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This study aimed to explore the influence of magnesium elevation on fate determination

of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult

neurogenesis, which is the generation of functional neurons from neural precursors,

occurs throughout life in restricted anatomical regions in mammals. Magnesium is the

fourth most abundant ion in mammals, and its elevation in the brain has been shown to

enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on

fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown.

NPCs isolated from the dentate gyrus of adult C57/BL6mice were induced to differentiate

in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and

extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells

that differentiated into neurons and glial cells was evaluated using immunofluorescence.

Quantitative real-time polymerase chain reaction andWestern blot methods were used to

determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The

activation of ERK and cAMP response element-binding protein (CREB) was examined by

Western blot to reveal the underlying mechanism. Magnesium elevation increased the

proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells.

Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was

downregulated. Moreover, magnesium elevation enhanced the activation of both ERK

and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent

manner. Magnesium elevation promoted neural differentiation while suppressing glial cell

differentiation, possibly via ERK-induced CREB activation.

Keywords: adult neural progenitor cells, adult neurogenesis, differentiation, extracellular signal-regulated kinase,

fate determination, magnesium
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INTRODUCTION

Neurogenesis occurs throughout life in the brain of adult
mammals and is restricted mainly to two specific regions of the
brain: the subventricular zone (SVZ) of the lateral ventricles
and the subgranular zone (SGZ) of the dentate gyrus (DG) of
the hippocampus (Abrous and Wojtowicz, 2015). Adult-born
neurons can affect the brain function globally in their capacity
both as encoding units and as active modifiers of mature neuron
firing, synchronization, and network oscillations (Martinez-
Marcos et al., 2016). Numerous studies have demonstrated
a correlation between the level of hippocampal neurogenesis
and cognition, whereas dysfunction of neurogenesis contributes
to some pathological processes including epilepsy, Alzheimer’s
disease, Parkinson’s disease, and other degenerative diseases
(Kiyota et al., 2015; Hollands et al., 2016).

Adult neurogenesis is a dynamic, finely tuned process that
is regulated by various physiological and pathological activities
(Egeland et al., 2015; Yang et al., 2015). For instance, cultured
hippocampal progenitors increased neuronal differentiation in
response to glutamate (Gilley and Kernie, 2011). Growth factors,
such as epidermal growth factor (EGF), neurotrophin-derived
neurotrophic factor (BDNF), and endothelial growth factor,
are also involved in neural stem cell (NSC) maintenance, cell
proliferation, and fate specification (Tzeng et al., 2013; Kirby
et al., 2015).

Magnesium is the second most abundant intracellular cation
after potassium and is involved in more than 600 enzymatic
reactions involved in processes including energy metabolism
and protein synthesis (de Baaij et al., 2015). Furthermore,
magnesium supplements are widely used to treat preeclampsia,
depression, coronary artery disease, and asthma (Dribben et al.,
2010). Recently, the newly developed compound magnesium L-
threonate (mgT), which is capable of elevating magnesium in
the brains of mice, was shown to increase synaptic plasticity
and enhance learning and memory (Slutsky et al., 2010). The
substantial synaptoprotective effects of magnesium elevation in
the brain have also been demonstrated in a mouse model of
Alzheimer’s disease (Li W. et al., 2014). However, the effects of
magnesium on neurogenesis remain to be investigated.

The sequential steps of adult neurogenesis include
proliferation of NSCs or progenitors, differentiation and
fate determination, and survival, maturation, migration, and
functional integration into the existing circuitry (Ming and
Song, 2011). Newborn NSCs exhibit two basic characteristics:
the capacity for self-renewal and differentiation into neurons,
astrocytes, and oligodendrocytes (the latter two types are
collectively known as glial cells; Zhao et al., 2008; Mu et al., 2010).
It was shown that the elevation of magnesium concentration
to 2.5 mM above basal levels increased the number of NSCs
and some parameters of neurite outgrowth (Vennemeyer et al.,
2014). However, the effect of magnesium elevation on fate
determination of neuronal cells during neurogenesis remains to
be elucidated.

This study indicated that the elevation of magnesium by
adding magnesium sulfate (MgSO4) or magnesium chloride
(MgCl2) to the differentiation culture medium increased the

expression of βIII-tubulin (Tuj1)-positive cells and decreased
the expression of glial fibrillary acidic protein (GFAP)-positive
cells after differentiation. These results indicated that magnesium
elevation promoted neural differentiation, while suppressing glial
differentiation in vitro.

Accumulating lines of evidence demonstrate that mitogen-
activated protein kinase (MAPK) signaling acts as a rheostat that
influences neurogenesis and neural cell fate selection (Li S. et al.,
2014; Hosseini Farahabadi et al., 2015). Also, the transcription
factor cAMP response element-binding protein (CREB) plays
a critical role in memory consolidation via enhanced adult
hippocampal neurogenesis (Ortega-Martínez, 2015; Hollands
et al., 2016). Other studies showed that endogenous reactive
oxygen species regulated neurogenesis in a phosphoinositide 3-
OH kinase (PI3K)/Akt-dependent manner (Peltier et al., 2007; Le
Belle et al., 2011). This study showed that both the extracellular
signal-regulated kinase (ERK) and CREB were activated and
might be involved in the underlying mechanism. This was
confirmed in experiments using ERK inhibitor PD0325901 and
U0126.

