrained by the order of the filter. The AR
model coefficients only provide limited frequency information as
the envelope of the spectrum reconstructed from AR coefficients
is limited by the order of AR model (Shumway and Stoffer,
2011). The discrete wavelet transform is considered as a band-
pass filter bank with orthogonal basis that has better frequency
and temporal resolution (Wang et al., 2013b). However, the
obtained wavelet coefficients are redundant in general. Further,
post-processing is required to stabilize the performance of the
classifier (Qin and He, 2005).

The EEG signal considered for BCI is generally band-
limited. To decompose such signal into frequency domain
and to maintain the balance between temporal and frequency
resolution, the band-limited multiple Fourier linear combiner
(BMFLC) has been developed (Veluvolu et al., 2012). BMFLC
models the signal by adopting a truncated Fourier series.
Adaptive filter algorithm is then employed to obtain amplitude
estimation of individual frequency components in a pre-fixed
frequency band. For application to motor imagery, BMFLC is
applied to provide time-frequency mapping of the µ rhythm.
The estimated amplitude of each frequency is then fed to a
classifier (Wang et al., 2012a, 2013b). It was found in Wang et al.
(2012a) that the performance of the BMFLC based BCI systems
is improved if a subject-specific narrow band can be identified
within the range of µ rhythm. The identification criterion and
existence of such band have been established in Veluvolu et al.
(2012). The reduced dimensionality in the feature vector resulted
in better performance of the classifier.

Earlier approaches based on BMFLC only employed EEG
signals that were recorded from sensorimotor cortex (i.e., C3
and C4 from international 10/20 system, Jurcak et al., 2007;
Wang et al., 2012a, 2013b). Since only two EEG channels were
considered, it was straightforward to perform the subject-specific
band identification on the averaged time-frequency mapping
(Wang et al., 2013b). Although the two channel system is simple
in implementation, there is very limited scope for performance
improvement. Due to the volume conduction of skull and
scalp, the signal generated by the cortex of interest may be
distributed to a vicinity of the area on the scalp and picked up
by surrounding electrodes with different amplitude (Blankertz
et al., 2008). To further enhance the classification performance,
more data from EEG channels is often required formore complex
problems.

The increase in the number of EEG channels poses two
challenges. First, as the number of channel increases, direct
identification of the subject-dependent reactive band becomes
infeasible and an automated identification process is required.
Secondly, as the feature vector includes all frequency estimates
from all the channels, the dimension increases drastically. High
dimensionality in feature vector will effect the performance of the
classifier (Muni et al., 2006).

The above mentioned two problems are related as they
both require optimization of the features to reduce the overall
dimensionality and preserve the class-related information. For
BCI application, the common spatial filter (CSP) is usually
employed to solve the above two problems by reducing the
whole EEG montage to a few spatial filtered channels in which
the task-related information is significant (Lotte, 2014; Meng
et al., 2015). The CSP works to find a projection that maximizes
signal variance in one class while minimizing the variance
in another class (Lotte and Guan, 2011). It has been shown
in Wang et al. (2013a) that the application of the Tikhonov
regularized CSP (TRCSP) to pre-process the EEG signal, and
followed by the application of BMFLC for feature extraction
provides a better performance as compared to the common
average referencing or variant of Laplacian based spatial filters.
As BMFLC decomposes the scalar measurement of each EEG
channel into a multi-dimensional frequency estimation, the
spatial filter that is optimized with respect to the bandpass filtered
EEG signal may not be optimal for all frequency components.

In general, the above mentioned problems can be considered
as a feature optimization problem (Chen et al., 2009; Estévez
et al., 2009). However, the popular greedy search-based feature
selection algorithm are not ideal to deal with multi-EEG channels
due to its computational complexity. In the worst case scenario,
to identify a optimal subset of a n-dimension feature vector,
it would require all possible combinations of the n-dimension
vector and that results in repetition of the cost function
evaluation by

∑n
r= 1 C

n
r times. With increase in n, it will be no

longer feasible due to computational load. As an alternative, the
EA-based feature optimization, which encodes a feature subset in
its solution and then optimizes it with respect to the performance
index of a classifier, could be employed (Muni et al., 2006; Aberg
and Wessberg, 2007; Aler et al., 2012). The computation load of
the EA-based algorithm is limited by the number of maximum
generations or function evaluations. Further, it is less intensive
in computation demand as compared to the greedy-search
based algorithms. A genetic type EA-based feature optimization
algorithm is popular for the binarized solution to find the optimal
feature subset (Banerjee et al., 2007). Due to this reason, it is
not suitable for optimizing real-valued function. With the recent
development of real-valued EA, the classifier optimization and
the feature selection can be performed in one setting (Aberg and
Wessberg, 2007).

The application of EA also provides us with a new way
of estimating the spatial filter. As the common spatial filter
estimation is a maximization process, the cost function is
generally limited to a convex form for efficient application of the
existing optimization algorithms (Lotte and Guan, 2011). With
the help of real-valued EA algorithms, direct optimization of the
spatial filter with respect to the classification accuracy can be
performed where the convexity may not be preserved in the cost
function. In Aler et al. (2012), the spatial filter was estimated
by using the covariance matrix adaptation evolution strategy
(CMA-ES), a type of EA.

