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Aims: Apelin is a predicted substrate for ACE2, a novel therapeutic target. Our

aim was to demonstrate the endogenous presence of the putative ACE2 product

[Pyr1]apelin-13(1–12) in human cardiovascular tissues and to confirm it retains significant

biological activity for the apelin receptor in vitro and in vivo. The minimum active apelin

fragment was also investigated.

Methods and Results: [Pyr1]apelin-13 incubated with recombinant human ACE2

resulted in de novo generation of [Pyr1]apelin-13(1–12) identified by mass spectrometry.

Endogenous [Pyr1]apelin-13(1–12) was detected by immunostaining in human heart

and lung localized to the endothelium. Expression was undetectable in lung from

patients with pulmonary arterial hypertension. In human heart [Pyr1]apelin-13(1–12)
(pKi = 8.04 ± 0.06) and apelin-13(F13A) (pKi = 8.07 ± 0.24) competed with

[125I]apelin-13 binding with nanomolar affinity, 4-fold lower than for [Pyr1]apelin-13

(pKi = 8.83 ± 0.06) whereas apelin-17 exhibited highest affinity (pKi = 9.63 ± 0.17). The

rank order of potency of peptides to inhibit forskolin-stimulated cAMP was apelin-17

(pD2 = 10.31 ± 0.28) > [Pyr1]apelin-13 (pD2 = 9.67 ± 0.04) ≥ apelin-13(F13A)

(pD2 = 9.54 ± 0.05) > [Pyr1]apelin-13(1–12) (pD2 = 9.30 ± 0.06). The truncated

peptide apelin-13(R10M) retained nanomolar potency (pD2 = 8.70 ± 0.04) but shorter

fragments exhibited low micromolar potency. In a β-arrestin recruitment assay the

rank order of potency was apelin-17 (pD2 = 10.26 ± 0.09) >> [Pyr1]apelin-13

(pD2 = 8.43 ± 0.08) > apelin-13(R10M) (pD2 = 8.26 ± 0.17) > apelin-13(F13A)

(pD2 = 7.98 ± 0.04) ≥ [Pyr1]apelin-13(1–12) (pD2 = 7.84 ± 0.06) >> shorter

fragments (pD2 < 6). [Pyr1]apelin-13(1–12) and apelin-13(F13A) contracted human

saphenous vein with similar sub-nanomolar potencies and [Pyr1]apelin-13(1–12) was a

potent inotrope in paced mouse right ventricle and human atria. [Pyr1]apelin-13(1–12)
elicited a dose-dependent decrease in blood pressure in anesthetized rat

and dose-dependent increase in forearm blood flow in human volunteers.
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Conclusions: We provide evidence that ACE2 cleaves [Pyr1]apelin-13 to

[Pyr1]apelin-13(1–12) and this cleavage product is expressed in human cardiovascular

tissues. We have demonstrated biological activity of [Pyr1]apelin-13(1–12) at the human

and rodent apelin receptor in vitro and in vivo. Our data show that reported enhanced

ACE2 activity in cardiovascular disease should not significantly compromise the

beneficial effects of apelin based therapies for example in PAH.

Keywords: apelin, apelin receptor, [Pyr1]apelin-13(1–12), ACE2, human heart, pulmonary arterial hypertension,

forearm plethysmography, biased signaling

INTRODUCTION

Apelins are a family of peptides that activate the apelin receptor
(also known as APJ) and have an emerging importance in the
physiology and pathophysiology of the cardiovascular system
(Yang et al., 2015). Apelin peptides are present in human vascular
and cardiac endothelial cells (Kleinz and Davenport, 2004) and
plasma, with [Pyr1]apelin-13 identified as the most abundant
cardiovascular isoform (De Mota et al., 2004; Maguire et al.,
2009; Zhen et al., 2013). Apelins mediate three major actions in
vitro. Interaction with the apelin receptor on cardiac myocytes
causes increased cardiac contractility and inotropic action, with
apelin an order of magnitude more potent than endothelin-
1. In vessels with an intact endothelium, apelin acts to release
vasodilators that may oppose the actions of vasoconstrictors.
We have also shown that removal of endothelium unmasks a
constrictor response mediated by apelin receptors present on the
vascular smooth muscle (Maguire et al., 2009). Importantly, in
healthy volunteers and heart failure patients, the major effect
of apelin infused into the forearm in vivo was nitric oxide
dependent arterial dilatation (Japp et al., 2008, 2010; Barnes et al.,
2013; Brame et al., 2015). In heart failure patients, intracoronary
[Pyr1]apelin-13 caused coronary vasodilatation and increased
cardiac contractility (Japp et al., 2010; Barnes et al., 2013).
Systemic infusions of [Pyr1]apelin-13 in both volunteers and
patients increased cardiac index and lowered mean arterial blood
pressure and peripheral vascular resistance (Japp et al., 2010;

Barnes et al., 2013). Apelin is down-regulated in pulmonary

arterial hypertension (PAH), a devastating disease characterized

by vascular remodeling resulting in progressive obliteration

of the pulmonary circulation, leading to right ventricle (RV)

hypertrophy and right heart failure (Alastalo et al., 2011; Chandra
et al., 2011). Therefore the apelin receptor may represent a novel

target for future drug development.
Human angiotensin converting enzyme 2 (ACE2) has 40%

sequence similarity with the C-terminal dipeptidyl-peptidase,
ACE (Donoghue et al., 2000; Tipnis et al., 2000). ACE2 is
expressed for example in heart, kidney and lung (Donoghue et al.,
2000; Hamming et al., 2004) and is implicated in pathological
conditions such as heart failure where it is up-regulated (Zisman
et al., 2003; Goulter et al., 2004). A major role of ACE2 is to
degrade angiotensin II to angiotensin (1–7) which then acts as
a beneficial vasodilator and anti-proliferation agent, counter-
balancing the actions of the vasoconstrictor angiotensin II
(Santos et al., 2003, 2008). ACE2 is also a viral receptor for the

severe acute respiratory syndrome coronavirus (Li et al., 2008)
which down-regulates the enzyme from the cell surface resulting
in angiotensin II-induced lung injury (Kuba et al., 2005). This
has been the rational for the development of recombinant
human ACE2 (rhACE2) in clinical trials for acute lung injury
(Haschke et al., 2013). Interestingly, enhancing ACE2 activity
pharmacologically or by gene transfer was effective in preventing
or reversing PAH (Shenoy et al., 2011; Dai et al., 2015). Some
beneficial actions of ACE2 are thought to be mediated by the
conversion of angiotensin II to angiotensin(1–7). However, the
possibility of interaction of ACE2 with other peptides was not
clear until a screen of over 120 biologically active peptides
reported only two others to be hydrolyzed with high catalytic
efficiency by ACE2; dynorphin A 1-13, which has no reported
vasoactivity and apelin-13, or apelin-36, resulting in the removal
of the C-terminal phenylalanine, producing the metabolites
apelin-13(1–12) or apelin-36(1–35) (Vickers et al., 2002). The loss
of the terminal phenylalanine in apelin has been assumed to be a
mechanism of degradation and inactivation of the peptide. Our
aim was to understand the impact of this ACE2 cleavage reaction
on the apelin signaling pathway.

