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Adverse maternal environment during gestation and lactation can have negative

effects on the developing brain that persist into adulthood and result in behavioral

impairment. Recent studies of human and animal models suggest epidemiological

and experimental association between disturbances in maternal environments during

brain development and the occurrence of neuropsychiatric disorders, including autism

spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, anxiety,

depression, and neurodegenerative diseases. In this review, we summarize recent

advances in understanding the effects of maternal metabolic and hormonal abnormalities

on the developing brain by focusing on the dynamics of dendritic spine, an excitatory

postsynaptic structure. We discuss the abnormal instability of dendritic spines that is

common to developmental disorders and neurological diseases. We also introduce our

recent studies that demonstrate how maternal obesity and hyperandrogenism leads to

abnormal development of neuronal circuitry and persistent synaptic instability, which

results in the loss of synapses. The aim of this review is to highlight the links between

abnormal maternal environment, behavioral impairment in offspring, and the dendiric

spine pathology of neuropsychiatric disorders.

Keywords: dendritic spines, synaptic development, maternal obesity, maternal hyperandrogenism,

neuropsychiatric disorders

INTRODUCTION

The maternal environment is inevitably an environmental factor that impacts brain development
in most animals are born to a mother. Recent studies of human and animal models provide
evidence that disturbances in the maternal environment during development are associated with
many neuropsychiatric disorders, such as autism spectrum disorder (ASD) (Baron-Cohen et al.,
2005; Patterson, 2011; Xu et al., 2013), attention deficit hyperactivity disorder (ADHD) (Ray et al.,
2009), anxiety (Sullivan et al., 2010), depression (Rice et al., 2007), schizophrenia (Kawai et al.,
2004), Alzheimer’s disease (Lahiri et al., 2009), and Parkinson’s disease (Barlow et al., 2007). In
this mini-review, we focus on abnormal metabolic and hormonal conditions that affect mothers,
and review the association between these maternal environments and offspring behavior. Because
several neuropsychiatric disorders show large deficits in synaptic connectivity (Penzes et al., 2011),
we later summarize the synaptic pathologies of developmental disorders and neurological diseases.
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We also introduce our recent studies that demonstrate how
maternal high-fat diet (HFD) and hyperandrogenism duce
abnormal development of neuronal circuitry in offspring, which
results in the loss or excess of synapses in later life. Our
studies link abnormal maternal environment-induced behavioral
impairment in offspring with the dendritic spine pathology
of neuropsychiatric disorders. Based on their shared synaptic
pathology during the development of neuronal circuitry, we
propose that many neuropsychiatric disorders have a common
underlying deficit in synaptic development. Not only is this
synaptic instability found in developmental disorders of the
nervous system, it is also found in late-onset neurodegenerative
diseases.

MATERNAL ENVIRONMENT IS
ASSOCIATED WITH NEUROPSYCHIATRIC
DISORDERS

Maternal Obesity
Obesity is a worldwide health problem and amajor contributor to
the increased incidence of coronary artery disease, hypertension,
and Type-II diabetes (Kopelman, 2000). Due to factors listed,
many women are obese or overweight by the time they reach
childbearing age (Kanagalingam et al., 2005; Huda et al., 2010).
Thus, maternal obesity can be a major contributor to the
disturbance in brain development of the children during pre-
and postnatal period. Epidemiological studies have shown that
maternal obesity has adverse effects on brain development in
children, which can result in ADHD (Rodriguez et al., 2008;
Rodriguez, 2010), schizophrenia (Kawai et al., 2004), cognitive
impairments (Van Lieshout et al., 2011), and eating disorders
(Favaro et al., 2006; Allen et al., 2009). Maternal obesity also
predisposes children to metabolic disorders (Deierlein et al.,
2011), and is associated with depression (Rofey et al., 2009),
anxiety disorder (Rofey et al., 2009), learning disability (Cserjési
et al., 2007), ADHD (Waring and Lapane, 2008), and Alzheimer’s
disease (Luchsinger et al., 2002). Additionally, animal models
have demonstrated the negative effects of maternal obesity on
the brain and peripheral organs of offspring (Williams et al.,
2014). We previously reported that mouse pups from obese
dams fed with a HFD show peroxidized lipid accumulation
in many brain regions, impaired adult neurogenesis in the
hippocampus, and deficits in spatial learning performance
(Tozuka et al., 2009, 2010). Other animal-model studies
have also demonstrated the impairments in conditioned and
reversal learning in offspring from HFD-fed dams (Rodriguez
et al., 2012; Wu et al., 2013). These lines of evidence
suggest that maternal HFD consumption and obesity impact
brain development of the offspring, resulting in behavioral
impairments in adulthood. Accumulating evidence suggest that
maternal HFD consumption leads to the perturbations in
serotonergic and dopaminergic systems that regulate brain
function and development (Sullivan et al., 2010; Vucetic et al.,
2010). Increased levels of inflammatory cytokines (Das, 2001),
insulin (Leung and Lao, 2000), and leptin (Lepercq et al., 2002)
in obese mothers are considered to influence the development of

