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This paper developed a cognitive task-load (CTL) classification algorithm and allocation

strategy to sustain the optimal operator CTL levels over time in safety-critical

human-machine integrated systems. An adaptive human-machine system is designed

based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram

(EEG) and electrocardiogram (ECG) related features to a few CTL classes. The

least-squares support vector machine (LSSVM) is used as dynamic pattern classifier.

A series of electrophysiological and performance data acquisition experiments were

performed on seven volunteer participants under a simulated process control task

environment. The participant-specific dynamic LSSVM model is constructed to classify

the instantaneous CTL into five classes at each time instant. The initial feature set,

comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features

(including 11 EEG-related features) by using the locality preserving projection (LPP)

technique. An overall correct classification rate of about 80% is achieved for the 5-class

CTL classification problem. Then the predicted CTL is used to adaptively allocate the

number of process control tasks between operator and computer-based controller.

Simulation results showed that the overall performance of the human-machine system

can be improved by using the adaptive automation strategy proposed.

Keywords: adaptive functional allocation, cognitive task-load, electrophysiology, dynamic pattern recognition,

man-machine system

INTRODUCTION

In safety-critical human-machine integrated systems, human operator, and machine are integrated
collaboratively to accomplish complex tasks, in which the operator has to adapt to unforeseen
disturbances or even system failures under dynamic process task environment. In such fields as
public transportation (Yang et al., 2009; Khushaba et al., 2011) aeronautics and astronautics (Sauvet
et al., 2014) and nuclear engineering (Bobko et al., 1998), catastrophic accidents may occur due
to operator performance breakdown. However, at the current stage of technological development
the complete removal of humanistic supervision and/or intervention from the human-machine
systems arising in those fields is still impractical. Thus, researchers started to explore how to detect
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the risky operator functional state (OFS), which may fluctuate
over time. In the framework of OFS analysis (Hockey et al., 2003),
human cognitive task-load (CTL) can be defined as the portion of
information processing capacity of the operator required to meet
the performance requirements of the human-machine system
(Eggemeier et al., 1991). The CTL can be regarded as the mental
workload (MWL) of operators while performing cognitive tasks.
In other words, the terms of CTL in this context and MWL
assessed under cognitive tasks are somehow interchangeable, but
the former is more suited to describe operator mental stress
under complex human-machine cooperative task requirement in
the framework of OFS analysis (Byrne and Parasuraman, 1996;
Parasuraman and Riley, 1997; Borghini et al., 2014; Lupu et al.,
2014).

Traditional CTL assessment methods mainly include
subjective ratings (Hart and Staveland, 1988) and task
performance measures (Grant et al., 2013). However, these
two techniques may either interrupt the current task execution
or impose secondary tasks on the operator. An alternative
method is to use physiological measures, which is featured
by continuous-time, non-invasive, and objective assessment
(Craven et al., 2015). Since the physiological signals provide real-
time information about the cognitive mechanism underlying
performance variations, the variations in physiological features
can be measured before manifest performance decline. In
this regard, electroencephalogram (EEG) has been widely
used by researchers in the emerging cross-disciplinary area of
neuroergonomics to quantify CTL variation since it can reflect
the change of neural activity in central nervous system (Zhu et al.,
2014). Although EEG still has limitations in 3-D localization of
neural activities (Peng et al., 2013), its advantages include high
temporal resolution and readiness of signal measurement. The
continuous and long-duration EEGmeasurement under human-
machine task environment is essential for CTL assessment. It was
shown that CTL can be classified into a few discrete levels based
on the temporal variation in power spectral density (PSD) of EEG
rhythms in certain frequency bands such as delta (0.5–4Hz),
theta (4–7Hz), alpha (8–13Hz), beta (13–25Hz), and gamma
beta (26–33Hz; Gundel and Wilson, 1992; Sun and Yu, 2014).
Moreover, CTL can also be assessed by using electrocardiogram
(ECG) signal which reflects the activity of autonomous nervous
system. In particular, ECG indices such as heart rate (HR) and
heart rate variability (HRV; Mulder et al., 2004) are usually used,
along with various EEG features, to characterize the CTL. The
hybridization and fusion of EEG and ECG features can overcome
the inadequacy of the features extracted from a single source
signal (Yang and Zhang, 2013). The combination of the two
measures helps us have a better understanding of the effect of
CTL levels on neurophysiological activities.

The ultimate goal of CTL assessment is to design and
implement an adaptive automation (AA) system, which is
capable of regulating the momentary CTL to optimal level
and thus maintaining optimal performance of human-machine
system. AA allows for reallocation of type and amount of
cognitive tasks between human operator and the machine. Since
inappropriate intervention may disrupt the normal operation
of the system (Scerbo, 1996), accurate CTL assessment is the

prerequisite for the design and implementation of AA systems
(Kaber et al., 2006). The early work by Pope et al. showed that
a “biocybernetic” system can improve the engagement of the
operator in Multiple-Attribute Task (MAT; Pope et al., 1995).
The engagement index (EI), defined as the ratio between beta
power and the sum of alpha and theta power related to certain
EEG measurement channels, was used to indicate how much the
operator concentrates on the tasks. It was shown that negative
feedback leads to a stable short-cycle oscillatory EI index, which
indicated that the operator was stably involved in the tasks.
Parasuraman et al. also performed experiments under MAT task
on 27 volunteering participants, which were divided into three
groups, “model-based adaptive control,” “performance-based
adaptive control,” and “non-adaptive control” (Parasuraman
et al., 1996). Statistical analysis results showed that the
performance of participants in two adaptive control groups was
significantly higher than that in non-adaptive control group. The
work of Freeman et al. (1999) and Prinzel et al. (2000) indicated
that AA has a positive influence on CTL based on NASA Task
Load Index (TLX). Haarmann et al. implemented AA strategy
in a simulated flight task and found that if the AA system
reallocated tasks frequently the CTLmay increase, in other words
the frequency of task allocation may affect the stability of the AA
system (Haarmann et al., 2009).

This work first examines how the EEG and ECG features
are correlated to task performance. An automation-enhanced
Cabin Air Management System (aCAMS; Lorenz et al., 2002;
Manzey et al., 2008) was used to simulate a complex and safety-
critical human-machine process control system. Computational
intelligence techniques, such as support vector machine (Yang
and Zhang, 2013), fuzzy inference system (Zhang et al., 2013),
and artificial neural network (Russell and Wilson, 2001), has
been used for automatic CTL classification. Specifically, SVM
approach is based on the principle of structural riskminimization
(Vapnik, 2000) and thus suitable to deal with high-dimensional
physiological features. In literature, static CTL classifiers, such
as feedforward ANN (Russell and Wilson, 2001) and adaptive-
network-based fuzzy inference system (Zhang et al., 2013),
were designed to identify temporal variations in CTL. In static
classifier, the current CTL level solely depends on the current
physiological features. Nevertheless, since the variations in brain
and cardiac functional state are continuous, the current CTL
level may be also correlated with the historical (past) data at the
previous time steps. Taking into account the above issue, we used
least square support vector machines (LSSVMs; Suykens and
Vandewalle, 1999) to design a dynamic pattern classifier based
on Non-linear AutoRegressive model with eXogenous (NARX)
inputs. In Zhang et al. (2013), the CTL level was predicted
by using fuzzy inference system model with only two EEG-
related input features, which are the ratio between the EEG theta
and alpha spectral power. However, the use of only two input
variables for the fuzzy model cannot estimate the multiclass CTL
accurately enough. A higher false alarm rate resulted from the
use of a lower-dimensional model with excessively parsimonious
structure. Moreover, in Zhang et al. (2015), an adaptive SVM
classifier was built based on boundary support vector machines
in order to improve the CTL classification accuracy in the
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case of non-stationary EEG and ECG features. However, the
proposed A-BSVMmethod has to re-compute multiclass support
vectors at each time step and is thus computationally inefficient.
A dynamical learning set, constructed by preserving those
support vectors that are correctly classified, was used to retrain
the BSVM classifier. In this work, the dynamical learning
set based paradigm is replaced by a NARX dynamic model
with output feedback (recurrent) mechanism. In comparison
with our previous work, the current work used two different
NARX LSSVM models and more EEG features to enhance the
CTL classification performance. In particular, the designed CTL
classifier is validated on a simulated adaptive HM system.

The rest of this paper is organized as follows. In Section
Experiments and Data Preprocessing, the data acquisition
experiments and data preprocessing approach are described.
Section Dynamic CTL Classifier Based on Physiological Features
describes the methods of target class determination, feature
reduction and smoothing, and dynamical CTL classification. The
design and simulation of an adaptive human-machine system are
presented in Section Design and Simulation of Adaptive Human-
Machine System. Section Discussions analyzes and discusses the
CTL classification and adaptive automation simulation results
obtained. Finally, Section Summary and Conclusion concludes
the paper.