This novel study explored the influence of magnesium
elevation on fate determination of adult neural progenitor cells
(aNPCs) and the underlying mechanism in vitro (Bian et al.,
2013).

MATERIALS AND METHODS

Isolation and Culture of Adult NPCs
The primary aNPCs were isolated from the DG of 6-week-
old male C57BL/6J mice according to a previously described
method (Guo et al., 2012). Briefly, the whole brain of adult mice
was removed and then sliced into 400 µm sections using an
adult mouse matrix (Kent Scientific, CT, USA). The DG was
then microdissected from these sections under a microscope
and placed in Solution A [30 mM glucose, 26 mM NaCO3,
2 mM [4-2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH
7.4 (Thermo Scientific, MA, USA) in Hank’s balanced salt
solution (Thermo Scientific)] and centrifuged for 10 min at 1000
rpm. The pelleted tissue was dissociated using a MACS Neural
Tissue Dissociation Kit for enzymatic digestion (Miltenyi Biotec,
CA, USA). The digestion was terminated by adding Dulbecco’s
modified Eagle’s medium [(DMEM)/F-12 medium (Thermo
Scientific)] containing 10% fetal bovine serum (FBS, Thermo
Scientific). The DG tissue was filtered through a 70 µm cell
strainer (Fisher Scientific, MA, USA) and centrifuged for 3 min
at 1000 rpm. The pellet was washed with DMEM/F-12 medium
supplemented with 10% FBS plus Percoll (GE Healthcare Life
Sciences, PA, USA) solution [1:10 Percoll in phosphate-buffered
saline (PBS)]. After centrifuging at 1000 rpm for 3 and 15min,
the dissociated cells were resuspended and plated in T25 flasks in
proliferation medium [neurobasal medium (Thermo Scientific)
with 20 ng/mL EGF (Peprotech), 20 ng/mL basic fibroblast
growth factor 2 (Waisman Biomanufacturing), B27 supplement
(Thermo Scientific), penicillin-streptomycin (Thermo Scientific),
and L-glutamine (Thermo Scientific)] at 37◦C under 5% CO2.
After 7–14 days in culture, the neurospheres were passaged to
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expand further the number of aNPCs or collected for future
experiments. All animal care and experimental procedures used
in this study were approved by the Animal Care and Ethics
Committee of Sun Yat-sen University, China. The animals were
purchased from the Animal Experiment Center of Guangdong
Province.

Differentiation of Adult NPCs In vitro
For differentiation (Guo et al., 2012), neurospheres from the
third passage were collected, dissociated using TrypLE (Life
Technologies, USA), and resuspended as a single-cell suspension
in magnesium-depleted N2 differentiation medium [500 mL of
magnesium-depleted DMEM/F-12 medium (Omega Scientific),
5 mL of N2 (Thermo Scientific), 5 mL of glutamine (Thermo
Scientific), and 5 mL of antibiotic–antimycotic (Thermo
Scientific)] with a final concentration of 1 µM retinoic acid
(Sigma-Aldrich), 1 µM forskolin (Sigma-Aldrich), penicillin–
streptomycin, and various concentrations of magnesium (0.6,
0.8, and 1.0 mM). The cells were seeded (5 × 104/cm2) in 12-
well-cell culture plates coated with poly-L-ornithine (10 µg/mL,
Sigma-Aldrich) and laminin (5 µg/mL, BD Biosciences) and
differentiated for 6 days. Half of the culture mediumwas replaced
every 2 days, and the cells were harvested at the indicated time
points for further analysis. One of the groups was treated with
the ERK1/2 inhibitor PD0325901 (Sigma), U0126 (Sigma), for 2
days after seeding (Hosseini Farahabadi et al., 2015). Materials
not described were purchased from Thermo-Fisher (PA, USA).

Magnesium Assay
To determine the magnesium content, the culture medium was
collected and measured using Calmagite chronometry (BioAssay
Systems, CA, USA) according to the manufacturer’s protocol
(Slutsky et al., 2010). The fluorescent optical density (OD) at 520
nm was used as an indicator of magnesium concentration. All
measurements were performed in triplicate in three independent
experiments.

Cell Morphology
To evaluate the viability of cells exposed to ERK inhibitors,
the cells on the sixth day after differentiation were examined
using a light microscope (Zeiss Axiostar Plus, Germany) for any
morphological alterations.

