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Neuropathological studies have shown that the typical neurofibrillary pathology of

hyperphosphorylated tau protein in Alzheimer’s disease (AD) preferentially affects specific

brain regions whereas others remain relatively spared. It has been suggested that the

distinct regional distribution profile of tau pathology in AD may be a consequence of the

intrinsic network structure of the human brain. The spatially distributed brain regions that

are most affected by the spread of tau pathology may hence reflect an interconnected

neuronal system. Here, we characterized the brain-wide regional distribution profile of

tau pathology in AD using 18F-AV 1451 tau-sensitive positron emission tomography

(PET) imaging, and studied this pattern in relation to the functional network organization

of the human brain. Specifically, we quantified the spatial correspondence of the

regional distribution pattern of PET-evidenced tau pathology in AD with functional brain

networks characterized by large-scale resting state functional magnetic resonance

imaging (rs-fMRI) data in healthy subjects. Regional distribution patterns of increased

PET-evidenced tau pathology in AD compared to controls were characterized in two

independent samples of prodromal and manifest AD cases (the Swedish BioFINDER

study, n = 44; the ADNI study, n = 35). In the BioFINDER study we found that the

typical AD tau pattern involved predominantly inferior, medial, and lateral temporal cortical

areas, as well as the precuneus/posterior cingulate, and lateral parts of the parietal and

occipital cortex. This pattern overlapped primarily with the dorsal attention, and to some

extent with higher visual, limbic and parts of the default-mode network. PET-evidenced

tau pathology in the ADNI replication sample, which represented a more prodromal group

of AD cases, was less pronounced but showed a highly similar spatial distribution profile,

suggesting an earlier-stage snapshot of a consistently progressing regional pattern. In

conclusion, the present study indicates that the regional deposition of tau aggregates in

AD predominantly affects higher-order cognitive over primary sensory-motor networks,

but does not appear to be specific for the default-mode or related limbic networks.
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INTRODUCTION

The brain can be subdivided into a number of intrinsic
connectivity networks (ICNs), which have been established
mainly through interpretation of large resting-state functional
magnetic resonance imaging (rs-fMRI) datasets (Power et al.,
2011; Yeo et al., 2011). These networks have been found to
be disrupted in a distinct manner in Alzheimer’s disease (AD),
directly affecting cognitive performance (Pievani et al., 2011).
The accumulation of fibrillar amyloid-β (Aβ), one of the major
traits of AD pathogenesis, has consistently been demonstrated
to follow spatial patterns (Braak and Braak, 1991; Villeneuve
et al., 2015) that overlap strongly with the so-called default-mode
network (DMN; Buckner et al., 2009; Sperling et al., 2009), a
network of brain regions generally activated in “task-negative”
states but also during autobiographical and introspective tasks
(Greicius et al., 2003, 2004). However, a recent study generally
confirming these findings, also observed considerable spatial
overlap of Aβ accumulating regions with other ICNs, such
as a frontoparietal-control network (FPN) and the dorsal-
attention network (DAN; Grothe and Teipel, 2016). This study
further found substantial dissociation between correspondence
of imaging-derived measures of Aβ pathology, measures of
neurodegeneration proxied by glucose hypometabolism and gray
matter atrophy, and ICNs (Grothe and Teipel, 2016).

Hyperphosphorylated tau, another misfolded protein
to accumulate in AD, is known to be closer related to
neurodegeneration and cognitive impairment than Aβ (Serrano-
Pozo et al., 2011; Nelson et al., 2012). The recent introduction
of tau-sensitive positron emission tomography (PET) ligands
binding to paired-helical filaments of tau protein has enabled the
in vivo assessment of hyperphosphorylated tau pathology (Xia
et al., 2013; Marquié et al., 2015). Neuropathological studies have
established a rather consistent spatial pattern of progressing tau
pathology that has been categorized into so-called Braak stages
(Braak and Braak, 1991; Braak et al., 2006). These nested stages
of progressing tau pathology could recently be replicated in vivo
using tau PET (Schwarz et al., 2016; Schöll et al., 2016).

Studies in cell and transgenic mouse models further suggest
that tau in its harmful hyperphosphorylated form likely
spreads in a trans-synaptic manner along neuronal networks,
eventually causing synaptic damage, functional disruption, and
neurodegeneration of the affected networks (Fox et al., 2011; Liu
et al., 2012; Spires-Jones and Hyman, 2014; Menkes-Caspi et al.,
2015).