EXPERIMENTS AND DATA
PREPROCESSING

Experimental Setup
Experimental Tasks
The experimental purpose is to collect physiological and
performance data of human operator under simulated process
control tasks provided by aCAMS, which was used to simulate
monitoring and control of the air quality in a space capsule. The
measured data is then used for participant-specific CTL model
construction and AA system simulation.

The aCAMS software was developed for European Space
Agency (ESA) to examine operator performance and mental
stress in the closed cabin of a spacecraft (Sauer et al., 2000).
A simplified version of the aCAMS, developed by the FGAIO
Group, Technische Universität Berlin, Germany (Manzey et al.,
2008), was employed in our experiments. The aCAMS software
has been used to design and validate AA system in Ting et al.
(2010). The task of the operator is to monitor and/or control four
air quality subsystems, namely O2 concentration, air pressure,
CO2 concentration and temperature. All the four subsystems
need to be maintained within their respective target ranges
through human-machine collaboration (as shown in Figure 1A).
For each subsystem, there are two control modes: automatic or
manual control. Usually a subsystem is automatically controlled,
but manual control has to be assumed once there is a failure
of automation system. The manual control tasks may be
complicated and challenging for the following reasons: (1)
The target range of each subsystem is rather narrow and the
control performance requirement is high; and (2) When several
automation systems fail simultaneously, complex and strong

coupling between individual subsystems makes it difficult for the
operator to regulate such a multi-variable system manually.

Experimental Participants
Seven healthy participants (22–24 years), A, B, C, D, E, F,
and G, participated in the experiments. They were all male
and healthy graduate students at East China University of
Science and Technology, Shanghai. All volunteer participants
were informed of the purpose and procedure of the experiment
before training. Prior to formal experiments, each candidate in
the participant pool was trained for over 10 h to gain sufficient
experience and skills of process control operations under aCAMS
task environment. Those candidates with stably (consistently)
satisfactory task performance during the training were finally
selected to participant in the formal experimental sessions. On
the other hand, the training results indicated that the duration of
the training process was sufficient for the trainees to acquire the
necessary expertise on the manual control tasks.

Experimental Procedure
In each experimental session consisting of six task-load
conditions, failures in particular automated subsystems were pre-
programmed. The participant was required to perform manual
control until the automation systems were fixed and in normal
operation. The physiological data from the participant was
recorded continuously. The time response of each subsystem
was displayed on a 15′′ LCD monitor placed 70 cm ahead, as
shown in Figure 1B. If any subsystem drifts away from the target
range, the participant was required to reduce the deviation by
clicking mouse on virtual buttons (switches) of O2 and N2 tank
valves, CO2 scrubber, cooler, or heater. The time percentage
of the output time response within the target range is used as
a quantitative index of the operator performance. The interval
between target and error ranges defines a transition zone, which
indicates a vulnerable OFS.

The experimental method for inducing high CTL is similar to
that in Ting et al. (2010). Each participant participated in two
experimental sessions, which were scheduled during the same
period of time (1:00–4:00 p.m.) on two consecutive days, so as
to reduce the unwanted effect of circadian rhythm. After training
phase, the 1st experimental session was conducted the following
day. The experimental procedure in both sessions is the same.
The reason for carrying out two sessions is to take into account
the non-stationarity and stochasticity of the physiological and
performance data recorded. Each session consisted of six task-
load conditions, each of which lasted 15 min. Let discrete
variable n(k) be the number of manually controlled subsystems
at current instant k, n(k) = 1, 3, 4, 4, 3, and 1 correspond to
each of the six consecutive task-load conditions, respectively. In
other words, the task demand for the participant increased first
and then decreased, both in a graded way. In the loading (or
unloading) phase, the number of manually controlled subsystems
was gradually increased (or reduced) stepwise. There was a short
break between two consecutive conditions for participants to
finish subjective ratings of perceived level of mental fatigue,
effort and anxiety in the finished condition. The aim of the
cyclical loading scheme (loading phase followed by an unloading
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FIGURE 1 | Human-machine cooperative task environment: (A) The four output time responses of the aCAMS; (B) A snapshot of a volunteer participant

engaged with the aCAMS while his psychophysiological responses are being measured under lab setting; (C) EEG measurement electrodes selected. The output

response of each of four subsystems is shown top down. For each subsystem, the interval between two green lines defines the target range. The interval between the

upper red and green lines and the interval between the lower red and green lines are transition zones. The range beyond the two red lines is the error range. The value

corresponding to a straight line is shown on the left and the value in black is the set-point of each subsystem, which is the average of the values corresponding to two

red straight lines.

phase), originally from mechanical engineering, is to examine
the so-called hysteresis effect, i.e., whether and how (in what
kind of pattern) the OFS recovers in the unloading phase, and
the effect of the accumulated mental fatigue. Different from the
experimental paradigm in (Ting et al., 2010), the condition when
n(k) = 2 was skipped to remove the effect of the accumulated
physical fatigue in an otherwise too long session. Other values of
n(k) was the same as those in (Ting et al., 2010), i.e., n(k) = 1, 3,
or 4. It is assumed that the level of difficulty in controlling any
subsystem manually is identical.

Immediately after each task-load condition, the participant
was required to fill in a self-assessment questionnaire handout,
mainly including three rating scales of mental fatigue, anxiety,
and effort (each in the range of 0–100 points). The subjective
ratings for subject A are shown in Figure 2. It can be seen that
all three parameters keep zero in the two baseline (unloaded)
conditions #1 and #8, indicating that the mental state of the
subject A is good before the start of the experiment. This is found
to be the same for all other participants. By the statistical test of
one-way ANOVA, the level of mental fatigue, anxiety and effort
varies significantly (p < 0.001) across task-load conditions with
different level of task difficulty. Under the designed experimental
paradigm of task-load manipulation (variation), the change of
the workload can be reflected to some degree by that of mental
effort perceived by the participant himself. However, the self-
assessment measure cannot be collected in real time by the way of
questionnaire and may be too subjective for certain participants,
hence we use the task performance data as another major ground
truth about the objective and more real-time measure of the
variations in CTL during the experiment.

Data Acquisition and Pre-processing
Physiological Data
In each experimental session, 11 channels of EEG, 1 channel of
ECG, and 1 channel of electrooculogram (EOG) signals were
recorded at a sampling rate of 500Hz using Nihon Kohden R©

EEG device. A 3rd-order Butterworth IIR filter with a low-
pass cutoff frequency of 40 Hz was used to remove the higher-
frequency electromyogram (EMG) artifacts from the raw data. It
should be noted that the filtered EEG and ECG data were used to
extract CTL features and the EOG signal was used as a template
to remove the ocular movement artifact. There were two 5-min
baseline (unloaded) conditions at the beginning and end of the
experimental session, respectively.

EEG electrodes included F3, F4, Fz, C3, C4, Cz, P3, P4, Pz,
O1, and O2 in 10–20 international electrode placement system
(as shown in Figure 1C). Before physiological data acquisition
experiment, all Ag/AgCl electrodes had been cleaned and pasted
using the Nihon Kodhen conductive gel. It is known that
the frontal theta and parietal alpha powers are correlated to
CTL variations. The correlation of the central theta and the
occipital beta and gamma powers was reported in Borghini et al.
(2014). Hence, all the frontal, parietal, occipital and central EEG
electrodes were used in EEG signal measurement. However, it
should be noted that the central channels are also known to
be associated with sensory motor rhythms. Taking into this
possibility, certain feature dimensionality reduction technique
must be applied. The average potential of two earlobes (A1 and
A2) was used as the reference. The EEG data preprocessing
procedure is composed of the following steps:

1) The ocular artifact was removed from the EEG data by using
the adaptive filter (see Figure 2B; He et al., 2007; Yin and
Zhang, 2014):

v(k) =

M
∑

m= 1

h(m)r(k+ 1−m), (1)

whereM = 3 and h(m) are the order and coefficients of filter
and r(k) and v(k) are the referential EOG signal and filter
output at time instant k, respectively. The optimal coefficients
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FIGURE 2 | The subjective ratings of subject A: (A) session 1; (B) session 2.

are found to minimize the cost function:

ε(k) =

k
∑

i=M

λk− ie2(i) (2)

where λ = 0.99 is the forgetting factor. Specifically, let s̃(i) be
the target EEG signal, then the artifact-free EEG signal e(i) can
be computed by:

e(i) = s̃(i)− v(i) = s̃(i)−

M
∑

m= 1

h(m)r(i+ 1−m) (3)

2) The FFT technique was used to calculate the power spectrum
of each EEG epoch (10 s) with a frequency resolution of
0.1 Hz. The 10-s data epoch is selected because reliable
spectral features can be derived only if the epoch is sufficiently
long. Estimating CTL levels every 10 s also meets the
temporal resolution (sampling rate) requirement of an online
AA system. It should be noted that two consecutive EEG
epochs do not overlap in order to eliminate redundancy of
information content.

