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Misfolding and aggregation of alpha-synuclein (αsyn) resulting in cytotoxicity is a hallmark

of Parkinson’s disease (PD) and related synucleinopathies. The recent body of evidence

indicates that αsyn can be released from neuronal cells by nonconventional exocytosis

involving extracellular vesicles (EVs) such as exosomes. The transfer of αsyn between

cells has been proposed to be an important mechanism of disease propagation in PD.

To date, exosome trafficking mechanisms, including release and cell-cell transmission,

have not been fully described. To gain insight into the mechanisms involved, exosomes

were purified from conditioned media of stable cells secreting αsyn oligomers. A novel

bimolecular protein complementation assay was used to detect exosomes containing

αsyn oligomers. Recipient cells were treated with exosomes containing αsyn oligomers

or “free” non-exosome-associated αsyn oligomers and internalization was monitored.

We demonstrate that cell-derived exosome-associated αsyn oligomers can be efficiently

internalized by recipient cells. Interestingly exosome-free αsyn oligomers isolated from

conditioned medium were not internalized but remained bound to the extracellular

surface. To investigate the endocytic pathway(s) required for the exosome uptake

different pharmacological inhibitors of caveolin-dependent, clathrin-dependent, and

macropinocytosis pathways were utilized. Surprisingly, none of these pathways appear

to play a significant role in the internalization of exosome-associated αsyn oligomers.

Finally, the role of heparin sulfate proteoglycans (HSPGs) in exosome-associated

αsyn internalization was investigated using genetic approach. Despite previous studies

showing HSPGs can modulate internalization of fibrillar αsyn, genetic manipulations

did not attenuate internalization of exosome-associated αsyn oligomers in our hands,

suggesting that exosome-associated αsyn is internalized via an alternative endocytic

pathway(s) that has yet to be elucidated.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, with only partial symptomatic
therapy and no disease modifying therapies. The accumulation
and aggregation of the protein alpha-synuclein (αsyn) is
causatively linked both genetically and pathologically to PD
(Polymeropoulos et al., 1997; Spillantini et al., 1997). αSyn is a
small presynaptic protein generally found under physiological
conditions as a monomeric, unfolded, and soluble protein.
However, several factors can trigger αsyn misfolding leading
to the formation of intermediate soluble species, oligomers,
and protofibrils, which become insoluble β-sheet-rich fibrils
and are found deposited into the cytosol of affected neurons
and are known as Lewy bodies (Forno, 1996; Spillantini et al.,
1997; Halliday et al., 2011). A large body of evidence points
to the prefibrillar αsyn oligomers as a source of αsyn-induced
toxicity (Conway et al., 2000; Volles et al., 2001; Lashuel et al.,
2002; Sharon et al., 2003; Kayed et al., 2004; Danzer et al., 2007,
2011; Winner et al., 2011) and although the exact mechanism
of αsyn-induced toxicity remains unknown, inhibition of αsyn
oligomerization has been explored as a potential therapeutic
strategy and explains the growing interest in monitoring these
species. Another feature of PD is the possible spread of misfolded
αsyn along distinct neuroanatomical pathways suggesting a
sequential transfer and misfolding event underlies the pathology
and progression of the disease. The propagation of aggregated
proteins between cells has been proposed to be an important
mechanism of disease propagation not only in PD (El-Agnaf
et al., 2006; Desplats et al., 2009; Olanow and Prusiner, 2009)
but also other neurodegenerative disorders such as Alzheimer’s
disease, Amyotrophic lateral sclerosis (ALS), or Huntington’s
disease (Ren et al., 2009; Münch et al., 2011; Guo and Lee,
2014). The process by which oligomers are internalized into
target cells and exit cells remains largely unknown and has
resulted in great debate in the literature. The involvement
of extracellular vesicles (EVs) such as exosomes has received
increasing attention in synucleinopathies and in the field of
neurodegeneration in general (Ghidoni et al., 2008; De Toro
et al., 2015; Quek and Hill, 2016). EVs can function as shuttles
for the delivery of cargo between cells and play a crucial
role in cell-to-cell communication. Interestingly, in the last
decade a number of proteins involved in neurodegenerative
disorders have been identified in their normal and pathogenic
states to be associated with EVs and in particular exosomes
including PrP, tau, Aβ, SOD1, and most importantly αsyn
(Rajendran et al., 2006; Gomes et al., 2007; Vella et al.,
2007; Danzer et al., 2012; Saman et al., 2012). This discovery
underscores a potential pathogenic role for EVs as vehicles
to transfer toxic aggregated proteins between cells in disease
conditions.