Specifically, our objectives were firstly to confirm that
[Pyr1]apelin-13(1–12) (Figure 1) can be produced by
ACE2 hydrolysis of [Pyr1]apelin-13 and find evidence that
[Pyr1]apelin-13(1–12) is an endogenous peptide and determine
its distribution in human cardiovascular tissues. Secondly,
to demonstrate that [Pyr1]apelin-13(1–12) binds to the apelin
receptor and can activate down-stream signaling pathways in
cell based assays. Thirdly, we have determined that [Pyr1]apelin-
13(1–12) retains significant biological activity, compared with

FIGURE 1 | Aligned amino acid sequences of apelin peptides.

Hydrophobic amino acids are shown in green, uncharged polar amino acids in

yellow, basic amino acids in blue and pyroglutamate in red.
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our previously reported data (Maguire et al., 2009; Brame
et al., 2015) for [Pyr1]apelin-13, in vitro using vascular and
cardiac human and rodent tissues and by systemic infusions
of [Pyr1]apelin-13(1–12) in vivo in the rat; finally, since
the predominant action of apelin infused into the human
forearm is vasodilatation, we have performed first-in-man
studies with [Pyr1]apelin-13(1–12) to explore the physiological
action of the peptide in healthy volunteers. We also wished
to explore the structure activity relationship (SAR) of the
apelin peptides and therefore additional experiments were
performed with the N-terminal extended putative endogenous
peptide apelin-17, alanine substituted apelin-13(F13A), and
the shorter fragments apelin-13(R10M), apelin-13(R9P)
and apelin-13(P9M) (Figure 1). Our data expand our
knowledge on the structure activity relationship of apelin
peptides and demonstrate the significant biological activity
of the ACE2 metabolite [Pyr1]apelin-13(1–12). These data
support the hypothesis that therapeutic strategies enhancing
ACE2 activity or up-regulation of ACE2 in cardiovascular
disease, both of which may result in enhanced breakdown
of [Pyr1]apelin-13, may not significantly compromise the
beneficial effects of endogenous apelin signaling via generation
of [Pyr1]apelin-13(1–12).

METHODS

Cardiovascular Tissue Collection
Human tissues samples were obtained with informed consent
(Papworth Hospital Research Tissue Bank REC08/H0304/56)
and local ethical approval (REC05/Q0104/142).

Synthesis of [Pyr1]Apelin-13(1–12) from

[Pyr1]Apelin-13
Synthesis of [Pyr1]apelin-13(1–12) from [Pyr1]apelin-13 was
confirmed by incubating [Pyr1]apelin-13 (5 nmol) with rhACE2
enzyme (5 pmol, GSK, Ware, UK) in buffer (pH 6.5) containing
2-(N-morpholino)ethanesulfonic acid (MES, 500 mmol/L), NaCl
(300 mmol/L) and ZnCl2 (10µmol/L) for 2 h at 37◦C followed
by quenching with 10µmol ethylenediaminetetraacetic acid
(EDTA) (see Vickers et al., 2002 for similar protocol). The
reaction mixture was analyzed by Maldi-TOF mass spectrometry
after samples were desalted using MilliporeµC18ZipTip (MA,
USA), washed with 5% acetic acid and eluted with CHCA matrix
(in 50% aqueous acetonitrile containing 0.1% trifluoroacetic
acid) to a stainless steel sample slide. Samples were air dried
and analyzed using a Waters Maldi MicroMX time-of-flight
mass spectrometer (MA, USA). Calibration was external using
polyethylene glycol. The 10 Hz-laser power was just above
threshold. The spectra were the sum of 1,000 shots collected
from a spiral track of the sample area. Data were processed
using Waters MassLynx software (MA, USA). Control reactions
included incubation of [Pyr1]apelin-13(1–12) (5 nmol) with
rhACE2, incubation of [Pyr1]apelin-13 (5 nmol) or [Pyr1]apelin-
13(1–12) (5 nmol) without rhACE2 and incubation of rhACE2
(5 pmol) without peptides.

Localization of Endogenous
[Pyr1]Apelin-13(1–12) by Immunostaining
Peroxidase-anti-peroxidase and dual-labeling
immunofluorescent staining were conducted as described (Kleinz
et al., 2005) using frozen sections of human cardiomyopathy
heart (n= 4), histologically normal (n= 6) and PAH (n= 4) lung.
Affinity purified rabbit-anti-[Pyr1]apelin-13(1–12) antiserum
(1:25–1:100 dilution) was custom synthesized (antibody raised
against the relevant apelin peptide fragment CKGPMP, that
lacks the C-terminal phenylalanine) and selectivity confirmed
by comparison with the corresponding fragment containing the
C-terminal phenylalanine (CKGPMPF) by ELISA (Figure 2A).
In contrast the commercially available apelin-12 antibody
(Phoenix Pharmaceuticals Inc. CA, USA) crossed reacted with
[Pyr1]apelin-13 but not [Pyr1]apelin-13(1–12) (Figure 2B). ACE2
(1:50, R&D Systems, MN, USA and 1:200, Abcam, Cambridge,
UK) antisera were also used. VonWillebrand factor (vWF) (1:50,
Dako, Glostrup, Denmark) was used as an endothelial marker.
The peroxidase stained sections were examined with a bright
field microscope (Olympus, Southend-on-Sea, UK) and imaged
using a CC12 camera and CellD Soft Imaging System (Olympus),
whereas fluorescent staining were imaged using a Leica Scanning
Confocal Microscope (TCS SP2, Leica Microsystems, Milton
Keynes, UK). Image processing with rolling ball method and
histogram redistribution were applied equally to the entire image
and channel overlay were carried out using ImageJ.