Lactate Dehydrogenase Cytotoxicity
Assessment
Lactate dehydrogenase (LDH) is one of the most important
oxidative enzymes widely distributed in cell cytoplasm and
membranes. Serum LDH activity is often used as an appropriate
indicator of cellular damage in cytotoxicity studies (Wu et al.,
2015). After differentiation for 6 days, the culture supernatants
(n = 3 wells) were harvested and the LDH assay was performed
using an LDH cytotoxicity detection kit (Roche Diagnostic
GmbH, Mannheim, Germany) according to the manufacturer’s
instructions. Then, 100 µL of cell supernatant was added to
100 µL of LDH substrate buffer. The absorbance was measured
at 490 nm after incubating in the dark at room temperature

for 20 min, with a reference wavelength of 600 nm, using a
computer-controlled microplate reader.

Immunocytochemistry
Adult NPCs were fixed with 4% paraformaldehyde in 0.2M
PBS (7.4) for 20min at room temperature to identify the adult
NPCs and cellular phenotypes after differentiation. The cells
were then permeabilized for 10 min with 0.3% Triton X-100
(Sigma-Aldrich) and blocked for 1 h with 10% normal goat serum
(Thermo Scientific) in 0.01M PBS. They were then incubated
overnight at 4◦C with the following primary antibodies: rat
anti-mouse nestin (1:100; Millipore, MA, USA), mouse anti-
mouse Tuj1 (1:1,000; Millipore), and rabbit anti-mouse GFAP
(1:500; Millipore). After three washes with PBS, the samples were
incubated in tetramethylrhodamine isothiocyanate-conjugated
goat anti-rabbit or rabbit anti-mouse secondary antibody
(1:100; ZSGB-BIO, Beijing, China) for 1 h to immunolabel
the anti-Tuj1 and anti-GFAP antibodies, respectively. The
nuclei were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI; 1 µg/mL; Sigma-Aldrich) for 5 min. The samples were
subsequently washed with PBS three times prior to observation.
Fluorescence images were obtained by the Nikon ECLIPSE Ti
fluorescence microscope (Nikon Corporation, Tokyo, Japan)
using NIS-Elements BR 3.0 software (Nikon Corporation, Tokyo,
Japan).

Cell Counting
Fluorescent images of immunopositive cells were captured as
described for immunocytochemistry (ICC). The immunopositive
ratios for each treatment condition after differentiation were
calculated using Image-ProPlus6.0 software (Media Cybernetics,
MD, USA) by counting the number of immunopositive cells
(immuno-labeled using the neuronal or astrocytic markers)
divided by the total number of cells (all cells stained with
DAPI); 10 random fields were counted from three independent
experiments (Chu et al., 2015; Kim et al., 2015).

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA was isolated from differentiated aNPCs for
each treatment condition using an RNA Purification Kit
according to the manufacturer’s instructions (Thermo
Scientific). Subsequently, cDNA was synthesized from 2 µg
of purified total RNA using a First Strand cDNA Synthesis
Kit (Thermo Scientific). Quantitative real-time polymerase
chain reaction (RT-PCR) was performed using an MyiQ2
real-time PCR Detection System (Bio-Rad) with the SYBR
Premix Ex Taq (TaKaRa, Tokyo, Japan). qRT-PCR was initiated
using an activation step at 95◦C for 15 min, followed by
40 amplification cycles of denaturation at 95◦C for 10 s,
annealing at 55◦C for 30 s, and extension at 72◦C for 30 s.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served
as the internal control. The sequences of the forward and
reverse primers used to detect the expression levels of the
genes of interest were as follows: GFAP: 5′-AGCT ACA
TCG AGA AGG TCC GC-3′, 5′-GTC TCT TGCATG TTA
CTG GTG-3′; Tuj1: 5′-TAGACCCCAGCGGCAACTAT-3′

Frontiers in Neuroscience | www.frontiersin.org 3 February 2017 | Volume 11 | Article 87

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Liao et al. Magnesium Elevation Promotes Neuronal Differentiation

and 5′-GTTCCAGGTTCCAAGTCCACC-3′; GAPDH: 5′-
ATCTTCTTGTGCAGTGCCAG-3′ and 5′-CGTTGA TGGCAA
CAA TCT CC-3′. All measurements were performed in
triplicate in three independent experiments. The relative
changes in gene expression levels were presented as values of
2Ct (GAPDH) − Ct(gene of interest). Relative expression levels were
analyzed using the 2−11CT method, as described previously (Liu
et al., 2009).

