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Blind individuals show impairments for auditory spatial skills that require complex spatial

representation of the environment. We suggest that this is partially due to the egocentric

frame of reference used by blind individuals. Here we investigate the possibility of

reducing the mentioned auditory spatial impairments with an audio-motor training. Our

hypothesis is that the association between a motor command and the corresponding

movement’s sensory feedback can provide an allocentric frame of reference and

consequently help blind individuals in understanding complex spatial relationships.

Subjects were required to localize the end point of a moving sound before and after either

2-min of audio-motor training or a complete rest. During the training, subjects were asked

to move their hand, and consequently the sound source, to freely explore the space

around the setup and the body. Both congenital blind (N = 20) and blindfolded healthy

controls (N = 28) participated in the study. Results suggest that the audio-motor training

was effective in improving space perception of blind individuals. The improvement was

not observed in those subjects that did not perform the training. This study demonstrates

that it is possible to recalibrate the auditory spatial representation in congenital blind

individuals with a short audio-motor training and provides new insights for rehabilitation

protocols in blind people.
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INTRODUCTION

The early loss of one sensory input influences the development of the other sensory modalities,
e.g., loss of vision impairs audition in the case of blindness (Gori, 2015). As a consequence, the
representation of auditory space is partly compromised in congenital blind individuals, suggesting
the existence of a trade-off in their auditory localization abilities (King, 2015; Voss et al., 2015).
Indeed, some congenital blind individuals show superior performance than blindfolded sighted
individuals in discriminating auditory pitch (Gougoux et al., 2004) and relative distance (Ashmead
et al., 1998; Voss et al., 2004; Kolarik et al., 2013a,b), creating spatial topographical maps (Tinti
et al., 2006; Fortin et al., 2008), and mapping the auditory space in both the peri-personal and
extra-personal environment (Lessard et al., 1998; Röder et al., 1999; Voss et al., 2004). This superior
performance is especially visible in the case of sound localization in the horizontal plane. On
the other hand, congenital blind individuals show worse performance than sighted individuals in
localizing sound targets in the vertical mid-sagittal plane (Zwiers et al., 2001; Lewald, 2002), and in
a modified version of the mental clock task (Bonino et al., 2015).

In recent studies our group showed that congenital blind individuals are compromised also
in performing specific auditory and haptic spatial tasks. In the haptic domain, orientation
discrimination (Gori et al., 2010), and arm movement reproduction (Cappagli et al., 2015) result
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impaired; in the auditory domain, audio depth discrimination
in the extra-personal space (Cappagli et al., 2015) and audio
space bisection (Gori et al., 2014a) result impaired. The case
of space bisection highlights the inexact encoding of Euclidean
auditory relationships in blind individuals, since it shows that
thresholds for spatially bisecting three consecutive and spatially-
distributed sound sources are totally compromised (Vercillo
et al., 2015, 2016). Finally, dynamic sound localization - a task
which requires a continuous encoding in time and space of a
moving sound source - has also been shown to be compromised
in the congenitally blind (Finocchietti et al., 2015).

A possible explanation is that in absence of vision, the
audio-spatial information can be self-calibrated by the auditory
system (Finocchietti et al., 2015). This self-calibration could be
sufficient to overcome spatial issues required by some auditory
spatial tasks, with changes within the auditory pathway and
the recruitment of the visual cortex (Collignon et al., 2009;
Merabet and Pascual-Leone, 2009), but it is probably insufficient
to compensate for others spatial aspects as the ones that require
the development of metric representations (as suggested by Gori
et al., 2014a).

It has been recently shown that audio spatial perception can
be improved in sighted individuals by audio-tactile associations
(Gori et al., 2014b) and by visual exploration (Tonelli et al.,
2015). In addition, echolocation, i.e., the ability to produce
self-generated sounds to measure the time delay between
their own sound emission and any echo reflected by the
environment, helps to improve the spatial perception in blind
individuals (Vercillo et al., 2015). Since recent findings suggest
that sighted children acquire spatial capabilities thanks to the
reciprocal influence between visual perception and execution
of movements (Bremner, 2008), an interesting question is
whether audio-motor feedback can be used to recalibrate
auditory spatial maps in blind individuals. Here we investigated
if an audio-motor training can improve complex aspects of
auditory space perception in blind and sighted individuals.
We tested the performance of congenital blind individuals and
sighted controls in a dynamic auditory localization task before
and after an audio-motor training. Our results support the
aforementioned hypothesis showing that even a short audio-
motor training can improve audio space perception in blind
individuals.