3) For each EEG channel, a total of 400 EEG power features (1–
40 Hz with 0.1 Hz resolution) were obtained. Then, the power

of five standard EEG rhythms, i.e., delta (0.5–4 Hz), theta (5–
8 Hz), alpha (9–12 Hz), beta (13–32 Hz), and gamma (33–40
Hz), was computed by averaging the spectral powers in the
corresponding frequency bands. As a result, the number of
EEG features for each participant is 5 (No. of EEG rhythm
features)× 11 (No. of channels)= 55.

ECG signal was recorded by using two electrodes placed on the
top of the sternum and the bottom of the left rib cage. HR was
computed based on beat intervals of two consecutive R-peaks.

Therefore, the total number of physiological features (feature
dimensionality) was 55 + 1 = 56. Hence, 14 (No. of sessions)
540 (No. of data per session) × 56 (feature dimensionality) data
matrices were formed. Each entry (i.e., feature) in a data matrix
was normalized by subtracting the mean value and then divided
by the s.d. of the corresponding column.

Performance Data
In each session, the time responses of the manually controlled
subsystems were recorded every second. Then, the 6 × 15 =

90min performance data were evenly divided into 540 segments
with an interval of 10 s.

Three performance indices were calculated, including the time
percentage for system in error range (SIE), time percentage for
system in transition zone (SIT; Ting et al., 2010), and absolute
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error of the system output (ASE). For each segment, The SIE at
time instant k is defined by:

se(k) =
1

n(k)

n(k)
∑

i= 1

pi

T
, (4)

where pi is the time duration when the subsystem i is out of
the error range and T is the segment length (10 s). Very low
se(k) indicates the operator performance breakdown. The SIT is
defined by:

st(k) =
1

n(k)

n(k)
∑

i= 1

qi

T
, (5)

where qi denotes the time duration when the subsystem i is out
of the transition zone. Low SIT indicates a vulnerable state of the
operator. The ASE is defined by:

sa(k) =
1

n(k) · T

n(k)
∑

i= 1

T
∑

j= 1

∣

∣dij − ci
∣

∣

L
(6)

where dij is the output of subsystem i at time instant j, ci and
L are the set-point and length of the error range of subsystem
i (see Figure 1A), respectively, and L is used to normalize the
performance of different subsystems. In general, higher AES
indicates lower operator performance.

Then an overall performance measure is defined by the
averaging:

y(k) =
1

2
min

[

se(k), st(k)
]

+
1

2

[

1− s̃a(k)
]

. (7)

Where s̃a(k) denotes the normalized sa(k), min(se(k), st(k)) ∈

[0, 1] indicates that the operator state would be considered risky
once either se(k) or st(k) starts to decrease, and (1 − s̃a(k)) is an
extra term of performance. Lower value of y(k) ∈ [0, 1] indicates
a higher CTL level.

It should be noted that the secondary task performance can
also be used to label CTL classes since it is indicative of the
remaining cognitive resources and the vigilance (or alertness)
level of the operator when engaged with the aCAMS. However,
the addition of a secondary task may interfere in the execution of
primary tasks in the experiments. Alternatively, here a decrease
in ASE with normal SIE and SIT is capable of indicating the
performance degradation due to low level of vigilance since
maintaining ASE requires the operator to pay intensive attention
constantly. For this reason, we combine three performance
indices in a single performance measure y(k), which can be used
to distinguish low vigilance and high task demand conditions.
By observing y(k), we can see that the learning effect of the 2nd
session is negligible.

TABLE 1 | The selected discretization parameter for y(k).

Participant z1 z2 z3

A 2.3 2.7 3.0

B 2.3 2.6 3.0

C 2.5 2.7 3.0

D 2.3 2.7 3.0

E 2.3 2.5 3.0

F 2.3 2.7 3.0

G 2.8 3.1 3.2

DYNAMIC CTL CLASSIFIER USING
PHYSIOLOGICAL FEATURES

Determination of Target CTL Classes
In order to evaluate the CTL classifier performance, the target
CTL class C(k) at time instant k is determined from the
performance index y(k) by:

C(k) =























1, 1− σo ≤ y(k) ≤ 1,
2, 1− z1σo ≤ y(k) < 1− σo,
3, 1− z2σo ≤ y(k) < 1− z1σo,
4, 1− z3σo ≤ y(k) < 1− z2σo,
5, otherwise

(8)

where σo is the s.d. of y(k) and z1, z2 and z3 are coefficients
empirically selected to discretize y(k) and given in Table 1.
For each participant, the coefficient parameters are selected
based on the concatenated performance data of two sessions
and they are the same for both sessions of a participant.
Different discretization parameters may be used due to different
distribution of performance data across participants. To avoid
possibly large discrepancy of the target CTL classes across
participants, those discretization parameters are determined by
performance data clustering for each participant separately (Yin
and Zhang, 2014). Finally, CTL classes 1–5 are labeled as “very
low,” “low,” “normal,” “high,” and “very high.”

Physiological Feature Smoothing and
Dimensionality Reduction
The pre-filtered EEG and ECG data may still contain artifacts
induced by the head motion of the participant during the
experiment, thus the data was further processed by using adaptive
exponential smoothing (AES) technique. In our previous work
(Zhang et al., 2015), the ASE was shown to be capable of
removing motion artifact with no need of the motion template
while simultaneously preserving crucial information about CTL
variations. Moreover, Figure 3 concretely compares the original
and pre-processed physiological data.

Here the full EEG spectrum (i.e., dimensionality of feature
vector is 56) is available for performing the CTL classification.
However, it is known in literature that only a few EEG rhythms in
certain frequency bands are primarily correlated to CTL variation
and they are participant-dependent. Therefore, it is necessary
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FIGURE 3 | Raw data (left), filtered data (middle), and filtered and artifact-free data (right): F3, F4, Fz of EEG, and vertical EOG from top to bottom.

FIGURE 4 | EEG feature from the F3 channel and performance data for participant A.

to adopt certain feature reduction technique to extract the low-
dimensional representation of EEG spectral features. The locality
preserving projection (LPP) technique was utilized to process
the EEG features in each channel in order to eliminate the
components irrelevant to the CTL variations. In Zhang et al.
(2015), it was demonstrated that the combination of AES and
LPP methods can significantly improve the CTL classification
accuracy. For each participant, AES and LPP techniques were
used in the following way (as shown in Figure 3):

1) For each EEG and ECG channel, the EEG powers in five
frequency bands were processed separately by:

εi(k) = (1− f1)εi(k− 1)+ gxi(k) (9)

g =







g1, if
∣

∣xi(k)− εi(k− 1)
∣

∣ < aσi
g2, ifaσi ≤

∣

∣xi(k)− εi(k− 1)
∣

∣ < bσi
g3, otherwise

where xi(k) and εi(k) are the original and smoothed feature of
the i-th channel (i = 1, 2, ···, 12), σi represents the s.d. of xi(k),
and the parameters a = 1, b = 2.2, g1 = 0.2, g2 = 0.1, g3 =

0.3 (Zhang et al., 2015).
2) For ∀i ∈ {1, 2, · · ·, 11} (EEG channel), the reduced scalar

feature is computed by x′i = µ
Txi, where xi ∈ R5 and µ

is linear mapping vector derived by standard LPP (Gui et al.,
2010).

The extracted EEG F3 feature and performance data y(k) are
shown in Figure 4 for participant A. It is noticed that the
EEG F3 feature is positively correlated with y(k) and that
the trend of feature and performance data distribution is
similar between two sessions. Consequently, the CTL classifier
is trained using the 1st session data and tested using the
2nd session data. Table 2 summarizes the absolute value of
linear correlation coefficient (|r|) between 12 features and
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FIGURE 5 | Two structures of dynamic classifier: (A) LSSVM1; (B) LSSVM2.

TABLE 2 | Linear correlation between physiological features and operator performance.