In the present study, we aimed at exploring the spatial overlap
of pre-defined functional brain networks and the extent of
neurofibrillary tau pathology assessed with 18F-AV-1451 PET
in prodromal and dementia stages of AD, also answering the
question whether tau pathology preferrably affects the DMN over
other ICNs.

METHODS

Participants
We studied samples from two independent cohorts. The first
sample was recruited from the prospective and longitudinal

Swedish BioFINDER study (further information available at:
www.BioFINDER.se). We included data from 17 cognitively
healthy elderly control (HC) participants and 27 AD patients
with prodromal (MCI due to AD, n = 11) or clinically manifest
disease (AD dementia, n = 16). Inclusion criteria for HC were:
(1) aged ≥ 60 years old, (2) scored 28–30 points on the Mini-
Mental State Examination (MMSE) at the screening visit, (3)
absence of cognitive symptoms as evaluated by a physician, (4)
fluent in Swedish, (5) did not fulfill the criteria of MCI or any
dementia; with the following exclusion criteria: (1) significant
systemic illness making it difficult to participate, (2) presence
of significant neurologic or psychiatric disease (e.g., stroke,
Parkinson’s disease, multiple sclerosis, major depression), (3)
significant substance abuse. Inclusion criteria for MCI due to
AD were: (1) age 40–100 years, (2) referred to the memory
clinics due to cognitive symptoms experienced by the patient
and/or informant, (3) MMSE score of 24–30, (4) objective
impairment according to neuropsychological testing, (5) no
fulfillment of the criteria for any dementia disorder (major
neurocognitive disorder) according to DSM-V, (6) abnormal
cerebrospinal fluid (CSF) Aβ42 indicative of prodromal AD
and (7) fluency in Swedish; and the exclusion criteria were: (1)
cognitive impairment that without doubt could be explained by
another condition (other than prodromal AD) and (2) severe
somatic disease. AD dementia patients met the DSM-IIIR criteria
for dementia (American Psychiatric Association and American
Psychiatric Association Work Group to Revise DSM-III., 1987)
as well as the NINCDS-ADRDA criteria for AD (McKhann
et al., 1984). Exclusion criteria were significant systemic illness
and significant alcohol abuse. AD diagnoses were confirmed by
physicians who were blinded to any PET and CSF data. We
only recruited AD patients with a late-onset amnestic clinical
presentation to ensure a typical pattern of tau ligand uptake
as differences in ligand retention between different AD variants
had previously been reported (Ossenkoppele et al., 2016). All
participants provided written informed consent to participate
in the study according to the Declaration of Helsinki, ethical
approval was given by the Ethics Committee of Lund University,
Lund, Sweden, and all methods were carried out in accordance
with the approved guidelines. Approval for PET imaging was
obtained from the Swedish Medicines and Products Agency
and the local Radiation Safety Committee at Skåne University
Hospital, Sweden.

The second sample was recruited from the ADNI2 cohort,
an extension of the original ADNI1 and ADNI-GO studies.
ADNI (Alzheimer’s Disease Neuroimaging Initiative) is a
multisite longitudinal biomarker study that has enrolled
over 1,500 cognitively normal older individuals, people with
early or late amnestic MCI, and people with early AD
(www.adni-info.org). Detailed inclusion and exclusion criteria
for the diagnostic categories can be found on the ADNI website
(http://adni.loni.usc.edu/methods/). Briefly, healthy subjects had
MMSE scores between 24 and 30 (inclusive), a clinical dementia
rating (CDR) = 0, were non-depressed, non-MCI, and non-
demented. MCI subjects had MMSE scores between 24 and 30
(inclusive), a subjective memory concern reported by subject,
informant, or clinician, objective memory loss measured by
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education adjusted scores on delayed recall, a CDR = 0.5,
absence of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, and an
absence of dementia. Subjects with AD dementia had initial
MMSE scores between 20 and 26 (inclusive), a CDR = 0.5 or
1.0, and fulfill NINCDS-ADRDA criteria for clinically probable
Alzheimer’s disease (McKhann et al., 1984). For the present study,
we recruited data from 19 HC, 26 prodromal, and four patients
with manifest AD.

Diagnostic groups were dichotomized into β-amyloid-
positive (Aβ+) and -negative (Aβ−) subgroups, based on 18F-
flutemetamol (BioFINDER) or 18F-AV45 (ADNI) PET evidence
of global Aβ pathology indicative of AD. For ADNI subjects,
cortex-to-whole cerebellum AV45 standard uptake value ratios
(SUVR) had been calculated and made available on the ADNI
server by the Jagust Lab, UC Berkeley. Aβ-positivity was
established using the recommended threshold for cross-sectional
analyses of SUVR ≥ 1.11 (Landau et al., 2013). For BioFINDER
subjects, global 18F-flutemetamol SUVR had been calculated
using a composite whole cerebellum, the pons/brainstem region,
and eroded cortical white matter reference region; a cutoff of
SUVR≥ 0.79 was derived using a mixture modeling analysis in a
large BioFINDER cohort (n= 406) to describe Aβ-positivity.