In this work, we employ two real-valued EAs for optimizing
the features that are produced by BMFLC in a multi-channel
EEG. Both spatial filter and feature selection are encoded in
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the solution vector and optimized simultaneously. Two real-
valued EA’s, namely global and local real-coded genetic algorithm
(GLGA) and CMA-ES, are employed for optimization. The above
two algorithms are selected due to their stable performance on
various real-valued practical problems (García-Martínez et al.,
2008; Hansen et al., 2009). The result of the proposed EA-based
feature optimization (BMFLC-EA) is compared with the BMFLC
with CSP, and BMFLC. Our results show that the BMFLC with
EA outperforms the rest. The preliminary results of this work
has been published in Wang et al. (2015). In the current version,
we have modified the optimal number of spatial filters selection
procedure, and provide a comprehensive comparison with the
existing methods.

The remaining paper is organized as follows. Three
configurations of BMFLC based classifiers are proposed in
Section 2, where the necessary details of the algorithm are
provided. The performance of the proposed method and
comparison to the existing methods are presented in Section 3.
Section 4 concludes this paper.

2. METHODS

In this section, three different configurations are proposed that
are based on BMFLC for feature extraction. Various methods
employed for this purpose are described in brief.

2.1. Proposed BCI Architecture
An overview of the EEG signal processing employed in this work
is shown in Figure 1. The BCI system can be divided into a
training phase and a testing phase. The feature optimization and
classifier training is executed during the training phase. Once
the optimal feature set and classifier has been obtained, the
system can shift to the testing phase where feature optimization
is no longer required. The reported classification accuracy is
estimated during the testing phase of the BCI system. Before
application to any feature extraction and optimization algorithm,
the multiple channel EEG signals are first band-pass filtered with
a Butterworth fifth order filter to the desired frequency band.

To analyze the motor imagery, the µ rhythm is employed in the
current study.

Three configurations that are based on BMFLC are discussed
in this work. The major differences between three BCI
configurations lie in how the spatial filter is employed in
combination with the BMFLC. The BMFLC is employed to
obtain time-frequency mapping of the EEG signal in each
configuration. The spatial filter is employed to reduce the number
of electrodes to a smaller subset. It can substantially reduce the
dimension in the feature vector.

The work flow of the three configurations is shown in
Figure 2. Configuration 1 shown in Figure 2 is the simplest of
the three configurations. As it is well-known that channels C3 and
C4 in 10/20 systems have distinct patterns during motor imagery
tasks, EEG signal from these two channels are selected. Thus, the
spatial filter is formulated by a manual selection of channels in
this configuration. The BMFLC is directly applied to the EEG
data of C3 and C4.

Second configuration uses the Tikhonov regularized common
spatial filter (TRCSP) to reduce the number of electrodes. Prior
to the application of TRCSP, the EEG signal of each channel
is band-pass filtered into the frequency band of interest, i.e., µ

band. TRCSP then uses the band-pass filtered EEG to estimate
spatial filters by maximizing the signal variance among classes.
The number of spatial filters that are finally employed in the
testing phase depends on the end application. The regularization
parameter “α” in TRCSP is optimized based on the training data
using the procedure developed in Lotte and Guan (2011). Later,
the raw EEG signal in the testing set is multiplied by the selected
spatial filters. The BMFLC is then employed to decompose the
spatial filtered EEG signal to form the feature vector for the
classifier.

Configuration 3 incorporates EA for estimating the spatial
filter. In comparison with the earlier two configurations, the
BMFLC is applied ahead of the spatial filter estimation. The
dimension of the decomposed signal from BMFLC contains
the full spectrum information with high dimensionality. EA
is thus employed to find spatial filter in order to reduce
the dimensionality of the decomposed signal. Compared to
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FIGURE 1 | Overview of the EEG signal processing chain.
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FIGURE 2 | Proposed configurations.

the optimization of the spatial filter in configuration 2, the
optimization criterion in EA is the classification performance
rather than the variance of the EEG signal in different classes.
The importance of this difference will be more clear in the Results
Section. Moreover, to further reduce the dimensionality of the
feature vector, feature selection is also conducted by finding
a subset of frequency components in the whole band that is
provided by the BMFLC with EA.

2.2. BMFLC-KF Based EEG Feature
Extraction
Common to all three configurations, the BMFLC is applied to
decompose the EEG signal to obtain time-frequency mapping
of the α band. The amplitude information of each frequency
component at each time instant or averaged over a fixed moving
window can be employed to form the feature vector for the
classifier.