Competition Binding Assays
Assays were performed in human heart as previously described
(Brame et al., 2015). Briefly, homogenate of human left
ventricle (LV) was incubated for 90 min with 0.1 nmol/L
[Glp65, Nle75, Tyr77][125I]apelin-13 in assay buffer (mmol/L;
Tris 50, MgCl2 5, pH 7.4, 22◦C), in the presence of increasing
concentrations of [Pyr1]apelin-13, [Pyr1]apelin-13(1–12), apelin-
13(F13A), and apelin-17 (0.01 nmol/L–100µmol/L) or, for SAR,
a single concentration (1µmol/L) apelin-13(R10M), apelin-
13(R9P) and apelin-13(P9M). Non-specific binding was defined
using 2µmol/L [Pyr1]apelin-13. Equilibrium was broken by
centrifugation (20,000 g for 10 min, 4◦C) and pellets washed with
Tris-HCl buffer (50 mmol/L, pH 7.4, 4◦C), re-centrifuged and
pellets counted for detection of bound radioactivity. Competition
binding data were analyzed using GraphPad Prism 6 (GraphPad
Software, Inc. La Jolla, CA, USA) to obtain values of pKi (the
negative log10 of the dissociation constant derived from the
IC50 for the competing ligands, the radioligand concentration
and radioligand affinity by the Cheng and Prusoff equation).
Experiments were performed in triplicate.

Cell-Based Functional Assays
Inhibition of cAMP accumulation, β-arrestin recruitment and
receptor internalization by apelin isoforms, modified and
truncated apelin peptides were studied using cells expressing
the human apelin receptor (DiscoverX, CA, USA) as per
the manufacturer’s instructions. In all assays the resulting
chemiluminescent signal was measured as relative light units
(RLU) using a LumiLITETM Microplate Reader (DiscoveRx,
Fremont, CA). In the cAMP assay 15µmol/L forskolin was
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FIGURE 2 | Selectivity of antisera determined by ELISA. (A)

[Pyr1]apelin-13(1–12) antiserum demonstrated selectivity to the antigen

CKGPMP (�, corresponding to [Pyr1]Apelin-13(1–12)) relative to CKGPMPF

(¢, corresponding to [Pyr1]Apelin-13). (B) The apelin-12 antiserum

demonstrated selectivity to [Pyr1]Apelin-13 (¢) relative to

[Pyr1]Apelin-13(1–12) (�).

used to stimulate cAMP production and concentration-response
curves were constructed to [Pyr1]apelin-13, [Pyr1]apelin-
13(1–12), apelin-17, apelin-13(F13A) (all 1 pmol/L–30 nmol/L),
apelin-13(R10M), apelin-13 (R9P) and apelin-13(P9M) (all 1
nmol/L–10µmol/L). Agonist responses were expressed as a %
of the forskolin response. In the β-arrestin and internalization
assays concentration-response curves were constructed to
[Pyr1]apelin-13, [Pyr1]apelin-13(1–12), apelin-13(F13A), apelin-
13(R10M), (all 10 pmol/L–1µmol/L), apelin-17 (1 pmol/L-100
nmol/L), apelin-13 (R9P) and apelin-13(P9M) (both 1 nmol/L–
300µmol/L). Agonist responses were expressed as a % of the
maximum response to [Pyr1]apelin-13. Data were analyzed using
a 4-parameter logistic equation using GraphPad Prism 6 to
determine values of potency, pD2 (−log10 EC50, where EC50

is the concentration producing half maximal response) and

maximum response (EMAX). n-Values are given as number of
replicates/number of experiments.

Using the data from the cAMP and β-arrestin assays
with the predominant cardiac isoform [Pyr1]apelin-13 used
as the reference ligand, the relative activation of G protein-
dependent and -independent signaling pathways by [Pyr1]apelin-
13, [Pyr1]apelin-13(1–12) and apelin-17 were compared using bias
analysis as described by van der Westhuizen et al. (2014).

Additional β-arrestin assay experiments were performed
with [Pyr1]apelin-13 that had been incubated with ACE2 as
described above. In this assay control concentration-response
curves were constructed to [Pyr1]apelin-13 and [Pyr1]apelin-
13(1–12) and these were compared to concentration-response
curves constructed to both agonists following pre-incubation
with rhACE2.

In vitro Functional Studies
Vascular smooth muscle apelin receptor-mediated contraction
was exploited in a bioassay to compare the in vitro potency
of apelin peptides. Experiments were carried out as previously
described (Maguire, 2002) in endothelium-denuded saphenous
vein with concentration-response curves constructed to
[Pyr1]apelin-13(1–12) and apelin-13(F13A) (1 pmol/L–300
nmol/L). Agonist responses were expressed as a % of a
terminal response to KCl (100 mmol/L). The inotropic action
of [Pyr1]apelin-13(1–12) was determined in mouse paced RV
(n = 6) and for comparison in two samples of human paced
atrial appendage strips as described (Maguire et al., 2009). Data
were expressed as % of the terminal response to CaCl2. Data
from vascular and cardiac experiments were analyzed using
a 4-prameter logistic curve (GraphPad Prism 6) to determine
values of pD2 and EMAX.

Systemic Infusions in Rat and
Echocardiography
All experiments were performed according to local ethics
committee (University College, London) and Home Office
(UK) guidelines under the 1986 Scientific Procedures Act and
conformed to the Directive 2010/63/EU. The effects of systemic
infusion of [Pyr1]apelin-13(1–12) (incremental bolus doses 1–300
nmol/300µL) on blood pressure, heart rate, stroke volume and
cardiac output were assessed inmaleWistar rats (300± 25 g body
weight) as described (Brame et al., 2015), that were anesthetized
with isoflurane (5% induction, 2% maintenance, continuous
monitoring throughout). The left carotid artery and right jugular
vein were cannulated (0.96 mm polyvinyl chloride tubing). Mean
arterial pressure (MAP) was measured throughout the procedure
via a pressure transducer (Powerlab AD Instruments, Chalgrove,
UK) connected to the arterial line. Baseline hemodynamics
were recorded using Chart 7.0 acquisition software and a 16
channel Powerlab system (AD Instruments, Chalgrove, UK) after
a 30 min stabilization period. Thoracic echocardiography was
performed at a scanning depth of 0–2 cm using a 14 MHz probe
(Vivid 7 Dimension, GE Healthcare, Bedford, UK). Pulsed-wave
Doppler was used to determine aortic blood flow velocities in the
aortic arch. Stroke volume (SV) was determined as the product of
the velocity–time integral (VTI) and vessel cross-sectional area.
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Data from six consecutive cardiac cycles were used to determine
heart rate (HR) and amarker of left ventricular contractility, peak
velocity (PV). Values of SV and HRwere used to calculate cardiac
output (CO). Respiration rate was determined frommovement of
the diaphragm using time-motion (M)-model. At the end of the
study rats were euthanized by intravenous pentobarbitone and
exsanguination.