Given that we aimed at examining a typical late-onset
amnestic AD type, and with all recruited BioFINDER MCI
and AD subjects being Aβ-positive, Aβ-negative subjects were
omitted from the ADNI2 sample, which resulted in a final ADNI
sample size of 19 HC and 16 prodromal dementia and clinically
manifest AD patients (12 Aβ + MCI, 4 Aβ + AD; Albert et al.,
2011; McKhann et al., 2011; Sperling et al., 2011).

Image Acquisition
All BioFINDER subjects underwent structural magnetic
resonance imaging (MRI) on a Siemens Tim Trio 3T scanner
(Siemens Medical Solutions, Erlangen, Germany). High
resolution T1-weighted anatomical magnetization-prepared
rapid gradient echo (MPRAGE) images (TR= 1950 ms TE= 3.4
ms, 1mm isotropic voxels and 176 slices) were acquired for PET
image co-registration, processing, and template normalization.

18F-AV-1451 PET scans were performed on a GE Discovery
690 PET scanner (General Electric Medical Systems) as dynamic
scans using LIST-mode 80–120 min after a bolus injection of
370 MBq of 18F-AV-1451. Low-dose CT-scans for attenuation
correction were performed immediately prior to the PET scans.
PET data were reconstructed into 5 min frames using an iterative
Vue Point HD algorithm with six subsets, 18 iterations with
3mm filter, and no time-of-flight correction. The dynamic scans
were motion corrected using AFNI’s 3dvolreg (Cox, 1996), time-
averaged, and rigidly co-registered to the skull-stripped MRI
scan.

For ADNI participants, T1-weighted MPRAGE MR images
were acquired on multiple 3T scanners. 18F-AV-1451 PET scans
were also acquired on several different scanners at multiple sites.
Subjects were examined for 30 min (6 × 5 min frames) starting
at 75 min post-injection of a 370 MBq/kg bolus. Standardized
image pre-processing is applied to all original ADNI scans (see
http://adni.loni.usc.edu/methods for details).

Image Processing
Preprocessed ADNI image data was downloaded from the
ADNI image database (https://ida.loni.usc.edu) and further
processed in the same manner as BioFINDER image data (see
below).

All image data was thus processed at Lund University
employing an in-house developed pipeline. The MR scans
were normalized to a common MNI152 space (Montreal
Neurological Institute) with a diffeomorphic transform
using the Advanced Normalization Tools (ANTs) toolbox
(Avants et al., 2014) for further use in the PET processing
pipeline. Cortical reconstruction and volumetric segmentation
and parcellation were performed with Freesurfer v5.3
(http://surfer.nmr.mgh.harvard.edu). Reconstructed data sets
were visually inspected for inaccuracies, and major segmentation
errors were manually corrected. The Freesurfer parcellation in
the MR space of the anatomical scan was then applied to the
processed, coregistered, and time-averaged PET image to extract
reference regional uptake values.

We created BioFINDER 18F-AV-1451 standardized uptake
value (SUV) PET images based on mean uptake over 80–
120 min postinjection normalized to uptake in a gray matter
masked cerebellum reference region to create voxelwise SUV
ratio (SUVR) images in each participant’s MRI native space.
ADNI 18F-AV-1451 SUVR images were created based on
mean uptake over 80–100 min post-injection and intensity
normalized using the same cerebellar reference region as for the
BioFINDER data. All PET images were then spatially normalized
to MNI152 space, employing the ANTs spatial transformation
parameters derived from the co-registered MR scans, and
smoothed with a 8mm FWHM Gaussian filter. Using FSL
(v5.0.6, http://fsl.fmrib.ox.ac.uk), we finally created a mean and a
standard deviation image based on the respective control group’s
18F-AV-1451 images in MNI152 standard space and calculated
individual Z-score maps for each patient (Z-score = (individual
value—control mean)/control standard deviation; Chételat et al.,
2008; Grothe and Teipel, 2016).