Exosomes are small membrane vesicles ranging from 40 to
100 nm in diameter that represent one population of EVs.
Various cell types including neurons, astrocytes, and glia, have
the capacity to release these vesicles into the extracellular
space where they are later found in body fluids such as urine,
blood, and cerebrospinal fluid (CSF; Théry et al., 2006; Keller

et al., 2011). Exosomes originate from the inward budding
of endosomes into multivesicular bodies (MVBs) to form
intraluminal vesicles that are then directed outside of the
cells (Kowal et al., 2014). They can carry lipids, proteins, and
nucleic acids that are eventually released into neighboring cells
cytoplasm. The process of internalization is still elusive but can
occur through direct fusion of the plasma membrane or required
receptor-mediated endocytosis. Depending on the recipient
cells, internalization has been described to occur through
various mechanisms such as clathrin-mediated endocytosis
in neuronal cells (Frühbeis et al., 2013; Tian et al., 2014),
clathrin-independent but cholesterol- and lipid raft-dependent
endocytosis in endothelial and some tumor cells (Svensson
et al., 2013) or caveolae-dependent endocytosis in epithelial cells
(Nanbo et al., 2013).

EVs seem to play an important role in PD transmission and
consequently have generated great interest for potential
applications in both diagnostics and therapeutics of
neurodegenerative disorders. Thus, it appears crucial to
better understand their molecular mechanisms of interaction
with target cells. The objective of the present study is to
elucidate the role of exosomes in the transmission of oligomeric
forms of αsyn and shed new light on the route(s) leading
to their internalization into recipient cells. We previously
described a cell based assay where exosome–associated
αsyn oligomers could be produced and monitored using a
highly sensitive bioluminescence protein complementation
assay (Danzer et al., 2012). Taking advantage of this new
technology, we purified exosomes from conditioned media
of a newly generated stable cells line (Moussaud et al.,
2015) secreting αsyn oligomers and investigated endocytic
pathway(s) required for their uptake. An understanding
of these events will clarify the therapeutic potential of
enzymes that regulate protein trafficking and degradation
in synucleinopathies.

MATERIALS AND METHODS

Cells Culture
A stable human H4 neuroglioma cell line coexpressing human
αsyn tagged with either the amino-terminal (SL1) or the carboxy-
terminal fragments (SL2) of Gaussia princeps luciferase was
generated and described previously (Moussaud et al., 2015).
SL1SL2 cells were maintained at 37◦C in a 95% air/5% CO2

humidified incubator in Opti-MEM supplemented with 10%
FBS. To block the expression of the transgenes (SL1 and SL2),
cells were cultured in the presence of 1 µg/ml tetracycline
(Invitrogen). Human H4 neuroglioma cells (H4 cells; ATCC,
USA) were maintained in Opti-MEM I Reduced Serum Medium
(Life Technologies) supplemented with 10% Fetal Bovine Serum
(Sigma) (FBS) at 37◦C in a 95% air/5% CO2 humidified
incubator. Cells were plated 24 h prior to uptake assay growing
to 80–90% confluency. Chinese hamster ovary (CHO) cells,Wild-
type (CHO-K1) andmutant (pgsA-745, pgsD-677) (ATCC, USA)
were maintained at 37◦C in a 95% air/5% CO2 humidified
incubator and were grown inOpti-MEM supplemented with 10%
FBS.
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Exosome Isolation Purification
Secreted extracellular vesicles were isolated from cell culture
medium of SL1SL2 stable cell line by multiple centrifugation
steps essentially as previously described (Danzer et al., 2012).
Sub confluent SL1SL2 cells were cultured in FBS-free OptiMEM
without phenol red (Thermo Fisher). Conditioned medium was
collected after 96 h and centrifuged at 300 × g for 10 min to
remove cell debris. This was followed by two filtration steps
with 45 and 22 uM filtration systems (Fisher Scientific) and
then a 10,000 × g centrifugation at 4◦C for 30min. Exosomes
were pelleted by ultracentrifugation at 100,000 × g for 70 min
repeated twice. To validate the presence and purity of intact
exosomes, western blot analysis was performed and the size of
the vesicles was analyzed using nanoparticle tracking system,
the NanoSight LM10 (Malvern, Amesbury, UK) and NTA2.3
software. Each vesicle preparation was stored at −80◦C until
further use.