these neurotransmitter signaling pathways. However, neuronal
circuitry and molecular mechanisms underlying the association
between maternal HFD consumption and abnormal behavior of
the children remain to be elucidated.

Maternal Hormonal Abnormality
Human and animal-model studies have demonstrated an
association between prenatal in utero exposure to testosterone
and the deficits in social interaction that was diagnosed as
ASD (Baron-Cohen et al., 2005; Hines, 2011; Xu et al.,
2013, 2015). Sex steroids such as androgens and estrogens
shape the structure of sexual dimorphisms during fetal brain
development by their organizing effects (Phoenix et al., 1959;
Keefe, 2002; Bonthuis et al., 2010). Intrauterine levels of
steroid hormones, including stress and sex steroids, are directly
affected by the physical condition of the mother. For example,
psychological stress in women correlates with the concentration
of testosterone in the blood (Chichinadze and Chichinadze,
2008; Lennartsson et al., 2012). Furthermore, maternal stress
during pregnancy is associated with increased risk of ASD
in children (Keefe, 2002). Polycystic ovary syndrome (PCOS),
characterized by ovarian dysfunction, and polycystic ovarian
morphology in women of childbearing age, leads to excessive
levels of male hormones, a condition called hyperandrogenism
(Franks, 1995; Abbott et al., 2005; Azziz et al., 2005; Goodarzi
et al., 2011), and children from PCOS mothers are thought
to express more autistic traits (Palomba et al., 2012). Indeed,
an animal-model study of maternal hyperandrogenism during
pregnancy demonstrated that the offspring exhibit autistic-
like behavior from adolescence to adulthood (Xu et al.,
2015). These lines of evidence suggest that prenatal exposure
to testosterone leads to developmental deficits of the brain,
resulting in abnormal behavior; however, the underlying
mechanism of development of autistic-like behavior remains
unclear.

NEUROPSYCHIATRIC DISORDERS AND
THEIR DENDRITIC SPINE PATHOLOGIES

The synapse plays an essential role in brain function. Dendritic
spines are postsynaptic structures that receive glutamatergic
excitatory input from presynaptic terminals. Dynamic changes
in the density and morphology of dendritic spines are associated
with the rewiring of neuronal circuits during circuit development
(Grutzendler et al., 2002), experience-dependent neuronal
plasticity (Trachtenberg et al., 2002), aging (Mostany et al., 2013),
and the progression of many neuropsychiatric diseases (Penzes
et al., 2011). Human postmortem studies have revealed higher
than normal cortical spine density in ASD (Hutsler and Zhang,
2010) and fragile X syndrome (Irwin et al., 2001), which is
thought to the result from deficiencies in synaptic pruning during
the development of neuronal circuitry. In contrast, spine density
was shown to be markedly lower in the postmortem brains of
people who had Alzheimer’s disease (Tackenberg et al., 2009) or
schizophrenia (Selemon and Goldman-Rakic, 1999). Numerous
proteins associated with these disorders are involved in the
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regulation of dendritic spine density and morphology (Penzes
et al., 2011).