Data Analysis
Analysis of the network-specificity of the AD-typical in vivo
distribution of tau deposits as imaged by 18F-AV-1451 PET
closely followed the approach of a previously published
study assessing the network-specificity of AD-related amyloid
deposition, hypometabolism, and gray matter atrophy (Grothe
and Teipel, 2016). Briefly, this approach quantitatively assesses
the correspondence of the cortex-wide pathologic imaging
pattern with functional networks in the human brain as defined
by standardized maps of ICN derived from large-scale resting-
state rs-fMRI data of a healthy adult population (Yeo et al.,
2011). Quantitativemetrics include themean Z-score within each
ICN template, reflecting the extent of tau deposition in relation
to control values, as well as a goodness-of-fit (GOF) score for
each ICN template quantifying the spatial correspondence of the
cortex-wide tau deposition pattern with the functional network
topography. GOF scores are calculated as the difference between
the mean Z-score value of voxels falling within a given ICN
template and themean Z-score value of cortical voxels outside the
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ICN template (Greicius et al., 2004; Lehmann et al., 2013). Thus,
a positive GOF-score indicates a relative preference of cortex-
wide tau deposition to occur within the respective ICN, whereas
a uniform distribution of tau deposition across the cortex would
result in GOF-scores close to zero for all ICNs.

One sample t-tests were used to assess the significance
of ICN-specific increases in tau deposition in the patient
groups compared to the respective control groups (mean Z-
scores per ICN), as well as the significance of the spatial
correspondence of the AD-typical tau deposition with a given
ICN (positive GOF-scores). Statistical significance was set at
p < 0.05 (two-tailed), Bonferroni-corrected for the number of
networks assessed.

In our primary analysis we used an ICN definition based
on a recently published functional parcellation scheme of the

human brain into seven major ICNs, including the 1, DMN;
2, frontoparietal-control network (FPN); 3, dorsal attention
network (DAN); 4, ventral attention network (VAN); 5, limbic
network (LIM); 6, visual network (VIS) and 7, somatomotor
network (SMN; Figure 1, Supplementary Figure 1; Yeo et al.,
2011; https://sites.google.com/site/yeoyeo02/software). While
these principal large-scale ICNs are consistently reproduced in rs-
fMRI based functional parcellations across several independent
cohorts and using diverse parcellation methods (Greicius et al.,
2003; Damoiseaux et al., 2006; Fox et al., 2006; Cohen et al.,
2008; Kahn et al., 2008; Vincent et al., 2008; Smith et al., 2009;
Bellec et al., 2010; Power et al., 2011; Jones et al., 2012; Das
et al., 2015; Pascual et al., 2015), there is currently no established
way of unambiguously defining the most appropriate number
of separate connectivity modules within the brain’s functional

FIGURE 1 | Brain-wide patterns of increased tau deposition in the BioFINDER and ADNI cohorts and illustration of the standardized intrinsic

connectivity networks (for details see Supplementary Figure 1). The top and bottom row images represent mean Z-score images of the BioFINDER and ADNI

patient samples. Note the different scales used for color-coded visualization of mean Z-score values in the BioFINDER and ADNI patient samples.
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TABLE 1 | Demographics.

Age (y) Sex (M/F) Education (y) MMSE % prodromal AD patients

HC BioFINDER (n = 17) 73.1 ± 6.1 9/8 12.2 ± 4.5 29.4 ± 0.9

Patients BioFINDER (n = 27) 73.8 ± 5.7 18/9 12.0 ± 3.9 21.9 ± 5.5* 41

HC ADNI (n = 19) 73.7 ± 6.3 7/12 15.7 ± 2.6 28.6 ± 1.6

Patients ADNI (n = 16) 81.0 ± 6.1# 12/4 16.1 ± 3.2 25.8 ± 2.5# 75

Demographics of all participants, all values are mean ±standard deviation unless stated otherwise. HC, Healthy controls; MMSE, Mini mental state examination.

*significantly different from HC (BioFINDER); #Significantly different from HC (ADNI); p < 0.05; Kruskal-Wallis H test with Dunn’s post-hoc test.

connectivity architecture, and at higher parcellation resolutions,
the principal large-scale ICNs typically fractionate into further
submodules (Andrews-Hanna et al., 2010; Power et al., 2011).
Thus, in a secondary analysis we assessed the network-specificity
of the AD-typical tau deposition pattern using a more fine-
grained parcellation scheme into 17 functional subnetworks
(Yeo et al., 2011): 1, Higher visual; 2, Primary visual; 3, Dorsal
SMN; 4, Ventral SMN-auditory; 5, Posterior DAN; 6, Frontal eye
field-DAN; 7, Posterior VAN; 8, Anterior VAN; 9, Temporal pole-
Anterior medial temporal lobe (MTL) LIM; 10, Orbitofrontal
LIM; 11, Precuneus non-DMN; 12, FPN component 1; 13,
FPN component 2; 14, Lateral-temporal DMN/language; 5,
Posterior MTL-retrosplenial DMN; 16, Midline DMN; 17,
Anterior DMN (these codes are consequently used in graphs and
tables).