METHODS

Subjects
Forty-eight participants have been enrolled in the study:
Congenital blind (N = 20; 13 females, mean age 42 ± 12 years
old), and sighted blindfolded controls (N = 28; 14 females, mean
age 40± 16 years old). All the participants had similar education
(at least an Italian high school diploma, indicating 13 years of
school). The blind participants were congenital blind and the
vision loss had different etiology (Table 1).

All the participants had normal hearing (assessed by
audiometric test), no cognitive impairments, and were right
handed (Oldfield, 1971). The participants provided written
informed consent in accordance with the Declaration of Helsinki.

TABLE 1 | Clinical details of the congenital blind (CB) participants.

Subject Gender Age Pathology Age

complete

blindness

Residual

vision at

test

WITHOUT TRAINING

CB1 F 27 Retinitis pigmentosa At birth Lights and

shadows

CB2 F 32 Congenital cataract Before birth No vision

CB3 F 32 Retinopathy of Prematurity Before birth No vision

CB4 F 39 Congenital cataract Before birth Lights and

shadows

CB5 F 53 Eyeball atrophy Before birth No vision

CB6 F 54 Retinitis pigmentosa Before birth Lights and

shadows

CB7 M 43 Leber’s amaurosis Before birth No vision

CB8 M 56 Uveitis Before birth Lights and

shadows

CB9 M 57 Retinopathy of Prematurity Before birth No vision

CB10 M 57 Congenital glaucoma Before birth No vision

WITH TRAINING

CB1 F 20 Congenital glaucoma Before birth No vision

CB2 F 25 Leber’s amaurosis Before birth No vision

CB3 F 28 Retinopathy of Prematurity Before birth No vision

CB4 F 37 Retinopathy of Prematurity Before birth No vision

CB5 F 39 Congenital cataracts Before birth Lights and

shadows

CB6 F 42 Congenital cataract Before birth Lights and

shadows

CB7 F 57 Atrophy of the eyeball Before birth No vision

CB8 M 48 Retinopathy of Prematurity Before birth No vision

CB9 M 49 Fibroplasya Before birth No vision

CB10 M 50 Retinopathy of Prematurity Before birth No vision

The table shows the age at test, the gender, the pathology, and eventual residual vision.

The study was approved by the ethics committee of the local
health service (Comitato Etico, ASL3 Genovese, Italy).

Set-up and Task
The experiment was performed in a dark room. The apparatus
consisted of a graduated circular perimeter (radius = 45 cm)
mounted on a wooden panel positioned in front of the
participant on the frontal plane. Eight different positions were
marked on the perimeter, starting at 22.5◦ on the y-axis and
separated by increments of 45◦ (Figure 1). Sighted participants
were blindfolded before entering the experimental room. Each
participant was seated, the center of the circle corresponding
to the tip of his nose, and was able to comfortably reach
and explore with his hand the graduated circular perimeter.
One of the two experimenters instructed the participant and
performed all the experiments (SF, GC). Both experimenters were
previously trained to administer the task as similar as possible.
The experimenter was seated opposite to the participant, holding
the sound source with the speaker toward the subject, making the
sound clearly audible by every participant. The soundwas a single
pulse at 500 Hz, intermittent sound at 180 bpm, as previously
used by our group (Finocchietti et al., 2015). A spherical marker
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FIGURE 1 | The graduated circular perimeter (radius = 45 cm) is

mounted on a wooden panel positioned in front of the participant on

the frontal plane. The eight different positions are marked on the perimeter

starting at 22.5◦ and increasing of 45◦. The central position corresponded at

the tip of the nose of the participant. For the analysis, the eight points are

grouped in 4 areas: Top, left, bottom, right.

was mounted on the distal phalanges of the index finger on both
the participant and the experimenter for motion tracking (Vicon
Motion Systems Ltd., UK). The experimenter moved the sound
source from the center of the plane toward one of the possible
positions highlighted on the circular perimeter in a randomized
order. Moving sounds were presented in 2D in the vertical plane
(see Figure 1). The participant was instructed to keep his index
finger pointed to the center until the end of the audio motion
and to keep the head as still as possible during all the session.
He then had to reproduce the complete trajectory, reach the
estimated sound end-point position, and return to the original
central position. The movement was performed at participant’s
own pace. All the eight positions were reached five times, for a
total of 40 trials per participant.