Western Blot Analysis
The primary aNPCs were harvested after differentiation
for Western blot analysis, and equal amounts of proteins
(Bicinchoninic Acid Protein Assay Kit) were separated by 4–20%
polyacrylamide gel electrophoresis as described previously
(Zhao et al., 2013). Briefly, the cell culture medium was
removed, and the cells were washed twice with 0.01M PBS
precooled to 4◦C. The cells were then lysed with appropriate
amounts of boiling denaturing lysate buffer (1% sodium
dodecyl sulfate, 1 mM sodium orthovanadate, 10 mM Tris-
HCl, pH 7.4) supplemented with a protease inhibitor cocktail
(Roche Diagnostics, IN, USA). Proteins were transferred onto
nitrocellulose membranes after quantification and incubated
overnight at 4◦C with various primary antibodies in blocking
solutions: GAPDH (1:5000), CREB (1:1000), phospho-CREB
(Ser133; 1:2000), phospho-p44/42 MAPK, and total p44/42
MAPK, Akt (1:1000), phospho-Akt (Ser473; 1:500), phospho-PI3
kinase p85 (Tyr458)/p55 (Tyr199; 1:1000), PI3 kinase p110α
(1:1000), GFAP (1:1000), and Tuj1 (1:1000). Primary antibodies
were all purchased from Cell Signaling Technology (MA, USA)
except those specific for GFAP and Tuj1, which were purchased
from Millipore (MA, USA). The membranes were washed
with Tris-buffered saline and Tween 20, incubated for 1 h
with horseradish peroxidase (HRP)-conjugated goat anti-rabbit
IgG(H+L) or HRP-conjugated goat anti-mouse IgG (H+L)
secondary antibodies (1: 20,000; ZSGB-BIO), and visualized
using an enhanced chemiluminescence (GE Healthcare, WI,
USA) detection kit. Immunoreactivity was visualized by
exposure to an x-ray film. The relative densities of bands were
analyzed using a gel imaging analysis system (Genetics Inc.,
USA). Each experiment was performed at least three times, and
representative blots are presented.

Statistical Analysis
Quantitative data are expressed as mean ± standard deviation
and analyzed using one-way analysis of variance followed by
Bonferroni post-hoc mean comparisons using SPSS 20.0 (SPSS
Inc., IL, USA). A P < 0.05 was considered to indicate statistical
significance.

RESULTS

Adult NPCs Were Maintained as
Neurospheres In vitro and Retained Their
Stem Cell Characteristics
NPCs isolated from the hippocampus of adult C57BL/6J mice
aggregated as neurospheres in NSC culture medium (Figure 1A).
The neurospheres continued to express nestin, indicating that
the cells were either NSCs or type 2 progenitor cells, after

three passages (Figure 1B). Upon dissociation and seeding as a
monolayer in growth media, the percentage of nestin-positive
cells in the culture was (93.46 ± 2.54)% (Figure 1C). Thus,
these aNPCs were an appropriate in vitro model for studying
the effects of magnesium on the stem/progenitor pool in the
hippocampus because these cells proliferated and retained their
stem cell characteristics after multiple passages.

Cell Morphology and LDH Activity Were
Not Changed at Proper Magnesium and
ERK Inhibitor Concentrations
The light microscopic examination was performed to estimate
the viability of the cells exposed to ERK inhibitor PD0325901.
No morphological change was found at a concentration of 0.05
µM after 6 days of differentiation (Figure 2A). The culture
supernatants were harvested after culturing for 6 days, and the
amount of LDH leakage into the medium was measured to
assess the cytotoxicity of various magnesium concentrations in
the presence of PD0325901. Figure 2B shows that LDH activity
did not significantly increase at the experimental magnesium
concentrations (0.6, 0.8, and 1.0 mM) and in the presence of
ERK inhibitor PD0325901 (0.05 µM; P > 0.05). However, LDH
release was significantly elevated with the increase in PD0325901
concentration to 0.1 and 0.2 µM (P < 0.001; Figure 2C).

Percentage of Tuj1-Positive Increased and
the Percentage of GFAP-Positive Cells
Decreased after Differentiation under
Conditions of Elevated Magnesium
ICC was performed after 6 days of differentiation in a medium
containing various concentrations of magnesium to determine
the effect of magnesium on fate determination of aNPCs.
Magnesium concentrations in the culture medium were stable
during differentiation according to the results of magnesium
assays (P > 0.05; Figure 3). NPCs differentiated mainly into
neurons and glia. Thus, the neuronal marker Tuj1 was used to
identify neurons, and GFAP was used as the specific indicator
of glia. Ten random fields were chosen from three independent
experiments per treatment, and the average number of positive
cells was calculated. Each calculation was performed by two

FIGURE 1 | Adult NPCs were maintained as neurospheres in vitro, and

their stem cell characteristics were retained. (A) NPCs isolated from the

hippocampus of adult C57BL/6J mice aggregated as neurospheres, scale bar

= 50 µm. (B) The neurospheres continue to express the stem cell marker,

nestin, after three passages, scale bar = 100 µm. (C) Upon dissociation and

seeding as a monolayer in the growth media, the ratio of nestin-positive cells in

the culture was (93.46 ± 2.54)%, scale bar = 400 µm. NPCs, Neural

progenitor cells.
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FIGURE 2 | Effect of different culture conditions on cell morphology,

LDH release, and ERK activation. (A) Cell morphology was not changed

after differentiation in the presence of ERK inhibitor PD0325901 (0.05 µM)

compared with the control group, scale bar = 50 µm. (a) Control; (b)

PD0325901 (0.05µM). (B) LDH releases were not changed at various

magnesium concentrations (0.6, 0.8, and 1.0 mM) and in the presence of 0.05

µM PD0325901 (P > 0.05; n = 3). N.S., P > 0.05. (C) LDH release increased

with the increase in PD0325901 concentration to 0.1 µM (P < 0.001; n = 3).