Forearm Venous Occlusion
Plethysmography in Human Volunteers
Studies were performed in healthy volunteers (n = 12) in the
University of Cambridge Vascular Research Unit, Addenbrooke’s
Hospital, Cambridge, UK. Volunteer characteristics are given
in Table 1. This study was carried out in accordance with
the recommendations of the National Research Ethics Service
Committee East of England-Cambridge Central with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the National Research Ethics
Service Committee East of England-Cambridge Central (REC
11/EE/0305). Changes in forearm blood flow (FBF) in response
to [Pyr1]apelin-13(1–12) (1, 10, 100 nmol/min) were measured as
previously described (Brame et al., 2015).

Exclusion criteria were ischemic heart disease, respiratory,
renal or neurological disease, diabetes mellitus, hypertension,
BMI > 30, BMI < 18; smoker; pregnant; use of vasoactive
medication or NSAIDS/aspirin within 48 h of study; current
involvement in other research studies. An Omron HEM705CP
oscillimetric sphygmomanometer was used to measure blood
pressure and heart rate at baseline and then every 6 min in the
contralateral arm. Periodically, a cuff around the upper arm was
inflated for ∼8 s to 40 mmHg then deflated for 4 s to interrupt
venous return and during a 3 min measurement hand circulation
was excluded by inflation of wrist cuffs to 200 mmHg. Changes
in forearm volume were measured by mercury-in-silastic strain
gauge with FBF subsequently expressed as ml/100 ml forearm
volume per min. For infusion of peptides via a 16-gauge
catheter (Portex, Kent, UK), the brachial artery (non-dominant
arm) was cannulated (27-gauge needle, Cooper’s Needle Works,
Birmingham, UK) under local anesthesia (lignocaine 1%,Hameln
Pharmaceuticals Ltd., Gloucester, UK). FBF was measured in
both arms and the response to [Pyr1]apelin-13(1–12) presented
as absolute change in forearm blood flow from the pre-infusion
baseline value.

[Pyr1]apelin-13(1–12), supplied in sealed glass vials and stored
at −40◦C until required, was allowed to warm to room
temperature and diluted with physiological saline to produce
stock solutions that were then filtered (0.2µm flat filter, Portex,
Hythe, UK) before further dilution in saline. [Pyr1]apelin-
13(1–12) was infused in three incremental doses during each visit.
Doses were previously optimized in a pilot study. Each dose
was infused for 6 min with a 20 min saline infusion washout
period before the next dose was administered. At the end of the
study sodium nitroprusside was infused at 3µg/min for 6 min
as a positive control followed by a saline infusion as a negative
control.

TABLE 1 | Volunteer characteristics.

N = 12

Age (y) 27 ± 2

Gender (m/f) 6/6

Height (cm) 173 ± 3

Weight (kg) 70.4 ± 2.8

BMI (kg/m2) 23.6 ± 1

HR (bpm) 68 ± 3

SBP (mmHg) 127 ± 6

DBP (mmHg) 72 ± 4

MAP (mmHg) 90 ± 4

Values are mean ± SEM.

Statistical Analyses
Measurements are mean ± standard error of the mean
(SEM). Data analysis and statistical testing were performed
using GraphPad Prism 6 to determine values of affinity (pKi)
calculated from competition IC50 values using the Cheng and
Prusoff equation, potency [pD2 (−log10 EC50, the concentration
producing 50% of maximum response)] and maximum response
(EMAX) as appropriate. Cell assay pD2 values were compared by
one-way ANOVA followed by Tukey’s multiple comparison test.
For rat in vivo experiments the effect of [Pyr1]apelin-13(1–12) on
BP, PV and VTI were expressed as % change from vehicle control
in the same animal with other variables (SV and CO) expressed
in absolute values. The effect of increasing doses of [Pyr1]apelin-
13(1–12) on each parameter was compared to baseline vehicle
control using repeated measures one way ANOVA followed by
Dunnett’s multiple comparison test. Similarly in the human FBF
study the response to successive increasing doses of [Pyr1]apelin-
13(1–12) was compared to pre-infusion baseline value using
repeated measures one-way ANOVA followed by Dunnett’s
multiple comparison test.

Materials
All chemical reagents were purchased from Sigma (Poole,
UK), unless otherwise stated. [Pyr1]apelin-13(1–12) was custom
synthesized to GLP standard using Fmoc chemistry on a
solid phase support matrix to 98% purity by Maldi-TOF Mass
spectroscopy and RP-HPLC analysis. Peptides were tested for
sterility and demonstrated to be pyrogen free and biological
activity confirmed using the β-arrestin assay. All apelin peptides
were synthesized by Severn Biotech (Kidderminster, UK).

RESULTS

[Pyr1]Apelin-13(1–12) Is Synthesized from

[Pyr1]Apelin-13 by ACE2
As shown in the mass spectra, [Pyr1]apelin-13 (Figure 3A)
and [Pyr1]apelin-13(1–12) (Figure 3B) alone produced signals at
1533.8 and 1386.7 m/z, respectively. Incubating [Pyr1]apelin-13
with rhACE2 resulted in a signal at the mass-to-charge ratio of
1386.7, corresponding to de novo generation of [Pyr1]apelin-
13(1–12), with a weak signal representing the remaining parent
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FIGURE 3 | Cleavage of [Pyr1]apelin-13 to [Pyr1]apelin-13(1–12) by rhACE2 in vitro. Maldi-TOF spectra for (A) [Pyr1]apelin-13, (B) [Pyr1]apelin-13(1–12), (C)

[Pyr1]apelin-13 incubated with rhACE2, (D) [Pyr1]apelin-13(1–12) incubated with rhACE2, (E) rhACE2 alone.

peptide (Figure 3C). In contrast, incubating [Pyr1]apelin-
13(1–12) with rhACE2 (Figure 3D) did not produce shorter apelin
fragments. Finally, rhACE2 enzyme alone (Figure 3E) did not
result in interfering signals in the relevant mass range.