BMFLC divides a pre-defined frequency band [ω1, · · · ,ωn]
into n equally distributed divisions with frequency spacing 1f ,
and estimates the amplitude of each frequency component by
using the Kalman filter as shown below (Wang et al., 2012b):

yk = xTkwk + vk (1)

wk+1 = wk + ηk (2)

where xk and wk are defined as

xk =









[

sin(ω1k) sin(ω2k) · · · sin(ωnk)
]T

[

cos(ω1k) cos(ω2k) · · · cos(ωnk)
]T









(3)

wk =









[

a1k a2k · · · ank
]T

[

b1k b2k · · · bnk
]T









(4)

Assume that vk and ηk are independent Gaussian processes
with 0 mean and covariances of R and Q, respectively. The
Kalman filter is employed for the adaptation of weights estimate
ŵk = E[wk|yk−1]. The detailed implementation of BMFLC-KF is
provided in the SupplementaryMaterial (S.2). The weight vectors
of BMFLC represents the Fourier coefficients of the band-limited
signal. The estimated weights are further combined as follows:

Wk =
[ √

a2
1k
+ b2

1k
· · ·

√

a2
nk

+ b2
nk

]T
(5)

where Wk is the absolute weight vector of the frequency
components at time instant k. The time-frequency mapping of
a given signal is obtained by cascading the weights in D =

[W1, . . . ,Wn].

2.3. EA-Based Spatial Filter and Feature
Selection Optimization
As the usage and implementation of TRCSP in configuration
2 is straightforward, for the sake of brevity, the details are
provided in Supplementary Material (S.1). In this subsection, we
focus on developing EA-based spatial filter and feature selection
optimization.

As EA has no limitations in the formation of solution vector,
we need to encode the spatial filter and feature selection into the
solution vector and then employ EA to optimize the solution
vector with respect to the same cost function. Since the final
objective of applying both spatial filter and feature selection is
to improve the performance of the classifier, the cost function is
selected to be the error rate of the classifier.

In this work, the covariance matrix adaptation evolution
strategy (CMA-ES) and, global and local real-coded genetic
algorithm (GLGA) are used due their superior performance in
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real-valued optimization (García-Martínez et al., 2008; Hansen
et al., 2009). The algorithms for GLGA and CMA-ES are
discussed in the following subsection. For more detailed
information, please refer to S.3 and S.4 in Supplementary
Material, respectively.

2.3.1. Global and Local Real-Coded Genetic

Algorithm (GLGA)
Although we can encode a real-valued quantity into a binary
string via some transformation and using traditional genetic
algorithm (GA) (Hansen et al., 2009), the dimension of the
solution becomes large as the number of required spatial filter
grows. In this work, the GLGA, a real-valued version of GA, is
employed (García-Martínez et al., 2008).

GLGA uses several operators to balance the exploration and
exploitation. First, the solution vector in the current population
is divided into male and female group by using female and
male differentiation (FMD) operator. GLGA then uses parent-
centric BLX-α (PBX-α) crossover operator to generate offspring.
The PBX-α takes one solution vector from each group, the
generated offspring that lies in the vicinity of the female solution.
The distance between the offspring and the female solution is
governed by the selected male solution and a parameter α. The
parameter α determines the spread of offspring to its parents.

The uniform fertility selection (UFS) and the negative
associativemating (NAS) are employed for the selection of female
and male parents, respectively(García-Martínez et al., 2008). To
apply UFS, a number of elite solutions in the current population
are selected as a female parent. The number of times that a
solution vector is used as female is tracked during the evolution.
The less frequent solution is then selected as female parent. For
selection of the male parent, the roulette wheel methods are
applied to selected five candidate male parents. The Euclidean
distance between the selected female parent and each of the
possible male parent is calculated. The one with the highest
distance is then selected as the male parent.

GLGA balances the global and local search by tuning the
number of female and male parents. Let Nm and Nf denote the
number of male and female parents, respectively. With a large
Nf , GLGA focuses on exploring the solution space, whereas a
large Nm will restrict GLGA to concentrate on local area. GLGA
is not operated by generation, rather it uses function evaluation
as the criterion to shift from global to local search. GLGA-n%
indicates that n% of function evaluations are used for global
search and rest are used for local search. After certain number
of function evaluations, GLGA assumes that the solutions have
already entered into the vicinity of the global optimal, it thus
reduces Nf to fine tune the solution in that region. To maintain
the population size unchanged during evolution, the “replace
the worst strategy” is adopted. Each time when an offspring is
generated, the fitness value of the offspring is compared to the
solution in the current population. If it is better than any of the
solution in the current population, the worst one is replaced.

2.3.2. CMA-ES
CMA-ES uses the second order statistics estimated from the
solution space to find the optimal value of the target function. It

is thus well-suited for optimizing the function with a complicated
structure. It has been applied to both artificial functions and real
practical problems and has shown to be performing better than
the contemporary counterparts (Hansen et al., 2009; Elteto et al.,
2012).

The (µ, λ) CMA-ES requires λ number of solutions in each
generation, and select the best µ number of solutions for
updating the value in next step. The CMA-ES algorithm generates

the solution s
(g)

k
by sampling from a Gaussian distribution with

mean m , step-size δ and covariance estimation C, where g
and k are indexes for generation and solution, respectively. To
find the solution for the next generation, CMA-ES estimates the
mean, step-size, and covariance with the solution in the current
generation considering the history path of the solution evolution.
After each generation, the solutions are ranked based on their
fitness value. The update of mean is carried out by a weighted
summation of the µ best solutions in the current generation.
The value of C is determined by the covariance of the estimated
evolution path denoted by pc and the covariance estimated from
the µ number of solutions in the current generation.