Recent animal studies using in vivo two-photon imaging
have suggested that dendritic spine instability results in the
aberrant spine density and morphology observed in the brains
of mouse models for fragile X syndrome (Cruz-Martín et al.,
2010), ASD (Isshiki et al., 2014), and schizophrenia (Hayashi-
Takagi et al., 2014). Dendritic spine instability is thought to
be associated with abnormal rewiring of neuronal circuits, a
phenomenon also present in neurodegenerative diseases such
as Alzheimer’s disease (Tsai et al., 2004) and Huntington’s
disease (Murmu et al., 2013). The dendritic spine instability is
assessed by the elevation of formation and elimination rate of
spines, and the imbalance between formation and elimination
rate leads to subsequent loss or excess of spines. These lines
of evidence suggest that dendritic spine instability might be
a common pathology to both neurodevelopmental disorders
and neurodegenerative diseases. Using a knock-in model mouse
that faithfully replicates human symptomatic and pathological
features of spinocerebellar ataxia type 1 (SCA1), a late-onset
polyglutamine neurodegenerative disease characterized by ataxia,
cognitive impairment, and neuronal death, we previously
demonstrated that dendritic spine instability becomes evident
before pronounced motor incoodination (Hatanaka et al.,
2015b). Interestingly, this abnormal synaptic instability is present
even during synaptic development. In normal development,
dendritic spines are initially unstable, and they become stable in
the adult (Grutzendler et al., 2002). Thus, immature dendritic
spines during development may more vulnerable to internal
and external factors than mature spines. These lines of evidence
suggest that a latent developmental abnormality in neuronal
circuitry might subsequently lead to neuronal dysfunction
and loss in late-onset neurodegenerative diseases, which have
otherwise been believed to begin during middle age.

DISTURBANCE IN MATERNAL
ENVIRONMENT IMPACTS DENDRITIC
SPINE DYNAMICS DURING SYNAPTIC
DEVELOPMENT

Abnormal maternal environments are associated with several
neurodevelopmental disorders and neurodegenerative diseases
that are characterized by very early synaptic impairment.
However, the synaptic mechanism that translates certain
maternal environments into future behavioral impairments in
offspring is not fully understood. Recently, we reported that
maternal HFD consumption and excess testosterone exposure
during brain development leads to persistent synaptic instability
in mouse offspring (Hatanaka et al., 2015a,b). In this section, we
review these two studies and discuss the synaptic mechanism.

Maternal HFD Consumption and Synaptic
Impairment in Offspring
Studies of human and animal models have demonstrated that
maternal obesity negatively impacts the neurodevelopment of
children (Williams et al., 2014). Mouse pups from obese dams

fed with an HFD show peroxidized lipid accumulation in many
brain regions, impaired adult neurogenesis in the hippocampus,
and deficits in spatial learning, conditioning, and adaptation
(Tozuka et al., 2009, 2010; Rodriguez et al., 2012; Wu et al.,
2013). However, the synaptic basis for maternal HFD-induced
brain dysfunction has remained unclear. Peroxidized lipid
accumulation in the brains of the offspring from HFD-fed dams
disappears when the offspring are raised on a normal diet
after weaning, whereas abnormal progenitor-cell proliferation
in the hippocampus and ADHD-like hyperactivity persist into
adulthood (Tozuka et al., 2009, 2010). Thus, there may be
reversible and irreversible components of the maternal HFD-
induced brain impairment found in offspring. To determine
the critical period that is most susceptible to maternal HFD
consumption for the synaptic impairment, and to establish the
association between the oxidative stress in this period (which
results from peroxidized lipid accumulation) and impairment in
neuronal circuitry development, we analyzed the dynamics and
morphology of dendritic protrusions using in vivo two-photon
laser-scanning microscopy. This analysis must be conducted
in vivo because peripheral organs and non-neuronal cells of
the offspring exhibit abnormal metabolic homeostasis that
contributes a great deal to synaptic function (Bilbo and Tsang,
2010; Williams et al., 2014).

By analyzing the formation and elimination rate of dendritic
spines, we have found that maternal HFD leads to instability of
spines in the cerebral cortex of juvenile offspring, even when
they are fed with a normal diet after weaning (Hatanaka et al.,
2016). This effect persists into adulthood and manifests as a
decline in dendritic spine number. When offspring are exposed
to maternal HFD exclusively during lactation, their synaptic
instability and loss of spines is greater than or equal to that
in offspring who are exposed to pre- and postnatal maternal
HFD. Antioxidant-treatment during lactation ameliorates the
synaptic impairment in the offspring born to HFD-fed dams.
These results suggest that maternal obesity causes sustained
synaptic impairments in offspring, which may be associated with
brain dysfunction in adulthood, and that these impairments
may result from oxidative stress caused by peroxidized lipid
accumulation during lactation. The maternal metabolic milieu is
one of the most important factors that impacts the development
of neuronal circuitry and brain function in adulthood. Using in
vivo imaging while maintaining the intravital environment, this
study provided the first evidence for the synaptic basis of the
brain dysfunction in offspring of obese dams.