N.S., P > 0.05, ***P < 0.001 vs. [PD0325901]0µM. (D) p-ERK/ERK was

reduced on exposure to PD0325901 at a concentration of 0.05 µM compared

with the control group. No significant change was observed between 0.05 and

0.075 µM (P > 0.05; n = 3). (a) 0µM; (b) 0.025µM; (c) 0.05µM; (d) 0.075µM.

N.S., P > 0.05, *P < 0.05 vs. [PD0325901]0µM, ***P < 0.001 vs.

[PD0325901]0µM. ERK, Extracellular signal–regulated kinase; LDH, lactate

dehydrogenase.

experimenters independently without prior knowledge of the
label. Treatment with elevated magnesium (1.0 mM) was found
to significantly increase the percentage of Tuj1-positive cells (P <

0.001) compared with the control group (0.8 mM). Conversely,
the percentage of GFAP+ cells decreased (P < 0.05) compared
with the control group (Figure 4). Moreover, significant changes
were also observed at magnesium concentrations of 0.6 and 0.8
mM for both Tuj1- and GFAP-positive cells (P < 0.05). The
total cell number was found to be unchanged on counting the
DAPI-positive cells. Also, long neurites could be identified in
Tuj1-positive cells at all magnesium concentrations after 6 days
of differentiation (Figure 4).

Expression of Tuj1 Was Upregulated and
the Expression of GFAP Was
Downregulated under Conditions of
Elevated Magnesium
In accordance with the ICC results, the Western blot analysis
showed that the expression of Tuj1 increased (P < 0.05) when
GFAP expression decreased (P < 0.05) at various magnesium

FIGURE 3 | Magnesium concentrations in the culture medium were

stable during differentiation. The magnesium concentrations were not

significantly changed with time in each group (P > 0.05; n = 3).

concentrations (Figure 5A). The qRT-PCR analysis showed
that magnesium elevation increased the expression level of
Tuj1 mRNA (P < 0.05) and decreased the expression level
of GFAP mRNA (P < 0.01; Figure 5B). Significant changes
in the expression of these markers were also observed at
magnesium concentrations of 0.6 and 0.8 mM (P < 0.05).
These results indicated that magnesium elevation influenced fate
determination of NPCs by promoting neural differentiation and
inhibiting glial differentiation.

MgCl2 Had the Same Effect on Fate
Determination of NPCs as That of MgSO4
MgCl2 (0.8 and 1.0 mM) solution was added to aNPCs to
determine whether the anion or sulfate influenced response.
Figure 6 shows that exposure to both magnesium solutions
resulted in an increased proportion of Tuj1-positive cells (P <

0.01) and a decreased proportion of GFAP-positive cells (P <

0.001). No significant difference was found between MgCl2 and
MgSO4 treatment (P > 0.05; Figure 6). In accordance with the
ICC results, the qRT-PCR analysis showed that MgCl2 (1.0 mM)
increased the expression level of Tuj1 mRNA (P < 0.05) and
decreased the expression level of GFAPmRNA (P< 0.001). There
was no significant change betweenMgCl2 andMgSO4 group (P>

0.05). These results indicated that MgCl2 had the same effect on
fate determination of NPCs as that of MgSO4.

ERK/CREB Activation Was Necessary for
the Effect of Magnesium Elevation on Fate
Determination of NPCs
The effects of magnesium elevation on the ERK/CREB
and PI3K/Akt pathways were investigated to elucidate the
mechanisms underlying the effect of magnesium on fate
determination of NPCs. The p-ERK/ERK and p-CREB/CREB
ratios increased with the elevation of magnesium concentration
(P < 0.01). However, the elevation of magnesium concentration
had no significant effect on either PI3K or Akt (P > 0.05;
Figure 7).
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FIGURE 4 | Immunocytochemistry of adult NPCs differentiated at

various magnesium concentrations and in the presence of an ERK

inhibitor. (A) The percentage of Tuj1-positive cells increased (B) and the

percentage of GFAP-positive cells decreased (C) after differentiation with an

increase in magnesium concentration (P < 0.05). Supplemented with

PD0325901 (0.05 µM), the percentage of Tuj1-positive cells decreased and

the percentage of GFAP-positive cells increased compared with the control

group (0.8 mM) and the group with an elevated magnesium concentration (1.0

mM; P < 0.05), but no significant change was observed compared with the

group with low magnesium concentration (0.6 mM; P > 0.05; n = 10). Scale

bar = 100 µm. (a) 0.6 mM; (b) 0.8 mM; (c) 1.0 mM; (d) 1.0 mM + PD0325901.

*P < 0.05 vs. [Mg2+]0.8mM, ***P < 0.001 vs. [Mg2+]0.8mM; N.S., P > 0.05

vs. [Mg2+]0.6mM; ###P < 0.001 vs. [Mg2+]1.0mM. ERK, extracellular

signal-regulated kinase; GFAP, glial fibrillary acidic protein; NPC, neural

progenitor cell.