2.3.3. Optimization of Spatial Filter and Feature

Selection
The key to the application of EA for optimizing the spatial
filter and feature selection simultaneously is to develop a proper
solution vector. The spatial filter is real-valued by default, unlike
the genetic algorithm based feature solution. The binary valued
feature selection is replaced with real-valued problem. It was
shown in earlier studies that the subject-specific band has a
maximum bandwidth of 3 Hz (Veluvolu et al., 2012). Therefore,
the EA is employed to search for the starting frequency and the
optimal bandwidth of the subject-specific band. Moreover, the
dimensionality of the solution vector is significantly reduced by
encoding the frequency selection in real-value compared to the
binary encoding scheme. As the number of function evaluations
required for a EA to converge depends on the dimension of the
solution vector (Herrera et al., 1998), this approach should be able
to reduce the computational complexity and further improve the
solution quality when a fixed number of function evaluations is
considered.

Thus, the solution vector for GLGA and CMA-ES is
constructed as follows:

sol =
[

Spatial Filter
︷ ︸︸ ︷

sf11, . . . , sf1M , sf21, . . . , sf2M , . . .,

Frequency Selection
︷ ︸︸ ︷

FS, BW
]

where sfij denotes the jth component in ith spatial filter, FS is
the starting frequency, and BW is the bandwidth. M is the total
number of EEG channels. The number of resultant spatial filters
depend on the application. For motor imagery BCI system, the
number of classes is usually chosen as the number for spatial
filters selection (Aler et al., 2012). As the EA is applied to the
time-frequency mapping of BMFLC, FS has to lie in the range
of [f1, fn − BW], where f1 and fn are the lower and upper cutoff
frequency of BMFLC, respectively. As shown in Veluvolu et al.
(2012), BW is constrained to have a maximum 3 Hz band.
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The classification error obtained from linear discriminant
analysis (LDA) is employed as the optimization criterion for
GLGA and CMA-ES. The frequency weights that are estimated
from BMFLC-KF are used as the original feature set. To optimize
the spatial filter and frequency selection, the frequency weights
obtained from each channel is first combined to the following
form:

Fk =







w
fs

k,1
. . . w

fs

k,M
...

...
...

w
fe

k,1
. . . w

fe

k,M







T

(6)

where w
fs

k,M
indicates the weights of frequency fs at time instant

k in channel M. Then, the best solution vector in the current
generation is separated into two parts, frequency selection and
spatial filter. The optimal frequency band is extracted form the
original feature space by setting fs = FS and fe = FS + BW. The
spatial filter component of the solution vector is re-organized as
follows:

SF =

[

sf11 . . . sf1M
sf21 . . . sf2M

]T

(7)

To obtain the optimized feature set, the spatial filter SFT

is multiplied with the Fk, where superscript T denotes
matrix transpose. The resultant feature vector as well as the
corresponding label are then sent to the classifier. The error rate
of the employed classifier is used to guide the EA to search for a
better spatial filter and feature set. To avoid over-fitting, only the
classification error obtained from the validation data is used. The
solution vector obtained at the end of the evolution contains the
optimized spatial filter and frequency selection.

2.4. Dataset Description
To test the performance of the proposed architecture, we choose
two publically available BCI datasets. The first dataset (denoted
as Dataset I) is from Brain Computer Interface Competition
IV (Brunner et al., 2007). Dataset I contains EEG data of nine
subjects. EEG was recorded from 22 Ag/AgCl electrodes sampled
at 250 Hz. All signals were recorded monopolarly with the left
mastoid as reference and right mastoid as ground. Four classes
of cue-based motor imagery tasks were carried out, namely the
imagination of the movement of the left hand, right hand, both
feet and tongue. Each subject data was recorded in two sessions
on separate days. Each session consisted of six runs separated by
short breaks. One run consisted of 48 trials. During the recording,
the subjects sat on a comfortable armchair in front of a computer
screen. At the beginning of each trial (t = 0s), a fixation cross
appeared on the black screen. Two seconds later, a cue in the
form of an arrow pointing either to the left, right, down, or
up displayed on the screen and lasted 1.25s. The subjects were
asked to perform the motor imagery task until the fixation cross
disappeared from the screen at t = 6 s. For more details about
data collection, see Brunner et al. (2007).

The second dataset (denoted as Dataset II) was taken from
the BCI competition 2003, dataset 2a (McFarland et al., 1997).

The dataset contains motor imagery data from three subjects. All
subjects were informed to modulate their sensorimotor rhythm
to move a cursor from the left edge of the screen to one of
the four designated locations appeared on the right edge of the
screen. In this paper, we chose the top and bottom target out
of totally four available targets. Totally, 64 channels EEG signal
were recorded according to the international 10/20 system with
a sampling frequency of 160 Hz. Each subjects participated 10
sessions of the experiment. In this work, the top and bottom
target in the training session (session 1–6) was employed.