Protocol
The dynamic auditory localization task previously described
was performed in two sessions. After the first session, subjects
were randomly assigned to one of two groups using a Matlab
(R2013a, The MathWorks, USA) built-in function. The first
group performed the audio-motor training with the sound
source for 2 min. The short timing for the audio-motor
training was chosen to show that the recalibration can happen
really fast, as soon as the presence of an auditory feedback
associated to a movement allows to restore an allocentric frame
of reference. The second group rested for the same duration
without any other instruction. During the training, subjects
of the first group were holding the sound source and were
asked to move their hand, and consequently the sound, to
freely explore the space around the setup and the body. The
setup was removed during this exploration. Afterwards both
groups performed the second session of the hand pointing
task.

Data Analysis and Statistics
Kinematic data were post-processed and analyzed using Matlab
(R2013a, The MathWorks, USA). Each end-point position was
computed as the average of the last 10 samples and normalized
on the origin position (the center of the circumference), in
order to avoid movement errors. Spatial accuracy, measured as
localization error, and precision, calculated as standard deviation
of the measurements, were obtained for each participant and
each spatial position. The localization error was calculated as
the Euclidean distance (in mm) between the end-point position
reached by the participant and the position reached by the
experimenter. This error was averaged on the number of trials
per position and on the number of participants. The accuracy
was calculated as standard deviation for each point and averaged
among subjects. Data were normally distributed, confirmed by
visual inspection of Q–Q plots. Data are presented as mean and
standard error (SE). The eight points were grouped in 4 panel
areas, as indicated in Figure 1. The accuracy, precision, mean
velocity and path length were analyzed with a factorial ANOVA,
with between-factors training group (two levels: Training. no
training), participant group (two levels: CB, controls), and
within-factors session (two levels: Pre, post), panel area (four
levels: Top, left, right, bottom). The Bonferroni Post-hoc test was
used in the case of significant factors (p < 0.05 was considered
significant).

RESULTS

Accuracy
Regarding the first session, congenital blind individuals showed
worse spatial accuracy than sighted blindfolded controls
(interaction between panel area x participant group x session,
[F(3, 32) = 7.91, p = 0.0004, Figure 2]. The deficit was present
for all the spatial positions considered, even if it was more
pronounced for the lower positions of the plane (Bon: p< 0.001).

Regarding the second session, the group of congenital blind
subjects that performed the training improved in spatial accuracy
[interaction between panel x participant group x session x
training F(3, 32) = 7.65; p = 0.001; Bon: p < 0.01, Figure 3A,
red dots]. In fact, the performance of the congenital blind group
became similar to the one of sighted individuals, even if the
spatial distribution of the pointing responses was not as accurate
as the one of the sighted blindfolded group (Figure 2A, right
panels). The spatial accuracy of the congenital blind group that
did not perform the audio-motor training did not improve
(Bon: p > 0.1, Figure 2B right panels). Sighted blindfolded
controls did not further improve their performance (Bon:
p > 0.2), as their data remained above the equality line in
Figure 3.

Precision
The precision was comparable among factors for both early blind
and sighted blindfolded controls, independently of the audio-
motor training [interaction between panel area x participant
group x session x training F(1, 32) = 4.74; p > 0.3]. In fact, the
precision was 34 ± 14 mm for the congenital blind groups, and
30± 15 mm for the sighted blindfolded groups.
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FIGURE 2 | Mean localization bias in congenital blind individuals (CB)

and sighted blindfolded controls (C) relative to the hand pointing task

following the moving sound from the origin to one of the eight position

on the circle. The black dots indicate the 8 possible end-point positions. The

origin (0,0) corresponds to the nose of the participant. (A) Group that

performed the audio-motor training (CB: N = 10; 7 females; mean age = 39 ±

12 years old; C: N = 14; 7 females; mean age = 35 ± 15 years old). The deficit

in the lower side positions isn’t present in CB after the training. No significant

change is present in C. (B) Group that did not perform the audio-motor

training (CB: N = 10; 6 females; mean age = 45 ± 12 years old; C: N = 14; 7

females; mean age = 44 ± 13 years old). The deficit in the lower side positions

is maintained in CB after the inter-session without training. No difference is

present in C, between pre and post-session, and between training group.