The modulatory effect of ERK inhibitor PD0325901 on
ERK1/2 activation in differentiated adult NPCs was investigated
to clarify further the relationship between the ERK/CREB
pathway and fate determination of cells. As shown in
Figure 2C, LDH releases were not significantly changed at
a PD0325901 concentration below 0.075µM. Furthermore,
ERK activity could be efficaciously inhibited compared with
the control when exposed to PD0325901 at a concentration
above 0.025 µM (Figure 2D). Also, no significant change
in the p-ERK/ERK ratio was observed at concentrations of
0.05 and 0.075 µM. As a result, 0.05 µM was chosen as
the working concentration for further experiments. When
supplemented with PD0325901 (0.05 µM), no significant change
in the percentages of Tuj1- and GFAP-positive cells was

FIGURE 5 | Expression of Tuj1 and GFAP at elevated magnesium and

ERK inhibitor PD0325901. The expression of Tuj1 was upregulated and the

expression of GFAP was downregulated after differentiation with an increase in

magnesium concentration. Supplemented with PD0325901 (0.05 µM), the

expression of Tuj1 was downregulated and the expression of GFAP was

upregulated compared with the control group (0.8 mM) and the group with

elevated magnesium concentration (1.0 mM; P < 0.05), but no significant

change was observed compared with the group with low magnesium

concentration (0.6 mM; P > 0.05; n = 3). (A) Western blot analysis of the

expression of Tuj1 and GFAP. (B) qRT-PCR analysis of the relative mRNA

expression of Tuj1 and GFAP. *P < 0.05 vs. [Mg2+]0.8mM, **P < 0.01 vs.

[Mg2+]0.8mM, ***P < 0.001 vs. [Mg2+]0.8mM; N.S., P > 0.05 vs.

[Mg2+]0.6mM; ###P < 0.001 vs. [Mg2+]1.0mM. GFAP, glial fibrillary acidic

protein; qRT-PCR, quantitative real-time polymerase chain reaction.

observed at an elevated magnesium concentration (1.0 mM)
compared with those at a low magnesium concentration (0.6
mM; P > 0.05; Figure 4). Consistent with these results, the
Western blot analysis (Figure 5A) and RT-PCR (Figure 5B)
showed that the expression of Tuj1 and GFAP was not
significantly changed compared with the expression at low
magnesium concentration (P > 0.05). Supplemented with
another MEK inhibitor U0126 (0.3 µM; Huang et al.,
2017), both p-ERK/ERK and p-CREB/CREB ratios decreased
compared with the group with elevated magnesium (1.0 mM)
without U0126 (P < 0.01). The percentage of Tuj1-positive
cells decreased and the percentage of GFAP-positive cells
increased compared with the group with elevated magnesium
concentration without U0126 (P < 0.01; Supplementary
Figure 2).

The dose-dependent effect of PD0325901 was investigated to
demonstrate further the effect of ERK activation on the influence
of magnesium elevation on fate determination. On exposure to
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FIGURE 6 | Effect of MgCl2 and MgSO4on the expression of Tuj1 and GFAP. The expression of Tuj1 was upregulated and the expression of GFAP was

downregulated after differentiation with both magnesium solutions (P < 0.05). No significant change was observed between MgCl2and MgSO4 treatment (P > 0.05).

(A–C) The percentage of Tuj1-positive cells increased and the percentage of GFAP-positive cells decreased (n = 10). (D,E) The qRT-PCR analysis of the relative

mRNA expression of Tuj1 and GFAP (n = 3). N.S., P > 0.05, *P < 0.05 vs. [MgSO4]0.8mM, **P < 0.01 vs. [MgSO4]0.8mM; #P < 0.05 vs. [MgCl2]0.8mM, ##P < 0.01

vs. [MgCl2]0.8mM, ###P < 0.001 vs. [MgCl2]0.8mM. GFAP, glial fibrillary acidic protein; qRT-PCR, quantitative real-time polymerase chain reaction.

FIGURE 7 | ERK/CREB and PI3K/Akt activation in response to elevated magnesium and ERK inhibitor PD0325901. (A) Both p-ERK/ERK and

p-CREB/CREB ratios increased with the elevation of magnesium (P < 0.01) (B,C). Magnesium elevation has no significant effect on p-PI3K/PI3K and p-Akt/Akt ratios

(P > 0.05) (D,E). (A-E) Supplemented with PD0325901 (0.05 µM), both p-ERK/ERK and p-CREB/CREB ratios decreased compared with the control group (0.8 mM)

and the group with elevated magnesium concentration (1.0 mM) without PD0325901 (P < 0.05), but no significant change was observed compared with the group

with low magnesium concentration (0.6mM; P > 0.05; n = 3). **P < 0.01 vs. [Mg2+]0.8mM; ***P < 0.001 vs. [Mg2+]0.8mM; N.S., P > 0.05 vs. [Mg2+]0.6mM; ###P

< 0.001 vs. [Mg2+]1.0mM. CREB, cAMP response element-binding protein; ERK, extracellular signal-regulated kinase.