3. RESULTS

3.1. Experiment Settings
As the EEG α band is of interest, the frequency range for
BMFLC-KF is set to f1 = 6 Hz and fn = 14 Hz. 1f is set
to 0.5 Hz as it has been shown to offer better results in EEG
signal decomposition (Wang et al., 2012b). For applying CMA-
ES algorithm, the population size λ is set to be five times the
solution dimension. The number of spatial filters are selected to
be equal to the number of classes in the dataset. The reason for
this selection will be discussed in the later section.

The CMA-ES starts by setting the initial value to s(0), δ(0),C(0),
and updating the solution and is similar to the implementation
provided in Hansen and Kern (2004). The parameters provided
in Hansen et al. (2009) are employed as they are shown to offer
robust performance.

For GLGA, the parameters are chosen from García-Martínez
et al. (2008). α is equal to 0.5 and 25% of function evaluations are
employed for global search. For a fair comparison between CMA-
ES andGLGA, the functional evaluation of GLGA is set to 10,000,
as it approximately matches to the function evaluations used by
CMA-ES. Nm = N and Nf = N/2 are used for global searching
and Nm = 100 and Nf = 5 are employed for local searching,
where N is the population size. The algorithm terminates when
the stopping criterion is met.

For performance analysis, the EEG dataset is divided into
training set and testing set according to 10-times cross validation
scheme. Feature optimization including CSP and EA based
methods are performed on the training set. The same training
set is employed to train the final classifier. The classification
accuracy which is obtained on the testing data is employed for
performance comparison. It is important to note that, since the
GLGA and CMA-ES relies on classification error as the cost
function, a separate 10-times cross validation is also applied to
the training set.

Another important factor that affects the performance
is the number of spatial filter pairs employed for each
algorithm/configuration. In this paper, the number of spatial
filter pairs is selected for each algorithm separately to ensure
optimal performance for each configuration. The rationale and
procedure for this selection will be discussed in the later section.

For the sake of comparison, we consider other feature
extraction and optimization algorithms that have been reported
to have superior performance on BCI motor imagery tasks. The
continuous wavelet transform (CWT) with was shown to have
accurate time-frequency resolution in analyzing the EEG signal
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(Hsu, 2015). Thus, it has been included in our comparison
analysis. We have also chosen Daubechies wavelets of order 4
(denoted as Db4) as suggested in Hsu (2015). The obtained
wavelet features undergoes the same feature optimization
procedure with CMA-ES (denoted as Db4-CMAES). Further, the
filter bank common spatial pattern (FBCSP) is included as it was
shown to have superior performance on the BCI competition
dataset (Ang et al., 2012). In this work, we have implemented
a BMFLC based FBCSP. In summary, the EEG signal is first
decomposed by the BMFLC. Then, CSP filter was employed for
each frequency estimate and the features were constructed as the
logarithm power. The obtained features were then optimized by
employing the mutual information criterion (Ang et al., 2012).
Further, the algorithm developed in Aler et al. (2012) is also
implemented (denoted as FFT-CMAES).

3.2. Performance of GLGA and CMA-ES
Based Feature Optimization
The value of the cost function of CMA-ES for each generation
is shown in Figure 3 for all subjects. The shaded area indicates
the standard deviation of the classification error obtained from
10-times cross validation scheme. For all the subjects, we observe

that the classification error converges to a stable bound at the
end of the evolution process. It can be noted that with CMA-
ES, the error converges at a faster rate in the first 20 generations.
Later on, the convergence rate is slowed up to 100 generations.
After 100 generations, the classification error becomes stable.
The simulations for 500 generations also yielded similar
results.

Another observation from Figure 3 is that the standard
deviation varies significantly across subjects. A small standard
deviations can be identified in subject-1, -7, and -9. Whereas,
large standard deviation can be observed in the rest of the
subjects. The large standard deviation implies that CMA-ES
converges to different values at cross validation runs. Further, it
may be also due to the complexity of the cost function employed.
However, this divergence in the evolution process does not affect
the performance of the final classifier with CMA-ES as shown in
Figure 7. This result indicates the superiority of CMA-ES in the
optimization of a complex function as compared to GLGA.

Similarly, the cost function evolution of GLGA is shown in
Figure 4. The vertical line in Figure 4 indicates the transition
from global search to local search. The first observation is the
slow error decay during the global search phase. After GLGA
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FIGURE 3 | Evolution of training of CMA-ES for 300 generations. Shaded area indicates the standard deviation obtained from 10 cross validation runs.
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FIGURE 4 | Evolution of training of GLGA-25 for 10,000 function evaluations. Shaded area indicates the standard deviation obtained from 10 cross validation

runs.The vertical line indicates the transition from global searching to local searching.

moves to local search, initially, a fast error decay followed by a
stable phase can be observed. The standard deviation is generally
small during global search and the value increases when the
algorithm approaches the end of the execution. The results
suggest that GLGA tends to converge to different area after each
global search during each cross validation run.