The spatial correspondence between regional tau distribution
profiles in the independent BioFINDER and ADNI samples was
assessed using Pearson’s correlation across all cortical voxels of
the mean Z-score maps from the respective cohorts (Buckner
et al., 2009).

RESULTS

Participants
Demographics for all participants are displayed in Table 1.
There was no statistically significant difference in age between
the BioFINDER groups, but the ADNI HC were significantly
younger than the ADNI patient group. Patient groups in both
BioFINDER and ADNI performed significantly worse on the
MMSE when compared to the respective HC.

Consistent Brain-Wide Pattern of
Increased 18F-AV-1451 Uptake in AD
Figure 1 shows mean Z-score images of the AD patients from the
BioFINDER and the ADNI cohort, respectively. The BioFINDER
sample with its higher proportion of manifest AD dementia
cases displayed clear-cut 18F-AV-1451 uptake in the lateral and
inferior temporal lobes with partial involvement of the lateral
parietal and occipital cortices, as well as in the precuneus
and posterior cingulate. The ADNI sample with its greater
proportion of prodromal AD cases exhibited less pronounced
ligand uptake, albeit demonstrating a very similar spatial
distribution profile across all cortical voxels (r = 0.79, p < 0.001;
Figures 1, 2).

FIGURE 2 | Consistency of tau deposition pattern across cohorts. Mean

voxelwise cortical Z-scores for the BioFINDER and ADNI sample were highly

correlated.

The Brain-Wide Pattern of Increased
18F-AV-1451 Uptake in AD Overlaps with
Several Functional Brain Networks Related
to Higher Cognition
Biofinder Sample

Increased AV-1451 uptake was observed in all seven main ICNs
at a corrected alpha level = 0.05/7 = 0.007 (Z-scores different
from 0, Table 2, Figure 3A), but AV-1451 retention was not
homogeneously distributed across these networks. The gradient
of severity of tau accumulation followed the order: DAN >

VIS > DMN > LIM > FPN > VAN > SMN. Accordingly,
positive GOF-scores, indicating a preferential tau accumulation
in relation to brain-wide uptake, were observed for the DAN (p
< 0.001), with trends (p < 0.05) for the VIS (p = 0.03), and the
DMN (p= 0.04; Table 2, Figure 3B).

Fifteen of the 17 subnetworks showed significantly increased
AV-1451 uptake at a corrected alpha level = 0.05/17 = 0.003
(Z-scores different from 0, Table 3, Figure 4A). Most clear AV-
1451 uptake was observed in nodes of the posterior DAN (5), a
lateral temporal/language subnetwork of the DMN (14), a medial
parietal/precuneal component of the FPN (11), a higher visual
network (1), and a posterior MTL/retrosplenial subnetwork of
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the DMN (15) (all z-score >5). Least pronounced uptake was
seen in the dorsal and ventral SMN (3, 4) and the orbitofrontal
node of the limbic network (10) (all z-scores ≤2.5).

TABLE 2 | Z- and Goodness-of-fit scores for AV-1451 uptake in seven

large-scale networks in the BioFINDER sample.

One-sample t-test, test value = 0

Mean SD t Sig. (2-tailed)

z_DAN 3.246 3.2579 5.177 0.000

z_VIS 3.118 2.8011 5.784 0.000

z_DMN 2.894 3.2823 4.581 0.000

z_LIM 2.736 2.5115 5.660 0.000

z_FPN 2.233 2.8461 4.077 0.000

z_VAN 2.055 2.6086 4.093 0.000

z_SMN 0.895 1.2064 3.856 0.001

GOF_DAN 0.868 1.3779 3.273 0.003

GOF_VIS 0.769 1.7645 2.264 0.032

GOF_DMN 0.537 1.2987 2.149 0.041

GOF_LIM 0.281 1.4948 0.976 0.338

GOF_FPN −0.288 0.9409 −1.592 0.123

GOF_VAN −0.474 0.9514 −2.587 0.016

GOF_SMN −1.859 1.8978 −5.089 0.000

Statistically significant positive GOF scores (p < 0.003) were
observed for a total of six subnetworks: posterior DAN (5),
lateral-temporal language (14), precuneus non-DMN (11), higher
visual (1), posterior MTL-retrosplenial (15), and medial parietal
and lateral frontoparietal components (12; Table 3, Figure 4B).