0.025 and 0.05 µM PD0325901, the p-ERK/ERK ratio at 1.0
mMmagnesium significantly reduced compared with the control
group (0 µM; P < 0.01). Moreover, the change was significant
between 0.025 and 0.05 µM (P < 0.05). Consistent with this, the
percentage of Tuj1-positive cells increased, and the percentage
of GFAP-positive cells decreased at PD0325901 concentrations of

0.025 and 0.05 µM compared with the control group (0 µM; P <

0.05). A significant change was observed between 0.025 and 0.05
µM (P < 0.05; Figure 8B). Altogether, Figure 8 shows that ERK
activation and promotion of neuronal differentiation induced by
magnesium elevation (1.0 mM) could be inhibited by PD0325901
in a dose-dependent manner.
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DISCUSSION

Adult neurogenesis is the process of generation of neurons
(Tiwari et al., 2015). While much has been learned about the
molecular regulators of different aspects of adult neurogenesis,
their effects on fate determination of neuronal vs. glial cells is a
current focus of research. The anatomical microenvironment that
surrounds stem cells and functions to control their development
in vivo is defined as the neurogenic niche (Heng et al., 2015).
The effect of magnesium concentration in the neurogenic niche
on the process of fate determination of NPCs remains largely
unexplored.

The elevation of magnesium level in the brain by a newly
developed magnesium compound (MgT) has been demonstrated
to enhance both short-term synaptic facilitation and long-term
potentiation, thereby improving learning and memory functions
(Slutsky et al., 2010). The present study investigated the influence
of magnesium on the differentiation fate of NPCs and its
underlying mechanism.

The normal magnesium concentration in human
cerebrospinal fluid is reported to be 0.66 ± 0.14 mM (Sakamoto
et al., 2005). The differentiation of adult NPCs was induced
in a culture medium containing various concentrations of
magnesium (0.6, 0.8, and 1.0 mM) in this study. The elevation of
magnesium concentration from 0.8 to 1.2 mM for up to 2 weeks
resulted in an increased synaptic number and had no obvious
toxic effects (Slutsky et al., 2004). In accordance with other
researches, 1.0 mM magnesium was shown to have no effect on
cell viability in the present study (Figure 2B). Thus, 1.0 mM
magnesium represented an appropriate concentration for use in
experiments to investigate the effects of magnesium on neuronal
fate.

The present data indicated that the percentages of Tuj1-
positive cells increased and GFAP-positive cells decreased
after differentiation at elevated magnesium concentrations
(Figure 4). Consistent with this, the expression of Tuj1 was
upregulated while the expression of GFAP was downregulated
with the elevated magnesium concentration (Figure 5). There
was no significant change between MgCl2 and MgSO4 group
(Figure 6). This led to the conclusion that magnesium elevation
promoted neuronal stem cells to differentiate into neurons while
inhibiting glial differentiation. Vennemeyer et al. demonstrated
that some parameters of neurite outgrowth increased with
elevated magnesium when NSCs were induced to differentiate
into neurons on uncoated plastic, while NSC differentiation
into neurons was not altered by either substrate changes or
magnesium supplementation (Vennemeyer et al., 2014). This
study clearly indicated that magnesium could affect the NSC
differentiation, although this was not consistent with the results
of the present study. First, it can be speculated that this
discrepancy might be accounted for by the complexity of the
regulation of fate determination of NSCs by external stimuli,
and that the effects depended on timing, dose/duration, specific
paradigms, models, and methods of analysis. Second, it is
also proposed that the difference in characteristics of aNPCs
isolated from adult mice and other NSCs might account for the
aforementioned difference in results. Third, it might be that the

FIGURE 8 | ERK activation and proportion of Tuj1+ and GFAP+ cells at

various PD0325901 concentrations with magnesium elevation. (A) On

exposure to 0.025 and 0.05 µM PD0325901, the p-ERK/ERK ratio at 1.0 mM

magnesium concentration significantly reduced compared with the control

group (0 µM; P < 0.01). Moreover, the change was significant between 0.025

and 0.05 µM (P < 0.05; n = 3). (a) 0µM; (b) 0.025µM; (c) 0.05µM. (B–D)

Percentage of Tuj1-positive cells increased and the percentage of

GFAP-positive cells decreased at PD0325901 concentrations of 0.025 and

0.05 µM compared with the control group (0 µM; P < 0.05). A significant

change was also observed between 0.025 and 0.05 µM (P < 0.05; n = 10),

scale bar = 100 µ m. (a) 0 µM; (b) 0.025 µM; (c) 0.05 µM. *P < 0.05 vs.

[PD0325901]0µM, **P < 0.01 vs. [PD0325901]0µM, ***P < 0.001 vs.

[PD0325901]0µM, #P < 0.05 vs. [PD0325901]0µM, ##P < 0.01 vs.

[PD0325901]0.025µM.

cells were plated on laminin and did not show any response
to increasing magnesium concentrations while neurosphere cells
were plated on both polyornithine and laminin.