A B C D E F G Mean

F3 0.8072 0.5872 0.8198 0.8088 0.7346 0.7361 0.6558 0.7356

F4 0.7667 0.6139 0.7631 0.8571 0.6781 0.6967 0.4208 0.6852

Fz 0.7745 0.6198 0.8244 0.8454 0.7475 0.7934 0.5616 0.7381

C3 0.8006 0.6500 0.8036 0.8115 0.6103 0.7825 0.7367 0.7422

C4 0.7251 0.6919 0.5832 0.8563 0.6912 0.7505 0.5595 0.6940

Cz 0.7775 0.6868 0.8119 0.8182 0.7641 0.8477 0.6300 0.7623

P3 0.8186 0.7312 0.8185 0.7786 0.6630 0.8049 0.7114 0.7609

P4 0.7980 0.7614 0.8190 0.8147 0.6943 0.7163 0.5914 0.7422

Pz 0.8474 0.7803 0.8199 0.8048 0.7199 0.8200 0.7143 0.7867

O1 0.8212 0.8649 0.8720 0.6953 0.6719 0.7799 0.5316 0.7481

O2 0.8542 0.7328 0.8382 0.7584 0.6678 0.8255 0.3468 0.7177

HR 0.4257 0.6977 0.4898 0.3774 0.0516 0.1388 0.0320 0.3161

y(k). From the last column (participant-average) of the table,
we can find that the EEG features from F3, Fz, C3, Cz,
P3, P4, Pz, O1, and O2 are correlated to the operator
performance more than other EEG channels, while HR is less
correlated.

CTL Classification via Dynamic LSSVM
Classifier
Classifier Structural Identification
If both physiological and performance features are used for CTL
classification, the following two NARX models can be employed
(as shown in Figures 5A,B):

ỹ(k) = f1(x
′(k), x′(k− 1), · · · , x′(k− d1 + 1), (10)

ỹ(k− 1), ỹ(k− 2), · · · , ỹ(k− d2)),

ỹ(k) = f2(x
′(k), x′(k− 1), · · · , x′(k− d1 + 1),

ỹ(k− 1), ỹ(k− 2), · · · , ỹ(k− d2),

y(k− 1), y(k− 2), · · · , y(k− d2)), (11)

where x′(k), ỹ(k) and y(k) denote physiological features,
predicted and actual (measured) performance at time instant
k, respectively, and the integer constants d1 and d2 are two
structural parameters of the model.

The difference between two models is that the observed past
performance data y(k−1), y(k−2), ..., y(k−d2) appear in Equation
(11). The structures of both models are shown in Figure 5.

Based on LSSVM technique for regression, Equations (10, 11)
can be formulated as:

ỹk =

l
∑

i= d1

m1αiKRBF

([

x′i, · · · , x
′
i− d1 + 1

]

,
[

x′k, · · · , x
′
k− d1 + 1

])

Frontiers in Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 129

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Zhang et al. Adaptive Human-Machine System

FIGURE 6 | Objective function used by classifier structural

identification (participant A).

+

l
∑

j= d2 + 1

m2βjKLin

([

ỹ′j− 1, · · · , ỹ
′
j− d2

]

,
[

ỹk− 1, · · · , yk− d2

]

)

+m1b1 +m2b2 (12)

ỹk =

l
∑

i= d1

w1αiKRBF

([

x′i, · · · , x
′
i− d1 + 1

]

,
[

x′k, · · · , x
′
k− d1 + 1

])

+

l
∑

j= d2 + 1

w2βjKLin

([

ỹ′j− 1, · · · , ỹ
′
j− d2

]

,
[

ỹk− 1, · · · , ỹk− d2

]

)

+

k− 2
∑

j= k− 5

w3γj(k)KLin

([

y′j− 1, · · · , y
′
j− d2

]

,
[

yk− 1, · · · , yk− d2

]

)

+ w1b1 + w2b2 + w3b3(k)

(13)

where KRBF(xi, xj) = exp(−
∥

∥xi − xj
∥

∥

2
/σ 2) and Klin(xi, xj) =

xi
Txj are radial basis function (RBF) and linear kernel functions,

αi,βj, γj(k) ∈ R are the Lagrangian multipliers obtained by
LSSVM training algorithm (Suykens and Vandewalle, 1999),
b1, b2, b3

(

k
)

are biases corresponding to αi,βj, γj(k), and m1 =

0.1 andm2 = 0.9 are two weights.
The model Equation (13) can be used if the history of the

measured performance data y(k) is available. In Equation (13),
the 1st term defines the I/O relationship between physiological
features and performance, the 2nd term represents the auto-
regression of the predicted performance ỹ(k), and the 3rd
term denotes a local d2-th-order regressor of y(k). The model
parameters γj(k) and b3(k) are updated based on a small dynamic
training set of only four samples (to enable fast training) by
using LSSVM training algorithm. Based on the optimal training
accuracy, we set w1 = 0.02, w2 = 0.18, and w3 = 0.8.

Equations (12, 13) are labeled as dynamic classifier LSSVM1
and LSSVM2, respectively. Finally, the CTL class C̃(k) can

TABLE 3 | The classifier model order for each participant.

Participant d1 d2

A 3 5

B 1 5

C 2 4

D 1 5

E 1 7

F 2 6

G 2 8

be predicted by discretizing the predicted performance ỹ(k)
according to Equation (8).

The structural parameters d1 and d2 of the dynamic classifier
model must be carefully selected to guarantee the classification
generalization performance. The problem is to find the best d1
and d2 to optimize the objective function:

J(d1, d2) = τ1re(d1, d2)+ τ2
nθ (d1, d2)

nθ max(d1,max, d2,max)
(14)

where re =

√

1/N
∑N

k= 1 [y(k)− ỹ(k)]2 represents Root Mean

Squared Error (RMSE) between the observed (or target) and
predicted performance on the training set (i.e., dataset from the
1st session), nθ is the number of model parameters, nθ max is the
number of the model parameters with the largest possible d1 and
d2,, and the two weights τ1 = 0.8 and τ2 = 0.2 are used to
achieve a trade-off between the model (training) accuracy and
complexity. The optimal d1 and d2 can be found such that the
objective function J defined in Equation (14) is minimized. For
this purpose, a search on a 2-D integer parameter grid [1, 15] ×
[1, 15] is performed, hence the number of candidate parameters
is 225 (=15 × 15). The maximal orders of the dynamical
model is set to be 15 since too high order may lead to model
overfitting while lower-order model is inadequate to describe
the complex relationship between physiological features and
performance.

Figure 6 illustrates the classifier structure identification for
participant A. It is shown that d1 = 3 and d2 = 5 lead to the
minimum value of J. Table 3 gives the optimal model orders d1
and d2 for each participant. It can be observed that individual
difference exists and d2 is statistically significantly larger than
d1 across participants, i.e., p < 0.001 according to paired t-
test with the effect size (ES) of −3.1302 computed by Cohen’s
d. A possible reason is that the dimensionality of the input
feature of the classifier (55 here) is far greater than that of its
output (1 here). As a result, too large d1 leads to a very complex
model structure and thus overfitting (i.e., poor generalization
capacity). The results indicated that the optimal model comprises
a higher-order (i.e., 4–8) AR part (see the 2nd and 3rd term in
Equation 13) and a lower-order (i.e., 1–3) moving average (MA)
part. In order to compare the generalization capacity of LSSVM1
and LSSVM2 classifier, the model orders are chosen to be the
same.
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FIGURE 7 | Comparison of classification results between LSSVM1 (A,B) and LSSVM2 (C,D) (participant A): (A,C). Continuous output of LSSVM model; (B,D)

Discrete CTL classes.

FIGURE 8 | Comparison of classification results between LSSVM1 (A,B) and LSSVM2 (C,D) (participant B).

CTL Classification Results
Data anlysis was carried out to evaluate the performance of
two dynamic CTL classifiers. For each participant, the measured
data from session 1 and 2 was used to train and test the
classifier, respectively. The overall classification accuracy (ACC)
is calculated to evaluate the classification performance.

Figures 7, 8 show the classification testing results for
participant A and B, respectively. The performance of the two
models for CTL prediction every 10 s are compared. The same
regularization parameter (100) and RBF kernel width (σ 2 =

500) were used in the LSSVM training algorithm for two
models and all participants. In general, dynamic model LSSVM2

leads to higher classification rate than LSSVM1 (i.e., 0.8500
and 0.8074 against 0.6259 and 0.5982 for participant A and
B, respectively). This result suggested that the best classifier
model must incorporate the measured performance in addition
to the previously predicted performance ỹ (cf. Equations 11,
13). The continuous outputs (i.e., predicted performance) of
LSSVM model are shown in Figures 7A,C, 8A,C, while the CTL
classification results shown in Figures 7B,D, 8B,D. It is observed
that the LSSVM2 model has a higher classification performance.

The classification confusion matrices are given in Tables 4, 5
for participant A and B, respectively. The class 1–5 is labeled
“very-low,” “low,” “normal,” “high,” “very-high,” respectively. In
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FIGURE 9 | Block diagram of AA simulation system with a proportional and threshold controller.

FIGURE 10 | Simulation results of AA system with the proportional and threshold controller (participant A): (A) The operator task performance; (B) The

number of manual control tasks allocated to the operator; (C) The operator CTL levels.

FIGURE 11 | The simulation results of AA system with the proportional and threshold controller (participant B): (A) The operator task performance; (B) The

number of tasks allocated to the operator; (C) The operator CTL levels.
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TABLE 4 | Classification confusion matrix (Participant A).