ADNI Sample

At a corrected alpha-level of p < 0.007, we observed no
significantly increased AV-1451 uptake compared to the control
group within any of the seven large-scale brain networks.
However, in accordance with the very high similarity in the
voxel-wise regional distribution profile (Figure 2), the overall
rank order of network involvement was very similar to the
pattern in the BioFINDER sample (DAN > VIS > LIM >

DMN > FPN > VAN > SMN), and trends for increased AV-
1451 uptake compared to the control group were noted in the
DAN (p = 0.045), LIM (p = 0.057), and DMN (p = 0.062;
Table 4, Figure 3C). The only network that showed a trend for a
significantly positive GOF score was the DAN (p= 0.03; Table 4,
Figure 3D).

At a corrected alpha-level of p < 0.003, none of the 17
subnetworks showed significantly increased tau uptake compared
to the control group. However, similar to the findings in the
BioFINDER sample, trends (p < 0.05) were observed for the

FIGURE 3 | Mean Z- and Goodness-of-fit scores for each of the seven main networks in the BioFINDER (A,B) and ADNI (C,D) samples. Error bars

represent 1 standard error.
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TABLE 3 | Z- and Goodness-of-fit scores for AV-1451 uptake in 17

sub-networks in the BioFINDER sample.

One sample t-test, test value = 0

Mean SD t Sig. (2-tailed)

Z-score_5 6.631 4.6036 7.485 0.000

Z-score_14 6.330 4.2898 7.667 0.000

Z-score_11 5.829 5.3535 5.658 0.000

Z-score_1 5.605 4.1096 7.087 0.000

Z-score_15 5.258 3.8827 7.036 0.000

Z-score_12 4.794 3.7445 6.652 0.000

Z-score_16 4.576 4.3093 5.518 0.000

Z-score_9 4.504 2.4032 9.738 0.000

Z-score_2 4.155 4.4634 4.838 0.000

Z-score_17 3.657 2.8548 6.655 0.000

Z-score_13 3.501 3.0659 5.934 0.000

Z-score_6 3.476 3.1934 5.656 0.000

Z-score_8 3.321 3.6034 4.789 0.000

Z-score_7 3.287 3.0157 5.664 0.000

Z-score_4 2.546 2.6970 4.905 0.000

Z-score_10 1.835 3.1176 3.058 0.005

Z-score_3 1.313 2.3167 2.944 0.007

GOF_5 2.767 2.3600 6.092 0.000

GOF_14 2.363 1.9453 6.313 0.000

GOF_11 1.825 2.8125 3.372 0.002

GOF_1 1.709 2.6350 3.371 0.002

GOF_15 1.239 1.4417 4.467 0.000

GOF_12 0.804 1.2682 3.293 0.003

GOF_16 0.583 2.1319 1.421 0.167

GOF_9 0.484 2.2731 1.106 0.279

GOF_2 0.118 3.2155 0.191 0.850

GOF_17 −0.428 1.6645 −1.336 0.193

GOF_13 −0.587 1.4408 −2.117 0.044

GOF_6 −0.599 1.5241 −2.041 0.052

GOF_8 −0.769 2.1268 −1.879 0.072

GOF_7 −0.808 1.3893 −3.024 0.006

GOF_4 −1.594 1.6980 −4.879 0.000

GOF_10 −2.295 2.8371 −4.202 0.000

GOF_3 −2.938 2.5030 −6.100 0.000

posterior DAN (5), a medial parietal/precuneal component of
the FPN (11), as well as the temporal pole-anterior MTL
limbic subnetwork (9), and posterior MTL/retrosplenial (15)
and midline (16) subnetworks of the DMN. Further, similar to
the findings in the BioFINDER sample, the weakest uptake was
seen in the dorsal and ventral somatomotor networks (3, 4),
the posterior VAN (7), and the orbitofrontal node of the limbic
network (10) (Table 5, Figure 4C). A significant positive GOF
score was only observed for the posterior DAN (p = 0.003;
Table 5, Figure 4D).