Comparing the error evolution of GLGA to CMA-ES, we first
note that the GLGA has a higher standard deviation over all
subjects, whereas the error evolution in CMA-ES varies with the
subject with a smaller volatility. Moreover, CMA-ES converges
to a small error bound at the end of the evolution process as
compared to GLGA.

To further evaluate the performances of GLGA and CMA-ES,
the overall error improvement of each algorithm is obtained for
all subjects. The error improvement is calculated as the difference
between the maximum error and the minimum error obtained
during evolutionary process. It shows how well the employed
EA explores the error surface. For comparison, the algorithm
proposed in Aler et al. (2012) (named as FFT-CMAES) is also
implemented and the results are shown in Figure 5. We observe
CMA-ES based feature optimization outperforms the GLGA in
terms of performance improvement. The BMFLC-CMAES shows

superiority in performance compared to FFT-CMAES. BMFLC-
GA has the lowest improvement during training. The error
improvement is stable for all the subjects with FFT-CMAES, as
shown by small standard deviation.

3.3. Performance of the Final Classifier for
All Configurations
To perform the comparison for all different configurations, the
number of spatial filters required for each configuration needs to
be identified. As the dataset employed in this work consists of 22
EEG recordings for motor imagery tasks, we can therefore obtain
up to 11 pairs of spatial filters for each subject. In this work, we
select the number of spatial filters for each configuration based
on the generalization performance index. This index is used to
quantify the performance for the selected number of spatial filters
over all subjects. To calculate this index for a configuration, we
first obtain the classification accuracy for all subjects and all
spatial filter pairs in the training data set. Then for a particular
subject, the classification accuracy for all spatial filter pairs is
normalized to the range of [0 1]. The employed unity-based
normalization ensures that the optimal spatial filter pair for each
subject has the performance index of 1, so that the difference in
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FIGURE 5 | Classification accuracy improvement BMFLC-CMAES, FFT-CMAES, and BMFLC-GA.

classification accuracy among subjects will not bias the spatial
filter selection. Then, the generalization performance index for
each spatial filter pair is the normalized classification accuracy
averaged over all subjects. The results of generation performance
index for all configurations is shown in Figure 6.

From Figure 6, we can observe that all configurations tends
to have better generalization performance for fewer number of
spatial filter pairs. The CSP and FFT-CMAES display maximum
generalization performance when one pair of spatial filters is
employed. BMFLC-CMAES peaks at two pair spatial filters,
whereas BMFLC-GA requires three pairs of spatial filters.
Thus, the obtained number of spatial filter pair is set to each
configuration for comparison. After optimizing the features
by employing CSP, CMA-ES, and GLGA with pre-selected
parameters and number of spatial filter pairs, a final classifier is
then built with the same training set and then finally evaluated
on the testing set.

The performance of all subjects in Dataset I averaged over
10-times cross validation is shown in Figure 7. Configuration
1 is denoted as BMFLC where no feature optimization has
been employed. Configuration 2, where CSP is applied prior to
BMFLC is denoted by CSP-BMFLC. The two variants of EA based
feature optimization procedures are named as BMFLC-CMAES
and BMFLC-GLGA, respectively.

In Figure 7, we observe that BMFLC-CMAES outperforms all
other algorithms in seven out of nine subjects. Further, it has
also the best performance when averaged over all subjects, and
passes the Friedman test with α = 0.05. We also observe that
the features obtained from BMFLC and later optimized by CMA-
ES and GLGA display better performance compared to FFT-
CMAES on average. The BMFLC-FBCSP has better performance
as compared to BMFLC and CSP-BMFLC. The performance
varies across subject in CSP-BMFLC and is subject-dependent.
It is also clear that feature optimization improves the overall
performance.

The classification performance with Dataset II is shown
in Table 1. We observe that the BMFLC-CMAES and Db4-
CMAES outperformed all other methods in mean accuracy. This
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FIGURE 6 | Selection of optimal number of spatial filter pair.

observation clearly demonstrates the superiority of employing
time-frequency decomposition for feature extraction. Further, we
notice that the BMFLC-GA is inferior to the BMFLC-FBCSP
method.

We also compared the number of occasions of one algorithm
outperforming another algorithm by accumulating the results
from the cross validation runs of all subjects in Dataset I. Since
10 cross validation were employed, a total of 90 (9 subject × 10
cross validations runs) accuracy estimates per configuration were
obtained. The results are shown in Figure 8. The total number
and its corresponding percentage value by which one algorithm
outperforms the other algorithm is provided in the middle of
each block.

From Figure 8, it clearly demonstrates the necessity of
feature optimization. The configurations that are combined
with feature optimization have better classification accuracy
when BMFLC based features are employed. The results in the
first and second row when compared to the third row of
Figure 8 further demonstrate the superiority of BMFLC and
Db4 in extracting information from EEG as compared to FFT.
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TABLE 1 | Classification accuracy on testing set of all configurations—Dataset II.