Model Predicted class Target class ACCclass FPR FNR

1 2 3 4 5

LSSVM1 1 168 1 0 0 0 0.9438 – –

2 10 162 86 51 4 0.9153 0.0562 0.0028

3 0 14 8 30 6 0.0851 0.0394 0.7622

4 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0 1

LSSVM2 1 177 1 0 0 0 0.9944 – –

2 1 174 17 0 0 0.9831 0.0056 0.0028

3 0 2 75 50 0 0.7979 0.0056 0.0919

4 0 0 2 30 7 0.3704 0.0045 0.5495

5 0 0 0 1 3 0.3000 0.0019 0.7000

The number of correctly and wrongly classified data is shown on the main and off diagonal, respectively. The last three columns present the classification rate of each class and the FPR

and FNR for binary classification, respectively. The higher classification accuracy and lower FPR and FNR are marked in bold.

TABLE 5 | Classification confusion matrix (Participant B).

Model Predicted class Target class ACCclass FPR FNR

1 2 3 4 5

LSSVM1 1 134 6 0 0 0 0.7571 – –

2 43 156 56 53 15 0.9512 0.2429 0.0165

3 0 2 26 28 3 0.2955 0.0059 0.6231

4 0 0 6 7 5 0.0795 0.0140 0.8500

5 0 0 0 0 0 0 0 1

LSSVM2 1 177 2 0 0 0 1.0000 – –

2 0 161 26 0 0 0.9817 0 0.0055

3 0 1 48 40 1 0.5455 0. 0029 0. 1307

4 0 0 14 47 19 0.5341 0.0326 0.3694

5 0 0 0 1 3 0.1304 0.0019 0.8696

The higher classification precision and lower FPR and FNR are marked in bold.

TABLE 6 | Comparison of classification testing accuracy of LSSVM

classifiers and NB and KNN classifiers.

Participant NB KNN LSSVM1 LSSVM 2

A 0.6444 0.6870 0.6259 0.8500

B 0.7037 0.6333 0.5982 0.8074

C 0.5463 0.6759 0.4815 0.7667

D 0.6185 0.6482 0.4722 0.7315

E 0.5722 0.6074 0.5093 0.8611

F 0.4870 0.5426 0.5111 0.7370

G 0.4093 0.4926 0.4778 0.8593

Mean 0.5689 0.6124 0.5251 0.8019

The highest classification accuracy in each row is marked in bold.

the first column of classification confusion matrix of LSSVM1 for
participant A, 168 data in very-low class was correctly classified,
while the remaining 10 data in this class were misclassified to low
class. Hence, the classification accuracy of very-low class (class

1) is 0.9438. It shows that LSSVM2 outperforms LSSVM1 in the
classification accuracy of each class for both participant A and
B. In particular, most data in class 3 (normal), 4 (high), and 5
(very-high) were misclassified by LSSVM1 (the corresponding
classification rate is merely 0.0815, 0, and 0 for participant A;
0.2955, 0.0795, and 0 for participant B). Moreover, the false
positive rate (FPR) and false negative rate (FNR) for binary CTL
classification problem are computed in the following way.

In Case 1, class 1 (very-low) can be considered as negative
class (“N” corresponding to lower level of CTL), while all other
four classes considered as positive class (“P” corresponding to
higher level of CTL). Similarly, the negative class can be redefined
as class 1 + class 2, class 1 + class 2 + class 3, and class
1 + class 2 + class 3 + class 4, while the remaining classes
redefined as positive class in Case 2, 3, and 4, respectively. The
calculated FPR and FNR are listed in the last two columns of
Tables 4, 5, where the 2–5th row represents the result of each
classifier in Case 1–4, respectively. Take the 2nd row of Table 6 as
an example, 134 and 357 instances in negative class and positive
class were correctly classified by LSSVM1, but 6 data originally
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in the positive class and 43 data points originally in the negative
class were misclassified to the opposite class. In other words, the
number of false positive and false negative events predicted is
43 and 6, respectively. Then, the FPR and FNR are computed as
43/(43 + 134) = 0.2429 and 6/(6 + 357) = 0.0165, respectively.
In general, the FPR and FNR of LSSVM2 are lower than LSSVM 1
in all four possible cases and the FPR are much higher than FNR
for two models.

The classification testing accuracy of two LSSVM models and
classical Naive Bayes (NB) classifier and K-Nearest Neighbor
(KNN) classifier (K = 30) is compared in Table 6. The LSSVM2
model achieved a participant-average classification accuracy of
0.8019, about 23, 19, and 28% higher than that of the NB, KNN,
and LSSVM1 model, respectively. According to paired t-test,
the LSSVM2 significantly outperforms NB (ES = −0.6806, p =

0.0019), KNN (ES = −0.6054, p = 0.0022), and LSSVM1 (ES =
−1.0694, p < 0.0001). Based on the comparative results, model
LSSVM2 is used to design AA controller in the next section.

DESIGN AND SIMULATION OF ADAPTIVE
HUMAN-MACHINE SYSTEM

It was found that neurophysiological data can be used to
recognize the patterns of external stimuli (Speier et al., 2014;
Bertrand, 2015; Comani et al., 2015). In this section, the CTL
classifier is used to design an AA system that is able to
realize adaptive function allocation between human operator
and machine. Before online implementation of the AA system,
extensive simulations based on the real data measured offline
must be performed to examine the feasibility and effectiveness
of adaptive task (or functional) allocation scheme. Two different
adaptive task allocators, namely proportional and threshold
controller and rule-based controller, are designed and tested
through simulations. The primary task of the AA system, to be
developed, is to use the real-time EEG andHR data x(k) to predict
the performance y at each time step k.

A simulated AA system with proportional controller is
depicted in Figure 9. The AA system with negative feedback
control scheme consists of three modules, viz. data generator,
dynamic CTL classifier, and controller.

(1) Data generator
The data generator is used to simulate an operator

performing aCAMS tasks. For each participant, the
physiological data x′(k) and performance data y(k) at time
step k (k = 1, 2, · · ·, 90) are selected randomly among
the 2nd session data. The data pairs {x′(k), y(k)} were
generated every 10 s and the time duration of simulation is
10× 90 = 900 s for each participant).

(2) CTL classifier
For each participant, LSSVM2 model is trained using

the 1st session data. It should be noted that the two
modules, CTL classifier and data generator, used offline
experimental dataset from two different sessions, which can
be easily implemented in future online human-machine
system experiments.

(3) Controller

TABLE 7 | The average number of tasks allocated, CTL level, and

performance with and without AA (proportional and threshold controller).

Participant Without AA With AA

nMEAN CMEAN yMEAN nMEAN CMEAN yMEAN

A 2.7 2.3 0.6749 2.0 1.7 0.7849

B 2.7 2.2 0.6714 2.0 1.8 0.7761

C 2.7 2.6 0.6660 2.0 2.0 0.7606

D 2.7 2.8 0.6979 2.1 2.3 0.7704

E 2.7 2.5 0.6593 2.1 2.0 0.7508

F 2.7 2.9 0.6170 1.7 2.2 0.7261

G 2.7 1.8 0.6502 1.9 1.5 0.7468

Mean 2.7 2.4 0.6624 2.0 1.9 0.7594

The controlled variable of simulated AA system is the
operator performance ỹ(k) and the constant set-point (or
reference step signal) r = 1. Based on feedback control
scheme, the error signal e

(

k
)

= ry(k) − ỹ(k) is used as
the input of AA controller. The controller is composed of
a proportional gain K = 1 and a threshold function ϕ′(·)
defined by:

1n(k) = ϕ′
[

Ke
(

k
)]

=







0, 0 ≤ Ke
(

k
)

< 0.2,

1, 0.2 ≤ Ke
(

k
)

< 0.8,
2, otherwise

(15)

where 1n(k) is incremental control action (i.e., controller
output) representing the number of tasks allocated to the
machine.

Then, the number of tasks n(k) is computed by:

n(k) = n(k− 1)− 1n(k) (16)

where n(k) ∈ {1, 3, 4} depends on x′(k) and y(k). Then n(k)
is used as the input of the data generator. The physiological
feature data x′(k) and performance data y(k) are selected
randomly again from the task-load conditions with the same
values of n(k) in the 2nd session. If n(k) = 2 is produced, the
task-load condition with n(k) − 1 = 1 would be considered
as n(k) = 2 is not available in our experiments.