Velocity
Every participant was free to perform the movement at his own
pace, but no difference in mean velocity among conditions was

FIGURE 3 | Summary data shows the mean localization error (±SE) for

all subjects, pre-session results plotted against post-session results,

with audio-motor training (A) and without audio-motor training (B). Sighted

blindfolded controls (C) are in blue, while congenital blind subjects (CB) are in

red. If the localization error is decreased after the inter-training session, the

data should fall below the black equality line. This happens to the CBs after the

audio-motor training, where the localization error reduces between 49 and

55%. The data instead fall along the black equality line for the group without

the audio-motor training, showing a mean localization error between 21 and

33 cm. Controls always showed an error less than 10 cm, with no

improvement in the performance.

observed [interaction between panel area x participant group x
session x training: F(3, 32) = 3.56, p > 0.1, Table 2].

Path Length
For the blind group the path length resulted longer in the post-
training session, in comparison to the first session and to the
group that did not perform any training [F(3, 32) = 5.49; P =

0.03; Bon: P = 0.05, Table 3]. In this last group, the bottom area
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TABLE 2 | Average velocity [m/s] between blind and controls for the

different conditions.

With training Without training

Pre Post Pre Post

BLIND

Top 0.934 ± 0.027 1.107 ± 0.020 1.316 ± 0.022 1.244 ± 0.019

Left 1.223 ± 0.025 1.035 ± 0.021 1.232 ± 0.019 1.048 ± 0.021

Right 0.913 ± 0.021 0.986 ± 0.025 1.325 ± 0.023 1.325 ± 0.20

Bottom 1.312 ± 0.019 1.002 ± 0.019 0.917 ± 0.019 0.831 ± 0.29

CONTROL

Top 1.310 ± 0.022 0.977 ± 0.020 1.114 ± 0.021 1.114 ± 0.025

Left 0.937 ± 0.024 1.313 ± 0.019 0.889 ± 0.024 1.010 ± 0.029

Right 1.000 ± 0.021 1.251 ± 0.021 0.958 ± 0.019 1.074 ± 0.019

Bottom 1.174 ± 0.025 0.898 ± 0.025 0.877 ± 0.022 1.294 ± 0.021

No statistical difference was present, as the range of velocity was between 0.0889 and

1.325m/s with standard deviation between 0.018 and 0.029 m/s.

always showed shorter path length than the other three areas,
independently of session and group training, showing an average
path length of 0.25m. Control individuals showed a longer path
length in comparison to the blind individuals, independently of
session, group training, and panel area [F(3, 32) = 7.38; P = 0.05;
Bon: P = 0.04, Table 3].

DISCUSSION

The brain continuously integrates sensory and motor inputs to
optimize environmental perception and interaction (Ernst and
Banks, 2002). For example, when performing an action sighted
individuals merge the visual and the proprioceptive inputs to
create a mental representation of their body movements. When
vision is absent, the sensory feedback of body movement is not
generally provided and this form of sensory-motor integration is
not possible.

We recently showed, in agreement with other authors
(Zwiers et al., 2001; Lewald, 2002; Voss et al., 2015), that
blind individuals have problems in perceiving specific spatial
relationship between sounds or moving sounds in a 2D space
(Gori et al., 2014a; Cappagli et al., 2015; Finocchietti et al., 2015).
This is possibly associated with the evidence that congenitally
blind individuals seem to process the spectral cues for sound
localization differently than sighted individuals (Lewald, 2002;
Voss et al., 2015).

Here we studied if an audio-motor feedback can improve
audio spatial perception by reducing the spatial deficits observed
in blind individuals. We asked blind individuals to perform
a dynamic auditory localization task before and after a short
(2min) audio-motor training, in which they had to freely move
their hand with a sound source positioned on the wrist. We
showed a strong improvement in the ability to localize a moving
sound source in blind individuals after the training. In particular,
an improvement of 49–55% in the accuracy has been found for
blind individuals (see in Figure 3, all the data fall below the
equality line). The results on average velocity and path length

TABLE 3 | Average path length [m] between blind and controls for the

different conditions.