According to the present data, ERK/CREB activation was
enhanced by an increase in magnesium concentration and
reversed by ERK inhibitor to the level at low magnesium
concentration (Figure 7). Accordingly, the expression of Tuj1
and GFAP was also reversed to the expression at low magnesium
concentration (Figures 4, 5), indicating that magnesium
elevation regulated adult NPC differentiation via the ERK/CREB
pathway. Moreover, the activation of ERK by magnesium
elevation could be inhibited by PD0325901 in a dose-dependent
manner (Figure 8A). Also, the percentage of Tuj1-positive cells
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increased, and the percentage of GFAP-positive cells decreased
in the presence of PD0325901 in a dose-dependent manner
(Figure 8B). The role of ERK/CREB activation in the process of
fate determination of NPCs was also confirmed by another MEK
inhibitor, U0126 (0.3 µM; Supplementary Figure 2).

This was consistent with the study by Wang et al.
demonstrating the importance of the MAPK signaling pathway
in regulating adult neurogenesis. Furthermore, the conditional
activation of endogenous ERK was sufficient to enhance
adult neurogenesis, thereby improving the olfactory function
both under normal conditions and after injury (Wang et al.,
2015). The results of the present study were also consistent
with the findings of Lee et al., which indicated that BDNF
increased neurogenesis in the hippocampus by triggering ERK1/2
activation, which sequentially activated CREB (Lim et al., 2014).
Also, Peltier and colleagues used adult NPCs to demonstrate that
PI3K/Akt signaling integrated extracellular signaling information
to promote cellular proliferation and inhibit differentiation in
adult neural progenitors (Peltier et al., 2007). This was in contrast
to the results of the present study, which did not reveal any effects
of elevated magnesium on the PI3K/Akt pathway (Figure 7;
Miyashita et al., 2012).

Themechanism of howmagnesium influences the ERK/CREB
pathway remains to be explored. MEK1/2 phosphorylates and
activates ERK1/2 via the phosphorylation of the Thr and
Tyr residues within their activation loop. The extent and
duration of the phosphorylation of ERK1/2 are regulated by
two different mechanisms (Rubinfeld and Seger, 2005): first, the
regulation of the interaction between MEK1/2 and ERK1/2 and
second, the regulation of protein phosphatases including Thr
phosphatases, Tyr phosphatases, and MAP kinase phosphatases.
Magnesium might regulate ERK activity by affecting the
binding of MEK1 to ERK1/2. It was demonstrated that
magnesium deprivation decreased ERK activity and re-addition
of magnesium reversed the effect. Glutathione-S-transferase
pull-down and coimmunoprecipitation assays showed that CA-
MEK1 and DN-MEK1 bound to ERK1/2 in the presence of
magnesium. These results indicated that the MEK-ERK cascade
was regulated by increased levels of p-ERK1/2 induced by
magnesium (Ikari et al., 2010a,b). However, this effect was
demonstrated using a renal epithelial cell line. Further studies
are required to validate this effect in NPCs. Bizen et al.
proposed that magnesium deprivation attenuates the function
of protein phosphatase 2A (PP2A), which downregulates the
phosphorylation of MEK1/2(Bae and Ceryak, 2009; Bizen et al.,
2014). Magnesium deprivation may increase the level of p-MEK1
mediated by the inhibition of PP2A. However, the effect of
magnesium elevation on NPC needs investigation. An essential
catalytic step for MAP kinase involves the binding of an ATP
molecule to its active site. It was demonstrated that ATP was
bound in the cleft between the N-terminal and C-terminal
domains of ERK2, and this process was mediated by magnesium
ions (Zhang et al., 2012). However, no ERK phosphorylation is
involved in this process.

It has also been postulated that magnesium elevation
depolarizes the action potential threshold, decreasing the number
of action potentials and depolarizing the neuronal resting
potential in a concentration-dependent manner (Dribben et al.,

2010). aNPCs were treated with 15 mM KCl, which was reported
to be a depolarizing concentration (Jhaveri et al., 2015). However,
no significant change in the expression of Tuj1 or GFAP was
found (Supplementary Figure 1). Dribben et al. showed that
an increase in magnesium concentration from 1 to 10 mM
shifted Na+ channel activation by ∼ +15 mV and depolarized
the resting membrane potential by 5.2 mV (Dribben et al.,
2010). It was supposed that a rise in magnesium concentration
from 0.8 to 1 mM might not be enough to cause any effect
on the potential action or membrane potential. However, the
role of potential action in the process of fate determination
of NPCs cannot be excluded yet. Further studies are required
to clarify this issue. What is more, other divalent metal ions
(like Zn2+) should be explored to rule out the effect of non-
specific electrostatic or ionic strength on fate determination
of NPCs.

In conclusion, the present study indicated that magnesium
elevation promoted neuronal differentiation while suppressing
glial differentiation of aNPCs through ERK/CREB activation.
Further investigation is required to comfirm this effect in
vivo. The results of the present study might provide an
improved understanding of the effects of magnesium elevation
on fate determination of aNPCs, which are vital processes in
neurogenesis. Moreover, these mechanistic studies might provide
the basis for new strategies to enhance functional neurogenesis in
regenerative medicine.
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