The simulation results of the proportional and threshold
controller are shown in Figures 10, 11 for participant A and
B, respectively. In Figure 10A, with AA strategy the operator
performance was enhanced at several time instants (e.g., k =

16, 18, 21, and 24). In Figure 10B, the control command n(k),
lower than that without using AA, enables reallocation of several
tasks to the machine at these time instants. Figure 10C shows the
temporal variations in operator CTL level, indicating a reduction
of the CTL level at those time instants. The results of participant
B, as shown in Figure 11, are similar. The operator performance
was improved at several time instants (e.g., k= 10, 11, 14, 16, and
18) due to the reduction of the CTL levels. Adaptive proportional
and threshold controller was shown to be able to reduce the
occurrence of the risky “high” and “very-high” CTL state of both
the participant A and B.
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FIGURE 12 | The block diagram of AA simulation system with a rule-based controller.

To examine specifically how AA enhances the operator
performance, the 10-run-average of the number of manually
controlled subsystems, CTL level, and performance, denoted by
nMEAN , CMEAN , and yMEAN , respectively, for each participant
were given in Table 7. With AA scheme the values of nMEAN

and CMEAN were significantly lower than those without AA
according to paired t-test (ES = 1.9612, p < 0.001 and ES =

1.4022, p < 0.0001, respectively). Moreover, the values of yMEAN

were significantly improved (ES = −0.8514, p < 0.0001). The
results showed that the proportional and threshold controller
can not only reduce the CTL level, but also improve operator
performance.

From Equation (16), we can see that the proportional and

threshold controller enables task reallocation at each time step.

However, certain time is required for the operator performance to

recover to the set-point. Thus, n(k) needs to hold unchanged for

several time steps. In Figures 10, 11, n(k) is oscillated frequently

but too frequent task reallocation may heighten operator CTL

level (Haarmann et al., 2009). Hence, based on the same AA

simulation system structure shown in Figure 9, a rule-based

controller is adopted instead to further improve human-machine

system performance (see Figure 12).
Table 8 lists the three control rules used by the AA controller.

The two thresholds were set to be 0.2 and 0.8 (Yang and Zhang,
2013) and gain K = 1. The three control rules are:

R1: IF the error e(k − 1) ∈ [0, 0.2) indicating acceptable
operator performance, THEN the number of manual tasks at
time instant k is unchanged, i.e., n(k) = n(k− 1).
R2: IF e(k − 1) ∈ [0.2, 0.8) indicating risky operator CTL
level and performance (i.e., high CTL and low performance),
THEN the level of automation is adjusted by reallocating a
task to the machine, i.e., n(k) = n(k − 1) − 1, and n(k)
remains unchanged at the next two time steps, i.e., n(k+ 1) =
n(k + 2) = n(k) (In this case, if task reallocation is triggered,
the level of automation would hold constant for 30 s. This
provides sufficient time for the operator to recover from high
CTL state).
R3: IF e(k − 1) ∈ [0.8, 1] indicating operator performance
breakdown and very-high CTL level, THEN two tasks are
reallocated to the machine, i.e., n(k) = n(k− 1)− 2, and n(k)
remains unchanged at next two time steps, i.e., n(k + 1) =

n(k+ 2) = n(k).

TABLE 8 | The control rules.

IF 0 ≤ Ke (k−1) < 0.2

n (k) = n (k− 1),

else if 0.2≤ Ke (k− 1) < 0.8

n (k) = n (k− 1) −1,

n (k+1) = n (k),

n (k+2) = n (k+1),

else

n (k) = n (k− 1) −2,

n (k+1) = n (k),

n (k+2) = n (k+1),

end if

The simulation results of the rule-based controller are shown
in Figures 13, 14 for participant A and B, respectively. In
Figure 13A, With AA scheme the operator performance was
improved at most time steps (e.g., k = 11, 14, 15, 16, 24, 25, 26,
28, and 29). The control action n(k) is shown in Figure 13B. The
general decrease of n(k) indicated that more tasks were allocated
to the machine. It is noticed that n(k) remains unchanged for at
least 30 s, as a result performance breakdown was prevented. The
operator CTL levels shown in Figure 13C show that most of the
risky “high” and “very-high” CTL state disappears with the use of
AA. The results of participant B are similar in Figure 14. Since
the CTL levels have been decreased, the operator performance
was improved at many time instants (e.g., k = 11, 15, 16, 17, 18,
23, 24, 25, 27, and 28). For participant A and B, the rule-based AA
controller can effectively suppress the occurrence of risky “high”
and “very-high” CTL state.

Table 9 presents nMEAN , CMEAN , and yMEAN for each
participant when LSSVM2 classifier and rule-based AA controller
were used (10 runs of simulation). It is shown that the values of
nMEAN and CMEAN were significantly lower than those without
AA by the paired t-test (ES = 3.3814, p < 0.0001; ES = 1.7921,
p < 0.0001, respectively). The values of yMEAN were significantly
improved (ES = −1.0622, p < 0.0001) when AA scheme is
applied. The paired t-test results indicated the effectiveness of the
rule-based AA scheme for enhancing the operator performance.

To compare the performance between the two AA systems,
the repetitive paired t-test was performed to examine whether
the difference in nMEAN , CMEAN , and yMEAN of two AA control
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FIGURE 13 | The simulation results of AA system with the rule-based controller (participant A): (A) The operator task performance; (B) The number of tasks

allocated to the operator; (C) The operator CTL levels.

schemes is statistically significant. In terms of CMEAN , nMEAN

and yMEAN , the rule-based controller significantly outperforms
the proportional and threshold controller (ES = 0.7411, p =

0.0007; ES = 0.8738, p = 0.0004; and ES = −0.4013, p < 0.0001,
respectively). The average CMEAN with AA is close to the “low”
CTL (class 2) and the average CMEAN in Table 8 is slightly smaller
than that in Table 9 (1.7 vs. 1.9). The results demonstrated the
superiority of the scheme of combining LSSVM2 classifier and
rule-based controller.

DISCUSSION

A main contribution of this work is to propose a new
NARX dynamical model architecture based on the LSSVM.
We developed two types of NARX LSSVM model: dynamic
LSSVM1 and LSSVM2. For the former model, the model inputs
consist of EEG and ECG features at current and past time steps
as well as the model output at the past time steps. For the
latter model, the model inputs also incorporate the performance
data at the past time steps. The LSSVM model parameters are
updated based on the physiological features by means of adaptive
learning/training. The basic idea and novelty of this work is
the construction of a dynamic model with output (performance
data) feedback. Adaptive learning algorithm is used to find the
optimal parameters of the model. Therefore, we focused mainly
on comparison of the classification accuracy between different
model structures. The results demonstrated that the dynamic
LSSVM2 model is more accurate than LSSVM1.It should be
noted that the choice of adaptive learning methods may affect the
CTL predictive accuracy. Hence, as an important future research
direction, the best adaptive parameter learning algorithm needs
to be found out for the CTL dynamic model.

The accurate and reliable estimation of CTL levels is essential
to design a closed-loop HM system with human operator in
the loop as it informs the controller of when and to what
extent to trigger task allocation in an adaptive fashion. The

TABLE 9 | The average number of tasks allocated, CTL level, and

performance with and without AA (rule-based controller).

Participant Without AA With AA

nMEAN CMEAN yMEAN nMEAN CMEAN yMEAN

A 2.7 2.2 0.6789 1.7 1.5 0.8339

B 2.7 2.3 0.6659 1.7 1.6 0.8224

C 2.7 2.7 0.6603 1.7 1.8 0.7946

D 2.7 2.7 0.7051 1.7 1.9 0.8239

E 2.7 2.5 0.6538 1.7 1.7 0.8135

F 2.7 2.9 0.6197 1.5 2.0 0.7583

G 2.7 1.8 0.6592 1.8 1.4 0.7779

Mean 2.7 2.4 0.6633 1.7 1.7 0.8035

dynamical LSSVM 2 is more accurate than LSSVM 1 because
it incorporates the performance data at the past time steps.
The NARX-LSSVM is iteratively trained with each batch of
physiological sample data. The performance data is used as the
model output (whose quantized value is the predicted CTL class),
which can be predicted based on its historical values. A potential
limitation of such a paradigm is that reliable performance data
may be unavailable for some HM cooperative tasks. For instance,
in driving task the deviation of the car position from the middle
(centerline) of the lane can be measured continuously, while in
air traffic control task real-time performance data is usually not
available. In those cases where the performance data is hard or
expensive to measure, the dynamical LSSVM1 model may be a
more practical alternative to design the closed-loop HM systems.

On the other hand, two CTL controllers were designed
to optimize the operator performance, including proportional
controller and rule-based controller. Based on accurate detection
of high-risk CTL level by the CTL classifier system developed,
the tasks can then be dynamically reallocated between human
operator and the computer. The simulation results illustrated
that the number of the manually controlled subsystems can be
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FIGURE 14 | The simulation results of AA system with the rule-based controller (participant B): (A) The operator task performance; (B) The number of tasks

allocated to the operator; (C) The operator CTL levels.

reduced by the use of adaptive aiding strategy proposed and that
both types of controller can significantly improve the operator
performance and reduce the average CTL level. However, it
should be noted that in a practical (or operational) adaptive
system, frequent triggering of adaptive controller may bring
about confusion or interference to the operators. The AA system
designed does not include the functional module for detecting
risky OFS due to inappropriate (or unwanted) aiding, which
should be taken into consideration in the future.