With training Without training

Pre Post Pre Post

BLIND

Top 0.265 ± 0.025 0.381 ± 0.025* 0.270 ± 0.022 0.274 ± 0.020

Left 0.273 ± 0.021 0.389 ± 0.011* 0.275 ± 0.020 0.278 ± 0.021

Right 0.268 ± 0.020 0.394 ± 0.017* 0.281 ± 0.023 0.281 ± 0.23

Bottom 0.219 ± 0.019# 0.351 ± 0.019*# 0.224 ± 0.019# 0.225 ± 0.24#

CONTROL

Top 0.427 ± 0.022 0.432 ± 0.016 0.434 ± 0.018 0.428 ± 0.016

Left 0.435 ± 0.017 0.440 ± 0.010 0.438 ± 0.022 0.429 ± 0.020

Right 0.441 ± 0.011 0.428 ± 0.021 0.439 ± 0.019 0.438 ± 0.019

Bottom 0.428 ± 0.025 0.431 ± 0.017 0.440 ± 0.020 0.436 ± 0.021

Blind individuals: the path length was longer in the blind group that performed the audio-

motor training in comparison to the first session and the group that did not perform

any training (indicated with *). The bottom area always showed shorter path length than

the other three areas, independently to session and group training (indicated with #).

Control individuals: a longer path length in comparison to the blind participants was always

presented, and independently to session, group training, and panel area.

confirm this result: Blind individuals showed a similar average
movement velocity than controls, but fail in correctly encoding
the distance between the starting point and the end point of
a moving source without a proper audio-motor training. This
improvement mainly affects the vertical direction, which is the
dimension typically impaired in blind individuals (Zwiers et al.,
2001; Lewald, 2002; Voss et al., 2015).

These results show that the audio-motor training can
recalibrate the auditory space perception in blind individuals,
possibly because it allows to collect some allocentric information
coming from the audio-motor association provided by the
training.

Indeed the human brainmakes use of egocentric or allocentric
coordinates to obtain different perspectives of the environment
(Avraamides et al., 2004). For example, the position of an object
in the space can be represented respect to oneself (egocentric
frame of reference, FoR) or in object-centered coordinates that
are independent of the observer’s current position (allocentric
FoR). Previous studies have shown an inhibition of the FoR in
blind individuals (Röder et al., 2007; Pasqualotto and Proulx,
2012). When a sighted person moves his hand, he can perceive
his own movement thanks to the combination of proprioceptive
and visual inputs that can mediate the mapping between body
centered and space centered coordinates. With the lack of vision,
the visual feedback of actions is missing. On the other hand, for
blind individuals the sensory feedback of body movements can
be provided by the auditory system thanks to an audio source
positioned in the hand. In this way the auditory feedback of body
movements can be used to map spatial and body coordinates.
A possible explanation of our results is that the audio-motor
training might have caused a shift from an egocentric to an
allocentric reference frame stimulated by the auditory feedback
of body movements, thus improving the overall perception of
auditory signals in the space. In agreement with this idea it
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has been repeatedly suggested that the emergence of allocentric
coding coincides with the beginning of self-locomotion in
typically developing infants (Clearfield, 2004; Ricken et al.,
2004). The subsequent increase in spatial abilities strongly
relies on further experience with independent locomotion and
exploration, which usually provides the opportunity to encode
events and stimuli from different perspectives (Lew et al., 2000;
Vasilyeva and Lourenco, 2012).

To conclude, we suggest that sensory feedback of body
movements are important for the development of spatial skills
and that it is possible to improve spatial abilities in congenital
blind individuals thanks to non-visual sensory feedback of motor
signals. We think that this kind of audio-motor feedback can
substitute the visuo-motor feedback and recalibrate specific
spatial abilities that might require an allocentric frame of
reference.

It is not clear to date which is the neural mechanisms
involved in the fast perceptual recalibration mechanism that we

observed. Further studies will be necessary to better describe
this process and identify the neural mechanism supporting it.
The findings of the present study represent an important input
for the development of new rehabilitative protocols meant to
improve basic and advanced sensory skills in individuals with
visual disability.
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