DISCUSSION

In the present study, we examined the spatial distribution
of 18F-AV-1451 retention, likely representing the presence of

hyperphosporylated tau pathology, in the brains of prodromal
and clinically manifest AD patients in relation to the spatial
extent of predefined templates of functional brain networks.
In the past years, emerging evidence for a consistent regional
deposition pattern of in vivo tau PET ligands in AD supports
a typical involvement of the inferior and lateral temporal lobes,
precuneus and posterior cingulate, as well as occipital and lateral
parietal lobes (Brier et al., 2016; Ishiki et al., 2015; Johnson et al.,
2016; Ossenkoppele et al., 2016; Schwarz et al., 2016). Our voxel-
wise (average Z-score) maps of regional AV-1451 distribution
reflect these reports of regional tau PET-ligand retention
in independent AD cohorts. Accordingly, the regional tau
distribution profiles were very similar between the independent
BioFINDER and ADNI cohorts of our study, despite obvious
differences in recruitment criteria, PET scanning platforms,
disease severity, and age. The ADNI sample featuring a greater
proportion of prodromal AD cases consequently demonstrated
a slightly alleviated AV-1451 signal when compared to the
BioFINDER sample.

Previous research has suggested that AD pathology and
related brain atrophy predominantly target the DMN (Seeley
et al., 2009), a finding we could not confirm for the in
vivo measures of AD-related tau pathology in our study.
This is in line with a previous investigation of network-
specific atrophy measures in AD (Grothe and Teipel, 2016),
indicating little specificity for the entire DMN, but rather a
distinct spatial overlap with an anterior limbic subnetwork.
Here, we found increased tau deposition in limbic and
DMN network components, but especially posterior cortical
networks (dorsal attention and higher visual networks). A
recent publication reported a significant correlation between
regional AV-1451 ligand uptake and FDG-PET measures of
neurodegeneration across AD patients of differing clinical
phenotypes (Ossenkoppele et al., 2015, 2016). However, spatial
correspondence of the two imaging modalities was far from
being complete (r = −0.49 to −0.60), and future studies will
have to further explore similarities and differences in the in
vivo spatial distribution profiles of AD-related tau pathology and
neurodegeneration, as well as their respective relations to the
spatial topography of intrinsic brain networks (Sepulcre et al.,
2016).

The posterior cortical predominance of in vivo tau deposition,
also corroborated by the above-mentioned reports, contrasts
partly with neuropathological assessments of regional tau
deposition severity in post mortem tissue (Braak and Braak,
1991; Braak et al., 2006) where no such posterior predominance
has been reported. It should be taken into account, however,
that neuropathological sampling techniques commonly examine
selected slices from different brain regions and are not
necessarily comparable to an averaged quantification of tau
PET ligand uptake within a specific brain region. Moreover,
the distinct distribution profile of AV-1451 may be determined
by a specific binding to certain types of tau aggregates,
such as indicated by a recent study showing a relatively
selective binding of AV-1451 to neurofibrillary tangles as
compared to the paired helical tau filaments found in neuropil
threads and neuritic plaques (Braak et al., 1986; Ono et al.,
2017).
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FIGURE 4 | Mean Z- and Goodness-of-fit scores for each of the 17 sub-networks in the BioFINDER (A,B) and ADNI (C,D) samples. Error bars represent 1

standard error.

TABLE 4 | Z- and Goodness-of-fit scores for AV-1451 uptake in seven

large-scale networks in the ADNI sample.

One sample t-test, test value = 0

Mean SD t Sig. (2-tailed)

z_DAN 0.862 1.578 2.186 0.045

z_VIS 0.720 1.533 1.879 0.080

z_LIMB 0.650 1.260 2.063 0.057

z_DMN 0.617 1.223 2.019 0.062

z_FPN 0.498 1.284 1.551 0.142

z_VAN 0.358 1.144 1.252 0.230

z_SMN 0.130 0.881 0.592 0.563

GOF_DAN 0.354 0.585 2.418 0.029

GOF_VIS 0.205 0.825 0.995 0.335

GOF_LIMB 0.110 0.346 1.269 0.224

GOF_DMN 0.087 0.343 1.019 0.324

GOF_FPN −.061 0.391 −0.619 0.545

GOF_VAN −0.213 0.416 −2.055 0.058

GOF_SMN −0.492 0.518 −3.796 0.002

Nonetheless, tau deposition in ADmight exhibit regional non-
linearity, occurring early in allocortical regions of the MTL, but
in greater absolute amounts at later disease stages in isocortical

areas. This is in line with the here observed relatively more
pronounced involvement of MTL/limbic subnetworks (e.g., 9,
Temporal pole-Anterior MTL LIM and 15, Posterior MTL-
retrosplenial DMN) in the more prodromal ADNI sample
compared to BioFINDER sample (see Figure 4).Moreover, in our
study tau deposition was not quantified absolutely but relative
to cognitively healthy controls, a group that has previously
been reported to exhibit significant tau deposition in MTL and
related limbic circuits (primary age-related tauopathy, PART;
Crary et al., 2014; Schöll et al., 2016), which may result in an
underestimation of absolute MTL/limbic AV-1451 retention in
patient groups as represented in our mean Z-maps.