SUMMARY AND CONCLUSION

In this paper, an adaptive human-machine system was designed
and implemented by taking advantage of a dynamic CTL
classifier. Fourteen sessions of experiments were performed
on seven participants to measure the EEG, ECG and task
performance data under simulated human-machine process
control tasks. The task performance data was used to elicit five
target CTL classes. The artifacts were removed from the raw
EEG signals by using an adaptive filter. In total 56 features
were extracted from the experimental EEG and ECG data. The
AES technique was adopted to smooth the physiological feature
data by removing the motion artifacts requiring no templates.
The LPP technique was utilized to derive a single salient
feature from each measurement channel. As a result, 12 salient
markers, including 11 EEG markers highly correlated with the
task performance, were extracted. Subsequently, a NARX-based
LSSVM model was constructed to identify temporal variations
in CTL level. Compared with static classifiers such as ANN
and ANFIS, the dynamic LSSVM model takes into account
the temporal correlation between current CTL state and past
ones as well as current and previous physiological features. The
current and past physiological features as well as previous CTL

levels were used together as the input vector of the classifier
model to predict the current CTL level. Essentially the NARX-
based LSSVM model combines one non-linear dynamic LSSVM
and two linear AR models. We examined two possible model
structures and found that the CTL classification accuracy can be
improved if the observed performance at previous time instants
is incorporated into the classifier model. The 1st session data
was used to train the classifier, while the 2nd session data was
used to test its generalization (or prediction) performance. It
was shown that an overall correct classification rate of about
80% was achieved for the 5-class CTL classification problem
under study and the classification performance of the proposed
method is robust w.r.t. the statistical non-stationarity and cross-
subject variability of physiological signals. Finally, the AA system
simulations using two types of controllers, namely proportional
and threshold and rule-based controller, were performed for each
participant. The negative feedback control system is composed
of three functional modules, viz. data generator, dynamic CTL
classifier and AA controller. The predicted CTL level is used to
adaptively allocate tasks between human operator and computer.
The obtained results demonstrated the relative superiority of
the personalized AA system developed using rule-based AA
controller. The subject-specific AA systems design is natural
in view of the marked individual difference in physiological
and task performance data. The main contribution of this
work is the combination of machine learning technique with a
dynamical model. Specifically, the past performance data is also
used to retrain the model. Adaptive learning algorithm retrains
the model iteratively and makes it straightforward to exploit
the real-time operator performance information. However, the
prerequisite of such a model retraining is the availability of
the continuously-measured performance data. In this sense,
the NARX-LSVVM model without adaptive learning function
is an alternative without requiring the measurement of task
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performance data, which may be rather expensive or even
impossible under some real-world application environments.

Finally, the limitations in current work and corresponding
further work may include:

(1) The number of experimental participants is relatively small,
thus more participants would be required to collect more
extensive experimental data in the future (Aarts et al., 2015);

(2) The simulated data may not be able to account for the
switch of control mode. For example, if the n(k) is increased
from 1 to 4 directly, it would take some time for the
operator to adapt to the high level of demanding task-load.
In such a case, the operator performance likely decreases
for a while at first and then increases. Unfortunately,
the use of the performance data picked randomly from
the simulated database does not take into account this
peculiarity. Therefore, in the future online experimental
work must be carried out to validate more comprehensively
the practical validity and usefulness of the CTL recognition
and regulation methods developed.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Guidelines for Experiments Involving
Human Subjects, Research Ethics Committee of East China

University of Science and Technology, with written informed
consent from all experimental participant. All participant gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Research Ethics
Committee of East China University of Science and Technology.

AUTHOR CONTRIBUTIONS

JZ supervised the whole study including data analysis methods
and wrote and finalized the submittedmanuscript, ZY performed
data analysis and wrote some parts of the first draft paper, and
RW provided support to experimental work.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China under Grant No. 61075070 and Key Grant
No. 11232005.

ACKNOWLEDGMENTS

The authors wish to thank the FGAIO Group and Control
Systems Group, Technische Universität Berlin, Germany, for
providing the aCAMS software and useful research discussions,
respectively.

REFERENCES

Aarts, A. A., Anderson, J. E., Anderson, C. J., Attridge, P. R., Attwood, A.

(2015). Estimating the reproducibility of psychological science. Science 349,

1–8. doi: 10.1126/science.aac4716

Bertrand, A. (2015). Distributed signal processing for wireless EEG

sensor networks. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 923–935.

doi: 10.1109/TNSRE.2015.2418351

Bobko, N., Karpenko, A., Gerasimov, A., and Chernyuk, V. (1998). The mental

performance of shiftworkers in nuclear and heat power plants of Ukraine. Int.

J. Ind. Ergon. 12, 333–340. doi: 10.1016/S0169-8141(97)00053-X

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).

Measuring neurophysiological signals in aircraft pilots and car drivers for the

assessment of mental workload, fatigue and drowsiness.Neurosci. Biobehav. 44,

58–75. doi: 10.1016/j.neubiorev.2012.10.003

Byrne, E. A., and Parasuraman, R. (1996). Psychophysiology and adaptive

automation. Biol. Psychol. 42, 249–268. doi: 10.1016/0301-0511(95)

05161-9

Comani, S., Velluto, L., Schinaia, L., Cerroni, G., Serio, A., Buzzelli, S.,

et al. (2015). Monitoring neuro-motor recovery from stroke with high-

resolution EEG robotics and virtual reality: a proof of concept. IEEE

Trans. Neural Syst. Rehabil. Eng. 23, 1106–1116. doi: 10.1109/TNSRE.2015.

2425474

Craven, D., McGinley, B., Kilmartin, L., Glavin, M., and Jones, E. (2015).

Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health

Inform. 19, 529–540. doi: 10.1109/JBHI.2014.2327194

Eggemeier, F. T., Wilson, G. F., Kramer, A. F., and Damos, D. L. (1991). “Workload

assessment in multi-task environments,” inMultiple Task Performance, ed D. L.

Damos (London; Washington, DC: Taylor & Francis), 207–216.

Freeman, F. G., Mikulka, P. J., Prinzel, L. J., and Scerbo, M. W. (1999).

Evaluation of an adaptive automation system using three EEG indices with

a visual tracking task. Biol. Psychol. 50, 61–76. doi: 10.1016/S0301-0511(99)

00002-2

Grant, R. C., Carswell, C. M., Lio, C. H., and Seales, W. B. (2013). Measuring

surgeons’ mental workload with a time-based secondary task. Ergon. Des. 21,

7–11. doi: 10.1177/1064804612466068

Gui, J., Jia, W., Zhu, L., Wang, S. L., and Huang, D. S. (2010).

Locality preserving discriminant projections for face and palmprint

recognition. Neurocomputing 73, 2696–2707. doi: 10.1016/j.neucom.2010.

04.017

Gundel, A., and Wilson, G. F. (1992). Topographical changes in the ongoing

EEG related to the difficulty of mental tasks. Brain Topogr. 5, 17–25.

doi: 10.1007/BF01129966

Haarmann, A., Boucsein, W., and Schaefer, F. (2009). Combining

electrodermal responses and cardiovascular measures for probing

adaptive automation during simulated flight. Appl. Ergon. 40, 1026–1040.

doi: 10.1016/j.apergo.2009.04.011

Hart, S. G., and Staveland, L. E. (1988). “Development of NASA-TLX (Task

Load Index): results of empirical and theoretical research,” in Human Mental

Workload, eds P. A. Hancock and N. Meshkati (Amsterdam; Oxford: North-

Holland), 139–183.

He, P., Wilson, G., Russell, C., and Gerschutz, M. (2007). Removal of ocular

artifacts from the EEG: a comparison between time-domain regression method

and adaptive filtering method using simulated data. Med. Biol. Eng. Comput.

45, 495–503. doi: 10.1007/s11517-007-0179-9

Hockey, G. R. J., Gaillard, A. W. K., and Burov, O. (2003). Operator Functional

State: The Assessment and Prediction of Human Performance Degradation in

Complex Tasks, Vol. 335. Amsterdam: NATO ASI Series.

Kaber, D. B., Perry, C. M., Segall, N., McClernonc, C. K., and Prinzel, L. J. (2006).

Situation awareness implications of adaptive automation for information

processing in an air traffic control-related task. Int. J. Ind. Ergon. 36, 447–462.

doi: 10.1016/j.ergon.2006.01.008

Khushaba, R. N., Kodagoda, S., Lal, S., and Dissanayake, G. (2011).