[Pyr1]Apelin-13(1–12) Is an Endogenous
Apelin Peptide Localized to the
Endothelium
Endogenous [Pyr1]apelin-13(1–12) peptide was detectable in
human cardiovascular tissues and localized to the endothelium
(Figure 4). [Pyr1]apelin-13(1–12)-like immunoreactivity
(-LI) was detected in vascular (Figure 4A) and endocardial
(Figure 4B) endothelium identified by positive staining with
vWF (Figure 4C) in sections of human cardiomyopathy heart,
where ACE2 expression has been reported to be increased
(Zisman et al., 2003; Goulter et al., 2004). [Pyr1]apelin-13(1–12)-
LI (Figure 4D) and vWF-LI (Figure 4E) were also co-expressed
(Figure 4F) in human lung. Importantly, [Pyr1]apelin-13(1–12)-
LI (Figure 4G) and ACE2-LI (Figure 4H) co-localized
(Figure 4I) in pulmonary blood vessels. Importantly, as
apelin is reduced in PAH, the presence of [Pyr1]apelin-13(1–12)
was investigated in sections of human PAH lung. Compared
to normal lung (Figure 4J), [Pyr1]apelin-13(1–12)-LI was

not detectable in the vascular endothelium of PAH lung
(Figures 4K,L).

[Pyr1]Apelin-13(1–12) Binds to and Activates
the Human Apelin Receptor
[Pyr1]apelin-13(1–12) competed with [125I]apelin-13 binding
with nanomolar affinity, pKi = 8.04 ± 0.06 (n = 3), that
was 4-fold lower than the parent molecule [Pyr1]apelin-13
(pKi = 8.83 ± 0.06, n = 3) (Figure 5A). Apelin-13(F13A)
exhibited comparable affinity to [Pyr1]apelin-13(1–12) (pKi =

8.07 ± 0.24, n = 3) whereas the extended peptide apelin-17
competed with highest affinity (pKi = 9.63 ± 0.17, n = 3). Of
the shorter fragments apelin-13(R10M) (1µM) competed for
100% of specific binding whereas apelin-13(R9P) and apelin-
13(P9M) were less effective competing for 38% and 62%
respectively.

In the signaling assays, [Pyr1]apelin-13(1–12) inhibited
forskolin-stimulated cAMP production with sub-nanomolar
potency, pD2 = 9.30 ± 0.06 (n = 8/3) and was 2-fold less potent
than the reference agonist [Pyr1]apelin-13, pD2 = 9.67 ± 0.04
(n = 7/5) but comparable to apelin-13(F13A) (pD2 = 9.54 ±

0.05, n = 2/1). Apelin-17 (pD2 = 10.31 ± 0.28, n = 5/2) was
∼5 times more potent than [Pyr1]apelin-13. All ligands fully
inhibited cAMP production (Figure 5B). Apelin-13(R10M)
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FIGURE 4 | Detection of endogenous [Pyr1]apelin-13(1–12) peptide in human cardiovascular tissues. Bright field microphotographs of

[Pyr1]apelin-13(1–12)-LI in (A) vascular and (B) endocardial endothelium and (C) vWF-LI in cardiomyopathy human heart. Confocal microphotographs of (D)

[Pyr1]apelin-13(1–12)-LI (green), (E) vWF-LI (red) and (F) their overlay in normal human lung. (G) [Pyr1]apelin-13(1–12)-LI (green), (H) ACE2-LI (red) and (I) their overlay

in normal human lung. Bright field microphotographs of (J) [Pyr1]apelin-13(1–12)-LI in normal human lung and (K,L) the absence of [Pyr1]apelin-13(1–12)-LI in PAH

human lung tissue. LV, cardiomyopathy human heart; AP, [Pyr1]apelin-13(1–12); NL, normal human lung; PAHL, PAH human lung. Scale bar = 200µm.

retained nanomolar potency (pD2 = 8.70 ± 0.04, n = 3/1)
whereas inhibition was incomplete for apelin-13(R9P) and
apelin-13(P9M) at 10µM.

In the G protein-independent β-arrestin recruitment
assay [Pyr1]apelin-13 (pD2 = 8.43 ± 0.08, n = 25/10),

[Pyr1]apelin-13(1–12) (pD2 = 7.84 ± 0.06, n = 17/6) and apelin-
13(F13A) (pD2 = 7.98 ± 0.04, n = 6/2) were 15-40-fold less
potent than in the cAMP assay, with [Pyr1]apelin-13 ∼4-fold
more potent than [Pyr1]apelin-13(1–12) and apelin-13(F13A).
Interestingly, unlike the shorter peptides, apelin-17 exhibited
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FIGURE 5 | [Pyr1]apelin-13(1–12) binds to and activates the human

apelin receptor. (A) Competition binding curve for [Pyr1]apelin-13 (¢) and

[Pyr1]apelin-13(1–12) (�) in human left ventricle (n = 3). In cell based assays

[Pyr1]apelin-13 (¢), [Pyr1]apelin-13(1–12) (�), and apelin-17 (p) (B) inhibited

forskolin-stimulated cAMP production; (C) induced β-arrestin recruitment and

(D) triggered apelin receptor internalization.

comparable potency as an agonist in both the β-arrestin and
cAMP assays with a pD2 = 10.26 ± 0.09 (n = 11/4) (Figure 5C).
Apelin-13(R10M) (pD2 = 8.26 ± 0.17, n = 9/3) was ∼2-fold
less potent than [Pyr1]apelin-13 and curves were incomplete for
apelin-13(R9P) and aplin-13(P9M) at 300µM.

Similar to the β-arrestin assay, in the internalization assay
[Pyr1]apelin-13(1–12) (pD2 = 8.19 ± 0.06) was 5-fold less potent
than [Pyr1]apelin-13 (pD2 = 8.94 ± 0.17). Both peptides were
full agonists with comparable efficacy values (EMAX values were
97± 2% and 99± 3% respectively) (Figure 5D).

Comparing the cAMP and β-arrestin data for the three
endogenous peptides with [Pyr1]apelin-13 as the reference
agonist, analysis (Table 2) demonstrated a bias factor of 0.24
for [Pyr1]apelin-13(1–12) and 68 for apelin-17 indicating that
compared to [Pyr1]apelin-13, [Pyr1]apelin-13(1–12) was 4-fold G
protein biased and apelin-17 was markedly β-arrestin biased.

In the β-arrestin recruitment assay [Pyr1]apelin-13 was
significantly more potent than [Pyr1]apelin-13(1–12) (p <

0.0001), [Pyr1]apelin-13 incubated with rhACE2 (p < 0.001) or
[Pyr1]apelin-13(1–12) incubated with rhACE2 (p < 0.0001). Both
of the rhACE2 combinations exhibited comparable potency to
[Pyr1]apelin-13(1–12) (p> 0.05) (Table 3). Therefore the reaction
product of [Pyr1]apelin-13 and rhACE2 more closely resembled
[Pyr1]apelin-13(1–12) than [Pyr1]apelin-13.