Subject No. Classification accuracy

BMFLC-CMAES FFT-CMAES Db4-CMAES BMFLC-GA BMFLC-FBCSP BMFLC CSP-BMFLC

Subject AA 0.83 ± 0.03 0.73 ± 0.08 0.80 ± 0.07 0.75 ± 0.12 0.76 ± 0.13 0.58 ± 0.15 0.69 ± 0.08

Subject BB 0.81 ± 0.04 0.78 ± 0.08 0.80 ± 0.07 0.67 ± 0.10 0.76 ± 0.11 0.68 ± 0.13 0.74 ± 0.09

Subject CC 0.83 ± 0.05 0.75 ± 0.07 0.78 ± 0.06 0.75 ± 0.07 0.74 ± 0.08 0.68 ± 0.11 0.71 ± 0.16

Average 0.83 ± 0.04 0.76 ± 0.08 0.80 ± 0.08 0.72 ± 0.10 0.76 ± 0.10 0.65 ± 0.13 0.72 ± 0.11

Moreover, we also observe that all configurations that involve
feature optimization outperform the traditional methods. The
high standard deviation obtained with GLGA (Figure 4) is also
reflected in the classification results as its overall performance is
lower compared to BMFLC-CMAES.

To further consolidate our observed results, we have
performed a repeated measure of ANOVA by collecting all
accuracy estimates from all methods on all subjects. As the
obtained accuracy estimates violated the sphericity assumption,
Greenhouse-Geisser correction has been employed. Results show
that the mean accuracy differences are statistically significant
among all methods [F(4.037,359.252) = 27.904, p < 0.01].
Post-hoc tests using the Bonferroni correction revealed that the
proposed BMFLC-CMAES outperforms all comparison methods
with p < 0.01. All methods with feature optimization show
superior performance as compared to BMFLC (p < 0.05). It
highlights the necessity of employing feature optimization in
BCI applications. Furthermore, the BMFLC-CMAES and Db4-
CMAES show statistically significant accuracy improvement over
CSP-BMFLC and FFT-CMAES (p < 0.01), which indicates
the merit of using time-frequency decomposition to expand the
feature space.

3.4. Runtime Complexity
To show the applicability of the proposed methods to the real-
time BCI applications, we conducted a runtime computational

complexity analysis. The reported runtime estimates for each
algorithm are obtained on a system with Intel(R) Core i5-6500
CPU and 8GB RAM. The time duration was measured using
Matlab (Mathworks, USA) inbuilt function. Here, we reported
the average time duration to finish one validation run. The
obtained runtime estimates for all feature optimization methods
are given in Table 2.

The runtime requirement of the proposed feature
optimization procedure consists of the feature extraction,
optimization, and classification. The feature extraction method
BMFLC has been shown to have superior computational
complexity as compared to STFT and CWT (Wang et al., 2013b).
In this work, we estimated that the time required for BMFLC
to decompose a 2 s EEG epoch is 0.0349s ± 0.0037. Also, the
computational demand of LDA is negligible as only linear
operation is involved. Therefore, the main contributor to the
computational complexity of the proposed algorithm is the time
taken by the employed optimization algorithm.

All EA based feature optimization algorithms require few
minutes of run-time, as shown in Table 2, to attain optimized
features. Compared to the CSP based methods, the EA
based feature optimization has much higher computational
demands. However, the feature optimization is usually conducted
during the training phase of the BCI application. The feature
optimization only needs to be finished in a reasonable time. We
estimated that the BMFLC-CMAES requires 7 min to find the
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TABLE 2 | Runtime complexity of all configurations.

Methods BMFLC-CMAES FFT-CMAES Db4-CMAES BMFLC-GA BMFLC-FBCSP CSP-BMFLC

Time (s) 471.84 ± 19.33 515.69 ± 32.08 494.05 ± 47.13 17151.27 ± 839.07 1.55 ± 0.81 0.01 ± 0.01

optimized feature subspace. Once the optimized features have
been identified during training, the system only needs to perform
feature extraction and classification in real-time.

4. DISCUSSION

In this work, different BCI configurations which employ BMFLC
based features for classification have been developed. As our
results suggest, BMFLC-KF with manually selected channels
has the lowest classification performance. However, without
any optimization, the BMFLC feature offers the most stable
performance. There are two possible reasons for this. First, the
BMFLC-KF decomposes the EEG signal with high accuracy and
this provides the classifier with a stable feature set. Secondly,
the stability in the classification results may also indicate the
lack of diversity and limited information available within the two
channels. This result also highlights the necessity for employing
the optimization for feature extraction.

It is evident that the performance of CSP-BMFLC is subject
dependent. For three out of nine subjects in Dataset I, the

CSP-BMFLC has good testing accuracy. However, for the rest
subjects, the CSP-BMFLC performance is similar to or even
worse than applying BMFLC alone. As CSP algorithm relies
on the training data to find the spatial filter, the unsatisfactory
performance in test data may be due to over-fitting of the training
data.