Driver drowsiness classification using fuzzy wavelet-packet-based

feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58, 121–131.

doi: 10.1109/TBME.2010.2077291

Frontiers in Neuroscience | www.frontiersin.org 17 March 2017 | Volume 11 | Article 129

https://doi.org/10.1126/science.aac4716
https://doi.org/10.1109/TNSRE.2015.2418351
https://doi.org/10.1016/S0169-8141(97)00053-X
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.1016/0301-0511(95)05161-9
https://doi.org/10.1109/TNSRE.2015.2425474
https://doi.org/10.1109/JBHI.2014.2327194
https://doi.org/10.1016/S0301-0511(99)00002-2
https://doi.org/10.1177/1064804612466068
https://doi.org/10.1016/j.neucom.2010.04.017
https://doi.org/10.1007/BF01129966
https://doi.org/10.1016/j.apergo.2009.04.011
https://doi.org/10.1007/s11517-007-0179-9
https://doi.org/10.1016/j.ergon.2006.01.008
https://doi.org/10.1109/TBME.2010.2077291
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Zhang et al. Adaptive Human-Machine System

Lorenz, B., Nocera, F., Röttger, S., and Parasuraman, R. (2002). Automated fault-

management in a simulated spacefight micro-world.Aviat. Space Environ. Med.

73, 886–897.

Lupu, M., Sun, M., Wang, F., and Mao, Z. (2014). Information-transmission rates

in human manual control of unstable systems with time delays. IEEE Trans.

Biomed. Eng. 62, 342–351. doi: 10.1109/TBME.2014.2352173

Manzey, D., Bleil, M., Bahner-Heyne, J. E., Klostermann, A., Onnasch, L.,

Reichenbach, J., et al. (2008).AutoCAMS 2.0 Manual, FAGIO. Berlin: Technical

University of Berlin.

Mulder, B., Kruizinga, A., Arjan, S., Vernema, I., and Hoogeboom, P. (2004).

Monitoring Cardiovascular State Changes in a Simulated Ambulance Dispatch

Task for Use in Adaptive Automation, Human Factors in Design. Maastricht:

Shaker.

Parasuraman, R., and Riley, V. (1997). Humans and automation: use, misuse,

disuse, abuse. Hum. Factors 39, 230–253. doi: 10.1518/001872097778543886

Parasuraman, R., Mouloua, M., and Molloy, R. (1996). Effects of adaptive task

allocation on monitoring of automated systems. Hum. Factor 38, 665–679.

doi: 10.1518/001872096778827279

Peng, H., Hu, B., Shi, Q., Ratcliffe, M., Zhao, Q., Qi, Y., et al. (2013). Removal

of ocular artifacts in EEG—an improved approach combining DWT and

ANC for portable applications. IEEE J. Biomed. Health Inform. 17, 600–607.

doi: 10.1109/JBHI.2013.2253614

Pope, A. T., Bogart, E. H., and Bartolome, D. S. (1995). Biocybernetic system

evaluates indices of operator engagement in automated task. Biol. Psychol. 40,

187–195. doi: 10.1016/0301-0511(95)05116-3

Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., and Pope,

A. T. (2000). A closed-loop system for examining psychophysiological

measures for adaptive task allocation. Int. J. Aviat. Psychol. 10, 393–410.

doi: 10.1207/S15327108IJAP1004_6

Russell, C. A., and Wilson, G. F. (2001). Applications of Artificial Neural Networks

for Air Traffic Controller Functional State Classification. Dayton, OH: United

States Air Force Research Laboratory.

Sauer, J., Wastell, D. G., and Hockey, G. R. J. (2000). A conceptual framework

for designing micro-worlds for complex work domains: a case study on

the Cabin Air Management System. Comput. Hum. Behav. 16, 45–58.

doi: 10.1016/s0747-5632(99)00051-5

Sauvet, F., Bougard, C., Coroenne, M., Lely, L., Van Beers, P., Elbaz,

M., et al. (2014). In-flight automatic detection of vigilance states

using a single EEG channel. IEEE Trans. Biomed. Eng. 61, 2840–2847.

doi: 10.1109/TBME.2014.2331189

Scerbo, M. W. (1996). “Theoretical perspectives on adaptive automation,” in

Automation and Human Performance, eds. R. Parasuraman and M. Mouloua

(Mahwah, NJ: Lawrence Erlbaum Associates), 37–63.

Speier, W., Arnold, C., Lu, J., Deshpande, A., and Pouratian, N. (2014). Integrating

language information with a hiddenMarkovModel to improve communication

rate in the P300 speller. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 678–684.

doi: 10.1109/TNSRE.2014.2300091

Sun, Y., and Yu, X. B. (2014). An innovative nonintrusive driver assistance system

for vital signal monitoring. IEEE J. Biomed. Health Inform. 18, 1932–1939.

doi: 10.1109/JBHI.2014.2305403

Suykens, J. A. K., and Vandewalle, J. (1999). Least squares support vector machine

classifiers. Neural Process. Lett. 9, 293–300. doi: 10.1023/A:1018628609742

Ting, C. H., Mahfouf, M., Nassef, A., Linkens, D. A., Panoutsos, G., Nickel, P.,

et al. (2010). Real-time adaptive automation system based on identification of

operator functional state in simulated process control operations. IEEE Trans.

Syst. Man Cybern. Part A 40, 251–262. doi: 10.1109/TSMCA.2009.2035301

Vapnik, V. (2000). The Nature of Statistical Learning Theory, 2nd Edn. New York,

NY: Springer-Verlag.

Yang, J. H., Mao, Z.-H., Tijerina, L., Pilutti, T., Coughlin, J. F., and Feron, E. (2009).

Detection of driver fatigue caused by sleep deprivation. IEEE Trans. Syst. Man

Cybern. Part A 39, 694–705. doi: 10.1109/TSMCA.2009.2018634

Yang, S., and Zhang, J. (2013). An adaptive human-machine control system based

on multiple fuzzy predictive models of operator functional state. Biomed.

Signal. Process. 8, 302–310. doi: 10.1016/j.bspc.2012.11.003

Yin, Z., and Zhang, J. (2014). Identification of temporal variations in

mental workload using locally-linear-embedding-based EEG feature reduction

and support-vector-machine-based clustering and classification techniques.

Comput. Methods Prog. Biol. 115, 119–134. doi: 10.1016/j.cmpb.2014.

04.011

Zhang, J., Qin, P., Raisch, J., and Wang, R. (2013). Predictive modeling of human

operator cognitive state via sparse and robust support vector machines. Cogn.

Neurodyn. 7, 395–407. doi: 10.1007/s11571-013-9242-4

Zhang, J., Yin, Z., and Wang, R. (2015). Recognition of mental workload levels

under complex human-machine collaboration by using physiological features

and adaptive support vector machines. IEEE Trans. Hum. Mach. Syst. 45,

200–214. doi: 10.1109/THMS.2014.2366914

Zhu, G., Li, Y., and Wen, P. P. (2014). Analysis and classification of sleep stages

based on difference visibility graphs from a single-channel EEG Signal. IEEE J.

Biomed. Health Inform. 18, 1813–1821. doi: 10.1109/JBHI.2014.2303991

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Zhang, Yin and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 March 2017 | Volume 11 | Article 129

https://doi.org/10.1109/TBME.2014.2352173
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872096778827279
https://doi.org/10.1109/JBHI.2013.2253614
https://doi.org/10.1016/0301-0511(95)05116-3
https://doi.org/10.1207/S15327108IJAP1004_6
https://doi.org/10.1016/s0747-5632(99)00051-5
https://doi.org/10.1109/TBME.2014.2331189
https://doi.org/10.1109/TNSRE.2014.2300091
https://doi.org/10.1109/JBHI.2014.2305403
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1109/TSMCA.2009.2035301
https://doi.org/10.1109/TSMCA.2009.2018634
https://doi.org/10.1016/j.bspc.2012.11.003
https://doi.org/10.1016/j.cmpb.2014.04.011
https://doi.org/10.1007/s11571-013-9242-4
https://doi.org/10.1109/THMS.2014.2366914
https://doi.org/10.1109/JBHI.2014.2303991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load
	Introduction
	Experiments and Data Preprocessing
	Experimental Setup
	Experimental Tasks
	Experimental Participants
	Experimental Procedure

	Data Acquisition and Pre-processing
	Physiological Data
	Performance Data


	Dynamic CTL Classifier Using Physiological Features
	Determination of Target CTL Classes
	Physiological Feature Smoothing and Dimensionality Reduction
	CTL Classification via Dynamic LSSVM Classifier
	Classifier Structural Identification
	CTL Classification Results


	Design and Simulation of Adaptive Human-Machine System
	Discussion
	Summary and Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