Cardiovascular Actions of Apelin Peptides
In vitro
[Pyr1]apelin-13(1–12) (pD2 = 9.63 ± 0.35, EMAX = 24 ± 6%,
n = 9) and apelin-13(F13A) (pD2 = 9.72 ± 0.36, EMAX = 23

TABLE 2 | Pathway bias analysis for [Pyr1]apelin-13(1–12) and apelin-17

compared to [Pyr1]apelin-13.

Pathway [Pyr1]apelin-13 [Pyr1]apelin-13(1–12) Apelin-17

cAMP LogR 9.70 ± 0.05 9.43 ± 0.10 10.28 ± 0.23

1LogR 0.00 ± 0.08 −0.20 ± 0.11 0.48 ± 0.24

RE 1 0.63 3

β-Arrestin LogR 8.02 ± 0.13 7.89 ± 0.17 10.34 ± 0.19

1LogR 0.00 ± 0.06 −0.82 ± 0.10 2.32 ± 0.07

RE 1 0.15 208

cAMP vs.

β-Arrestin

11LogR 0.00 ± 0.10 −0.62 ± 0.15 1.83 ± 0.25

Bias Factor 1 0.24 68

TABLE 3 | Relative potencies of apelin peptides without and with

pre-incubation with recombinant human ACE2 in a β-arrestin assay.

Potency (pD2) EMAX (% [Pyr1]apelin-13)

[Pyr1]apelin-13 8.82 ± 0.03† 103 ± 4

[Pyr1]apelin-13+rhACE2 7.81 ± 0.10*** 80 ± 7

[Pyr1]apelin-13(1–12) 7.27 ± 0.30**** 98 ± 5

[Pyr1]apelin-13(1–12)+rhACE2 7.42 ± 0.04**** 97 ± 3

Significantly different from [Pyr1 ]apelin-13; ***P < 0.001, ****P < 0.0001. Significantly

different from [Pyr1 ]apelin-13(1–12);
†
P < 0.001. One-way ANOVA with Tukey’s multiple

comparisons test.

± 4%, n = 9) contracted saphenous vein with comparable sub-
nanomolar potencies and maximum responses (Figure 6A) to
the data that we had previously obtained with [Pyr1]apelin-13 in
this assay (Brame et al., 2015).

In mouse paced RV [Pyr1]apelin-13(1–12) produced a
concentration-dependent increase in force of contraction with
pD2 = 11.68± 0.33, EMAX 49± 16% CaCl2 (n= 6) (Figure 6B),
compared to isoprenaline with pD2 = 7.88 ± 0.42, EMAX =

78 ± 17% CaCl2 (n = 4) (Figure 6C). Limited human atrial
appendage strips were available to test for the inotropic action of
[Pyr1]apelin-13(1–12). In tissue from two patients [Pyr1]apelin-
13(1–12) acted as a positive inotrope with a sub-nanomolar
potency value (pD2 = 9.61, EMAX = 38% CaCl2, n= 2).

Cardiovascular Actions of Apelin Peptides
In vivo
In anesthetized rat, [Pyr1]apelin-13(1–12) (n = 5) elicited a dose-
dependent decrease in BP (Figure 7A). The decrease in BP was
significantly different (P < 0.0001) from baseline at doses of 10–
300 nmol. Other cardiac parameters, SV, CO, PV and VTI were
not altered by [Pyr1]apelin-13(1–12) (Figures 7B–E).

In human volunteers (n = 12), [Pyr1]apelin-13(1–12)
(Figure 8) produced comparable dose-dependent increases
in forearm blood flow to that which we have shown for
[Pyr1]apelin-13 (Brame et al., 2015). No significant effects of
either peptide on heart rate or blood pressure were observed at
any dose (data not shown).
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FIGURE 6 | Responses to (A) [Pyr1]apelin-13(1–12) (�, n = 9) and

apelin-13(F13A) (p, n = 9) in endothelium-denuded human saphenous vein in

vitro. (B) Inotropic responses to (B) [Pyr1]apelin-13(1–12) (n = 6) and (C)

isoprenaline (n = 4) in mouse paced right ventricle.

DISCUSSION

We have characterized the synthesis, receptor pharmacology
and functional activity of the ACE2 metabolite of [Pyr1]apelin-
13, [Pyr1]apelin-13(1–12), in vitro and in vivo. For the first
time we have detected endogenous [Pyr1]apelin-13(1–12) in
human cardiovascular tissues and demonstrated biological
activity of this metabolite in vitro and in a first-in-man
study.

FIGURE 7 | In vivo actions of [Pyr1]apelin-13(1–12) in rat. (A)

Administration of intravenous [Pyr1]apelin-13(1–12) (�, n = 5) resulted in a

significant dose-dependent decrease in blood pressure in rat in vivo. Other

parameters (B) stroke volume (SV), (C) cardiac output (CO), (D) peak velocity

(PV) and velocity-time interval (VTI) were unaffected at any dose of

[Pyr1]apelin-13(1–12). Significantly different from baseline; *P < 0.05,

**P < 0.01, ***P < 0.001. One-way ANOVA repeated measures compared to

baseline with Dunnett’s multiple comparison test.

Synthesis of [Pyr1]Apelin-13(1–12) from

[Pyr1]Apelin-13 by ACE2
Apelin-13 and apelin-36 peptides were previously reported to
be substrates of purified human ACE2 enzyme (Vickers et al.,
2002). In this study, we confirmed (Wang et al., 2016) that
ACE2 also catalyzed the conversion of [Pyr1]apelin-13, the
predominant cardiovascular form of apelin, to [Pyr1]apelin-
13(1–12) in vitro. This result was not unexpected since the
PMPF sequence of [Pyr1]apelin-13 (Figure 1) conforms to
the consensus sequence for ACE2-mediated hydrolysis; Pro-
X(1–3residues)-Pro-Hydrophobic (Vickers et al., 2002). In support,
in the β-arrestin assay the product of de novo ACE2 metabolism
demonstrated comparable potency to synthetic [Pyr1]apelin-
13(1−12)(Table 3). Our results are consistent with a study
reporting that a small proportion of [Pyr1]apelin-13 was cleaved
into [Pyr1]apelin-13(1–12) in rat in vivo (Murza et al., 2014).

We have previously demonstrated endothelial expression
of apelin (Kleinz and Davenport, 2004; Kleinz et al., 2005)
using an antibody specific for apelin isoforms containing
the C-terminal phenylalanine (Figure 2B). This is consistently
reported by others using alternative strategies to detect apelin
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FIGURE 8 | In vivo actions of [Pyr1]apelin-13(1–12) in human volunteers.