Prenatal Testosterone Exposure and
Abnormal Synaptic Development of
Offspring
ASD is a neurobehavioral syndrome with a heterogeneous
phenotype, and its overall prevalence is about 1/100 (Fernell and
Gillberg, 2010). Men are more likely to be affected than women,
with a 4:1 ratio (Freitag, 2007; Abrahams and Geschwind,
2008). Many lines of evidence from human and animal studies
suggest that disturbances in synaptic homeostasis may be a
key factor in the development of ASD (Toro et al., 2010;
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Delorme et al., 2013). Although the pathogenesis of ASD
is most likely polygenic and potentially epistatic, maternal
environmental factors might also interact with genetic factors
to increase risk (Gardener et al., 2011; Hallmayer et al., 2011).
Epidemiological and animal-model studies suggest that abnormal
prenatal exposure to testosterone results in autistic-like behavior
in the children (Baron-Cohen et al., 2005; Hines, 2011; Xu et al.,
2013). However, the synaptic pathogenesis of abnormal behaviors
exhibited by children who are prenatally exposed to excess
testosterone remains unexplained. Because neuronal circuitry
maturation is accomplished by dendritic spine stabilization and
pruning (Grutzendler et al., 2002), we analyzed dendritic spine

stabilization during synaptic development in the mouse offspring
from PCOS model dams, as a means of estimating deficiency
in neuronal circuitry development. Rodent models of PCOS
are administered testosterone prenatally and exhibit autistic-like
behavior, infertility, obesity, hyperinsulinism, an increased risk
of type-II diabetes, cardiovascular disease, and other abnormal
reproductive and metabolic functions (Walters et al., 2012).
Thus, analyzing dendritic spines in vivo is important because
it preserves the contributions that peripheral tissues provide to
spine dynamics.

By using in vivo two-photon imaging, we have found that
mice exposed prenatally to testosterone show increased rates

FIGURE 1 | Abnormal synaptic instability during the development of neuronal circuitry. In normal development, dendritic spines are stabilized and pruned

with maturation. In contrast, dendritic spines in many neuropsychiatric disorders show abnormal instability, which results in higher or lower density of dendritic spines

and divergent behavioral impairments subsequently. Disturbance in maternal environment critically impact on dendritic spines of the fetal brain and leads to

developmental deficits in neuronal circuitry (Hatanaka et al., 2015a,b, 2016).
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of spine formation and elimination in the frontal cortex at the
developmental stage of synapse formation (4-week-old), and
that this synaptic instability persists into adulthood (8-week-old)
(Hatanaka et al., 2015a). Density of dendritic spines is excessively
high, and their morphology is abnormal even when they are in
adulthood. This is consistent with post-mortem studies of ASD
and fragile X syndrome (Irwin et al., 2001; Hutsler and Zhang,
2010) and in vivo studies of animal models for these conditions
(Cruz-Martín et al., 2010; Pan et al., 2010; Jiang et al., 2013;
Isshiki et al., 2014). These results suggest that synaptic instability,
excess density, and abnormal morphology of dendritic spines
are the synaptic basis of subsequent neurodevelopmental deficits
in prenatally testosterone-exposed mice that exhibit autistic-
like behavior. This study was the first to examine the synaptic
basis of neurodevelopmental impairments in offspring who were
prenatally exposed to a hyperandrogenic environment.

CONCLUSION

Recent studies have shown that disturbances in maternal
environment are related to neuropsychiatric disorders. However,
details regarding the synaptic basis for this phenomenon
remain an open question. In this review, we focused on
abnormal synaptic instability during synaptic development,
which results in excess or loss of synapses in adulthood
and in behavioral impairments (Figure 1). We summarized
recent discoveries of dendritic spine pathologies in many
neurodevelopmental disorders and neurodegenerative diseases
that are associated with disturbances in maternal environment,
and propose that the abnormal synaptic instability observed

during development of neuronal circuitry is a shared pathology

of these neuropsychiatric disorders. The evidence suggests
that deficits in synaptic development might be a pathology
shared among many neuropsychiatric disorders, including
both developmental disorders and late-onset neurodegenerative
diseases. Although synaptic instability is a common deficit among
these neuropsychiatric disorders, the symptoms and their onset
of these different disorders are highly diverse. This can be
explained by the neuronal circuitry specificity impaired in each
disorder, and the specificity is due to the expression profiles of
disease-associated genes. Further studies that combine genetic
and environmental risk factors are needed in order to explain
the diversity of the neuropsychiatric disorders. Furthermore,
additional comprehensive studies demonstrating the relationship
between disturbances in maternal environmental, abnormal
synaptic instability during neuronal circuitry development,
and behavioral impairments in offspring are necessary for
further understanding the synaptic mechanisms underlying
developmental disorders in the brain.
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