On a methodological note, tau-sensitive PET ligands might
exhibit regionally differing saturation rates of ligand uptake,
leading to over- or underestimation of actual regional tau
pathology by interpretation of tau PET data; however, this has
hitherto only been reported for another tau PET ligand, not
AV-1451 (Lemoine et al., 2015; Marquié et al., 2015; Smith
et al., 2016). In addition, several nuisance factors could have
influenced our results and have not been taken into account
when interpreting our results. Both study samples were relatively
small and were not matched for age, education level, or disease
severity. We used plain Z-scores to examine spatial AV-1451
retention patterns, not adjusting for any covariates which might
have affected group differences.
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TABLE 5 | Z- and Goodness-of-fit scores for AV-1451 uptake in 17

sub-networks in the ADNI sample.

One sample t-test, test Value = 0

Mean SD t Sig. (2-tailed)

Z-score_5 1.235 2.059 2.398 0.030

Z-score_15 1.131 1.601 2.825 0.013

Z-score_11 1.049 1.828 2.294 0.037

Z-score_9 0.866 1.582 2.189 0.045

Z-score_16 0.800 1.408 2.272 0.038

Z-score_12 0.637 1.358 1.875 0.080

Z-score_1 0.622 1.730 1.438 0.171

Z-score_2 0.559 1.227 1.821 0.089

Z-score_14 0.546 1.141 1.914 0.075

Z-score_6 0.440 1.155 1.522 0.149

Z-score_13 0.424 1.312 1.293 0.216

Z-score_17 0.411 1.078 1.523 0.148

Z-score_8 0.393 1.257 1.251 0.230

Z-score_10 0.360 1.029 1.400 0.182

Z-score_7 0.346 1.155 1.199 0.249

Z-score_3 0.166 0.882 0.752 0.464

Z-score_4 0.032 1.041 0.122 0.905

GOF_5 0.732 1.092 2.683 0.017

GOF_15 0.594 0.656 3.622 0.003

GOF_11 0.510 1.090 1.873 0.081

GOF_9 0.332 0.606 2.195 0.044

GOF_16 0.274 0.455 2.407 0.029

GOF_12 0.093 0.406 0.917 0.373

GOF_1 0.079 1.084 0.291 0.775

GOF_2 0.010 0.844 0.046 0.964

GOF_14 −0.004 0.373 −0.041 0.968

GOF_6 −0.116 0.394 −1.179 0.257

GOF_13 −0.136 0.480 −1.134 0.275

GOF_17 −0.154 0.337 −1.827 0.088

GOF_8 −0.167 0.477 −1.398 0.183

GOF_10 −0.197 0.749 −1.050 0.310

GOF_7 −0.217 0.420 −2.071 0.056

GOF_3 −0.413 0.672 −2.458 0.027

GOF_4 −0.551 0.640 −3.445 0.004

According to our present findings, AD-typical tau deposition
predominantly targets higher-order cognitive networks over
primary sensory-motor networks, but is not specific for the
DMN or any other single large-scale functional brain network
as a whole. This finding has implications for popular models
of network specific spread of tau pathology derived from
observations of prion-like mechanisms of transsynaptic tau
transmission in animal models. According to these models,
tau deposition within a given seed region would primarily
spread within the interconnected network of this brain region,
before it spreads to separate networks (Fox et al., 2011; Liu
et al., 2012; Spires-Jones and Hyman, 2014; Menkes-Caspi et al.,
2015). Our finding of a disproportionate affection of specific
submodules within large-scale functional brain networks could

be explained by a combination of (i) transsynaptic spread process
and (ii) inherent regional differences in the vulnerability to
tau accumulation. Tau may spread to all intrinsic network
connections of one specific seed region, but only accumulate
in those areas that exhibit an inherent susceptibility to tau
aggregation, possibly determined by its specific functional role
and molecular architecture (Zhou et al., 2012; Freer et al., 2016).
Furthermore, our observation of a fairly parallel affection of
several distinct (higher-order) brain networks in AD may point
to the existence of several parallel seed regions of tau progression,
rather than a single disease “epicenter” (Seeley et al., 2009; Zhou
et al., 2012).

In conclusion, the present study indicates that the regional
deposition of hyperphosphorylated tau aggregates in AD does
not specifically target the default-mode or related limbic
networks, but more generally affects higher-order cognitive over
primary sensory-motor networks.
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