Infusion of [Pyr1]apelin-13(1–12) in healthy human volunteers (�, n = 12)

resulted in a dose-dependent increase in forearm blood flow. Significantly

different from baseline; *P < 0.05, **P < 0.01. One-way ANOVA repeated

measures compared to baseline with Dunnett’s multiple comparison test.

expression (Sheikh et al., 2008). ACE2 is also expressed in the
endothelium (Donoghue et al., 2000; Hamming et al., 2004),
raising the possibility of endothelial processing of [Pyr1]apelin-
13 to produce [Pyr1]apelin-13(1–12). For this study, we generated
an antibody that cross-reacts with apelin isoforms without the C-
terminal phenylalanine that has allowed selective identification
of [Pyr1]apelin-13(1–12) in human heart and lung. [Pyr1]apelin-
13(1–12)-LI was specifically localized to the endothelium, where
the apelin receptor was also expressed, suggesting the possibility
of autocrine signaling by this metabolite in these tissues.
Importantly, in human PAH lung, where endothelial apelin
expression is known to be reduced (Alastalo et al., 2011;
Kim et al., 2013), no staining for [Pyr1]apelin-13(1–12) was
detected.

Biological Activity of [Pyr1]Apelin-13(1–12)
ACE2-mediated hydrolysis has been assumed to inactivate
apelin peptides. Wang and colleagues have recently reported
that the ACE2 product of [Pyr1]apelin-13 exhibits reduced
or absent cardiovascular actions compared to the parent
molecule (Wang et al., 2016). However, emerging evidence
from structure activity studies suggested that the C-terminal
phenylalanine was not a critical residue for apelin biological
activity (Fan et al., 2003; Medhurst et al., 2003) and our
hypothesis was that compared to [Pyr1]apelin-13, [Pyr1]apelin-
13(1–12) may retain significant activity. Indeed, our results
showed that [Pyr1]apelin-13(1–12) has nanomolar affinity for
the native human apelin receptor exhibiting only a 3-fold
reduction in binding affinity compared the parent peptide.
This is consistent with previous studies where the C-terminal
phenylalanine of [Pyr1]apelin-13 or apelin-13 was replaced
with alanine (F13A) (Fan et al., 2003; Medhurst et al., 2003)
or removed from apelin-17 (K16P)(El Messari et al., 2004;
Iturrioz et al., 2010) with only minimal loss of receptor
affinity. Similarly, substitution of the C-terminal phenylalanine

of [Pyr1]apelin-13 with D-phenylalanine resulted in only
a 20-fold decrease in receptor binding affinity, which was
modest compared to substitution of other residues known
to be important for binding (Murza et al., 2012). Overall,
these studies show that loss of the C-terminal phenylalanine
from apelin isoforms does not significantly alter receptor
binding.

The apelin receptor is Gαi-coupled (Habata et al., 1999)
therefore we next showed that [Pyr1]apelin-13(1–12) inhibited
forskolin-stimulated cAMP with potency only 2-fold less than
[Pyr1]apelin-13. This is in agreement with the previous reports
of alanine and D-phenylalanine substituted [Pyr1]apelin-13
(Medhurst et al., 2003; Murza et al., 2012) and K16P (El
Messari et al., 2004; Iturrioz et al., 2010; Ceraudo et al., 2014).
Therefore, our study confirms that Gαi-induced signaling is
preserved in response to [Pyr1]apelin-13(1–12) receptor binding.
In addition to G protein-dependent signaling, activation of
the apelin receptor causes β-arrestin recruitment and receptor
internalization (Evans et al., 2001). In these assays, [Pyr1]apelin-
13(1–12) again behaved as a full agonist at the human apelin
receptor with only a 5-fold reduction in potency compared to
[Pyr1]apelin-13. This ability to induce receptor internalization
without the C-terminal phenylalanine was reported for apelin-
13(F13A) (Fan et al., 2003), however, K16P was shown by a
second group to exhibit markedly reduced potency and efficacy in
β-arrestin recruitment and internalization of rat apelin receptor
(El Messari et al., 2004; Iturrioz et al., 2010; Ceraudo et al., 2014).
Importantly, compared to [Pyr1]apelin-13, [Pyr1]apelin-13(1–12)
is not a biased agonist in G protein-dependent and -independent
signaling.

Apelins are modulators of vascular tone and cardiac
contractility in vitro and in vivo (Japp et al., 2008, 2010;
Maguire et al., 2009; Barnes et al., 2013; Brame et al., 2015).
Therefore, as expected we found that [Pyr1]apelin-13(1–12)
contracted human saphenous vein with equal potency and
efficacy compared with our previous data for [Pyr1]apelin-13
(Maguire et al., 2009; Brame et al., 2015) and was a potent
inotrope in mouse paced right ventricle and human paced atria.
We next investigated the in vivo actions of [Pyr1]apelin-13(1–12).
In anesthetized rat compared to our previously published data for
[Pyr1]apelin-13 (Brame et al., 2015), the ACE2 metabolite caused
a smaller but significant drop in blood pressure which contrasts
with Wang and colleagues (Wang et al., 2016) who reported
that [Pyr1]apelin-13, but not [Pyr1]apelin-13(1–12), showed a
sustained effect on blood pressure for up to 60 min after
administration to mice in vivo, although both peptides appear
to show an initial comparable reduction in blood pressure over
the first 10–15 min in these experiments. Interestingly, these
authors also showed that [Pyr1]apelin-13 is rapidly cleaved by
ACE2 in vitro and in vivo suggesting that the ACE2 cleavage
product may contribute to their observed sustained response
to [Pyr1]apelin-13 and as might be expected the half-life of
the cleavage product is likely to be short and therefore the
response to infused [Pyr1]apelin-13(1–12) is observed for only
the initial 10∼15 min of the experiment. In agreement with
this hypothesis, in our rat studies (Brame et al., 2015) the half-
life of [Pyr1]apelin-13 was less than 3 min and in humans
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FIGURE 9 | Schematic diagram showing the interactions between apelin/apelin receptor with ACE2 of the renin angiotensin system. New contributions

of this study are shown in red arrows. Ang, angiotensin; APJ, apelin receptor; AT1R, angiotensin receptor type I; MAS, Mas receptor.

less than 8 min (Japp et al., 2008). Importantly, in a first-
in-man study, infusion of [Pyr1]apelin-13(1–12) resulted in an
increase in forearm blood flow that was the same magnitude as
we had previously obtained with [Pyr1]apelin-13 (Brame et al.,
2015), confirming that this metabolite is a vasodilator in humans
in vivo.