Comparing the results from the configurations which
involve feature optimization, the BMFLC-CMAES outperforms
Db4-CMAES, BMFLC-GA, FFT-CMAES, and BMFLC-FBCSP.
In fact, BMFLC-CMAES, and Db4-CMAES have the best
performance among all configurations considered in this work.
Our results indicate that the feature optimization is critical in
improving the testing performance for a given feature set.

We also observe that the performance of each EA involved
configuration differs. BMFLC based system is degraded when
GLGA is employed for feature optimization. As GLGA divides
the evolution into two distinct phases, global, and local searches,
the overall performance of GLGA depends on the quality of
the global search phase. If the global search fails in finding
the promising area, then the subsequent local search may
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not improve the results and this may introduce severe over-
fitting. However, if the global search successfully enters into the
promising area, then the local search can fine-tune the solution
and this results in good performance as shown in subject 3 and
subject 8 in Figure 7.

Among all feature optimizationmethods that employ BMFLC,
the BMFLC-CMAES has the best performance. Whereas, the
BMFLC-GA provides inferior performance as compared to
BMFLC-FBCSP. This result indicates that the careful selection
of optimization algorithm is also critical to identify the suitable
feature subset. Our results suggests that the CMAES is preferable
for feature optimization.

BMFLC-CMAES, Db4-CMAES, and FFT-CMAES differ only
in the feature extraction algorithm. The superior performance
of BMFLC-CMAES and Db4-CMAES as compared to FFT-
CMAES highlights the ability of time-frequency decomposition
in extracting the information from motion induced EEG signal
as compared to the traditional FFT. Moreover, the BMFLC-
CMAES provides better performance as compared to Db4-
CMAES. However, the improvement failed to attain statistical
significant level (p < 0.01). The current results are in line with
our previous work that BMFLC has similar performance in terms
of time-frequency decomposition of EEG signal (Wang et al.,
2013b). However, as shown in Wang et al. (2013b), the BMFLC
has less computational complexity as compared to CWT. Thus, it
is more suitable for the real-time BCI applications.

The superiority in classification performance obtained from
EA based feature optimization comes with a price. All EA based
configurations require much higher computational resources
compared to the rest of the configurations employed in this
work. The computational complexity of the EA based feature
optimization grows with the increasing number of EEG channels
and the frequency band of interest. However, the frequency band
for a BCI system is usually limited and the feature optimization
is only required during training phase. We show that the
required training time for BMFLC-CMAES is around 7 min,
which is tolerable in the current BCI applications. Thus, the
computational burden posed by the EA has little impact to
the real-time applicability of the proposed feature optimization
algorithm.

Feature optimization is mainly intended to identify a suitable
subset of features from the original feature space which can
improve the classification accuracy and mitigate the requirement
in computational demand. The most reliable method to solve the
feature optimization problem is to enumerate all possible feature
combinations from the the original feature space. However, such
enumeration is only possible when the number of features in
the original feature space is small. It has been shown in a fNIRS
based BCI application that by selecting two out of six features, the
testing accuracy is maximized (Naseer et al., 2016). However, the
feature dimension in the current work is 17 per channel. With a
22 channels EEG recording, it results in a 374 dimensional feature
vector. To enumerate on all combinations on such high feature
space requires high computational requirements. The case is
even worse when the number of available channels increases.
Therefore, an evolution algorithm based approach was desirable
to optimize the features in such high dimensional space.

Classification performance of the BCI applications can be
improved with support vector machine (SVM) as the classifier
(Schlögl et al., 2005; Naseer, 2014; Khan and Hong, 2015).
The training of SVM is however computationally extensive
when compared to a LDA classifier (Khan and Hong, 2015).
Furthermore, to obtain better performance with SVM, its hyper-
parameters need to be fine-tuned (Vapnik, 1995; Suykens et al.,
2002), which increases the computational cost for training a BCI
system considerably. The main aim of the current paper is to
show the impact of the feature exaction and feature optimization
on the performance of BCI system. Therefore, for the illustration
of classification performance with proposed optimal feature
selection technique, we chose LDA as the classifier in this work.
For completeness, we report that one can chose any advanced
machine learning techniques as a classifier for the proposed
feature extraction and optimization scheme.

5. CONCLUSION

In this work, the performance of BMFLC-KF with various
combinations of FBCSP,CSP, CMA-ES, and GLGA for feature
optimization is quantified with a two-class BCI application.
Two publically available BCI competition datasets are employed
to study the performance of the proposed feature extraction
and feature optimization algorithm. The evolutionary algorithms
(namely CMA-ES and GLGA) are employed to optimize
the spatial filter and feature selection simultaneously. It is
clear from our results that the performance of the final
classifier can be improved by employing any of the above
mentioned feature optimizing algorithms. Statistical analysis
reveals that the proposed BMFLC-CMAES based feature
optimization algorithm outperforms its counterparts. Moreover,
the superior performance of time-frequency features obtained
from BMFLC and CWT also highlights the necessity of
employing time-frequency decomposition for feature extraction
in BCI applications. The small execution time of CMA-ES
indicates that it is more suitable for feature optimization as
compared to GLGA.
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