Structure Activity Relationships of Apelin
Peptides
The 55-amino acid proapelin, derived from the 77-residue
prepropeptide, contains a number of paired basic amino acids
residues that are possible cleavage sites for endopeptidases to
produce 13 to 36-residue isoforms (Tatemoto et al., 1998; Habata
et al., 1999). While the identities of these peptidases remain
unknown, a study reported the direct cleavage of proapelin to
apelin-13 by proprotein convertase subtilisin/kexin 3 (PCSK3, or
furin), bypassing the generation of longer isoforms (Shin et al.,
2013). Post-translational modification results in the predominant
apelin isoform detected in human cardiovascular tissue and
plasma, [Pyr1]apelin-13 (De Mota et al., 2004; Kleinz and
Davenport, 2004; Maguire et al., 2009; Zhen et al., 2013). The
putative ACE2 metabolite of this cardiac peptide, [Pyr1]apelin-
13(1–12), is the focus of our study but we have also explored
the pharmacology of several other important apelin isoforms
to better understand the apelin structure activity relationships,
namely the minimum active fragment apelin-13(R10M), apelin-
13(F13A) and apelin-17.

As described above, amino acid substitution studies have
proposed a consensus on those amino acids within apelin-13 that
are important for receptor binding and activation (Narayanan
et al., 2015). The C-terminal phenylalanine (F13), adjacent
proline and the N-terminal pyroglutamic acid were not identified
as important. We have investigated whether the truncated
peptides apelin-13(R10M), apelin-13(R9P) and apelin-13(P9M)
retained significant binding and functional activity with the
hypothesis that apelin-13(R10M) was likely to represent the
minimum active fragment as it was the shortest fragment
containing all the identified important amino acids. Results of
the competition binding experiments and β-arrestin recruitment
assays supported this hypothesis as do data from previous
publications showing diminished Gαi-mediated signaling and
calcium mobilization when the methionine (position 11 in
apelin-13) was removed (Medhurst et al., 2003; Zhang et al.,
2014), while others have demonstrated activity of apelin-12
(apelin-13 without the N-terminal pyroglutamic acid) in vivo
(Pisarenko et al., 2011). Residues arginine 2 and methionine
11 are indispensable as they are required to form the crucial
RPRL motif or provide steric volume (Langelaan et al., 2009;
Macaluso and Glen, 2010; Gerbier et al., 2015). In contrast,
although the C-terminal phenylalanine has been shown to
make specific contacts within the binding pocket of the
apelin receptor (Iturrioz et al., 2010), our experimental data
suggested that its removal did not abolish binding or functional
activity.
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Early alanine scanning studies indicated that replacing the
C-terminal phenylalanine with alanine did not abolish Gαi-
mediated signaling, calcium mobilization (Medhurst et al.,
2003) and receptor internalization (Fan et al., 2003). However,
conflicting data have been reported for F13A, suggesting that
it was an antagonist of the apelin receptor in terms of Gαi-
mediated signaling ([Pyr1]apelin-13(F13A); De Mota et al.,
2000) and hypotensive effect (apelin-13(F13A); Lee et al.,
2005). In this study, we found that apelin-13(F13A) resembled
[Pyr1]apelin-13(1–12) in receptor binding, cell based assays
and the vasoconstrictor bioassay. Based on our results apelin-
13(F13A) behaves as an apelin agonist with no evidence of
receptor antagonism.

Apelin-17, despite its unclear biosynthetic pathway, has
been reported to have equal or higher binding affinity and
potency in inhibiting cAMP accumulation and inducing receptor
internalization compared with [Pyr1]apelin-13 (Medhurst et al.,
2003; El Messari et al., 2004). We investigated apelin-17 in
our assays and consistently found higher binding affinity and
higher potency than [Pyr1]apelin-13 in the cAMP and β-arrestin
assays. Intriguingly, apelin-17 appeared to be more biased for β-
arrestin compared to G protein signaling relative to the reference
agonist [Pyr1]apelin-13. This suggests that N-terminal extension
of apelin-13 may result in peptides that stabilize different
conformations of the apelin receptor and may be a mechanism
by which apelin receptor activation is fine-tuned at the cellular
level.

Implication on the Interactions between
the Apelin and Renin-Angiotensin Systems
Past studies have suggested a possible link between apelin, its
receptor, ACE2 and the renin angiotensin system. For example,
apelin knockout mice showed aging or stress-associated cardiac
contractility defects, similar to the cardiac phenotype of ACE2
knockout mice (Kuba et al., 2007) and apelin receptor knockout
mice are more sensitive to the pressor effect of angiotensin II
(Ishida et al., 2004). Interestingly, ACE2 expression is reduced in
apelin knockout mice and apelin up-regulates ACE2 expression,
indicating that apelin may reciprocally impact ACE2 (Sato
et al., 2013). At the receptor level, the apelin receptor has been
shown to physically interact with the angiotensin receptor type
I (AT1R) (Chun et al., 2008), forcing it into a low affinity
state and reducing the binding and signaling of angiotensin
II (Siddiquee et al., 2013). Reduced apelin expression due to
heart failure or angiotensin II administration can be restored by
AT1R blockade (Iwanaga et al., 2006). The opposing effects of
apelin/ACE2 and angiotensin II have been shown in health and

diseases such as heart failure, atherosclerosis and obesity/diabetes

(Ashley et al., 2006; Gurzu et al., 2006; Iwanaga et al., 2006;
Zhong et al., 2007; Chun et al., 2008; Barnes et al., 2013;
Siddiquee et al., 2013) (Figure 9). Our study contributes further
evidence that ACE2, that is up-regulated in disease, acting
on [Pyr1]apelin-13 may result in the generation of the active
metabolite, [Pyr1]apelin-13(1–12), and therefore a compensatory
maintenance of apelin receptor signaling. However, a limitation
of our study is that we have not measured levels of apelin
peptides in plasma of patients receiving rhACE2 therapy,
but we would hypothesize that levels of [Pyr1]apelin-13(1–12)
would be elevated and [Pyr1]apelin-13 decreased compared to
controls.

In conclusion, this study confirmed that ACE2 cleaves
[Pyr1]apelin-13 into [Pyr1]apelin-13(1–12) and has demonstrated
biological activity of [Pyr1]apelin-13(1–12) at the human apelin
receptor in vitro and in the cardiovascular system of rat and
human in vivo. The results also clarify R10M as the shortest active
apelin fragment, apelin-13(F13A) as an agonist and apelin-17 as
a more potent agonist than [Pyr1]apelin-13. Therefore, our study
shows that reported enhanced ACE2 activity in cardiovascular
disease should not significantly compromise the beneficial effects
of apelin based therapies for example in PAH.
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