Cellular Uptake Assay
For internalization assay, H4 cells were grown to subconfluency
on a 96 well plate and incubated with SL1SL2 exosomes
(3 × 108 particles/mL) diluted in phenol red-free and serum-
free conditions for the indicated times at 37◦C, washed twice
for 5 min each with PBS and incubated for 1 min with
0.01% trypsin to remove any bound protein on the external
cell surface when indicated. Each of the samples was analyzed
for internalization by performing a luciferase assay. Luciferase
activity from oligomer formation was measured in live cells
using a Wallac Victor 3 multilabel counter (PerkinElmer;
Waltham, MA) at 480 nm following the injection of the cell
permeable substrate, coelenterazine (20mM,NanoLight). Uptake
assays were also performed in the presence of pharmacological
compounds and analyzed for luminescence after 1 h at 37 or 4◦C
when indicated.

Pharmacological Treatments
H4 cells were preincubated for 30 min to 2 h at 37◦C in DMEM
containing different inhibitors of endocytosis. For inhibition of
clathrin-dependent endocytosis, samples were pretreated for 30
min with 10 mg/ml Chlorpromazine (CPZ); for disruption of
caveolar endocytosis, cells were pretreated for 2 h with 25 mg/ml
nystatin and lastly cells were pretreated with cytochalasin D at
2µM to block macropinocytosis. All reagents and compounds
were from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise
noted. Inhibitors were present in all subsequent steps of
the experiments. The specificity of each inhibitor treatment
was evaluated by monitoring the internalization of fluorescent
endocytic markers: Alexa-488-Transferrin (Tfn), Alexa-488-
Dextran D, and Alexa-488-Choleratoxin B. Cell viability was
90% for each inhibitor treatment as judged by Trypan blue
staining.

Western Blotting
Cells or exosomes were washed with ice-cold PBS and lysed in
a reducing RIPA buffer (Millipore) supplemented with 5% (v/v)
complete mini protease inhibitor mixture (Roche Diagnostics).
For CD9 antibody requiring non-reduced conditions, samples

were lysed in Triton-X buffer [20 mM Tris-HCl, pH 8.0, 137 mM
NaCl, 1% (v/v) Triton X-100, 2 mM EDTA] supplemented with
complete mini protease inhibitor mixture. Proteins were then
separated by electrophoresis in a 4–12% Bis-Tris gradient gels,
blotted on PVDF membranes (Millipore), and developed using
HRP substrate. Immunoblots were probed with the following
antibodies for 1 h at room temperature: Flotillin-1 (1:3,000, rabbit
polyclonal, Novus), TSG101 (1:1000, rabbit polyclonal, Abcam),
CD9 (1:1000, mouse monoclonal, Novus), GM130 (1:5000, rabbit
polyclonal, Abcam), αsyn (anti-αsyn clone 4B12, 1:3,000, mouse
monoclonal, Covance), and Actin (anti-β-actin 1:10,000, rabbit
polyclonal, Sigma). The membranes were washed and incubated
with HRP-conjugated secondary antibodies (Southern BioTech)
for 1 h at room temperature. Protein was detected by using ECL
Western Blotting substrate (Millipore) and a chemiluminescence
camera.

Statistic
All quantified data represent an average of triplicates. Data
were analyzed using GraphPad Prism 6 (San Diego, CA) and
are presented as mean standard ± standard error of the mean
(S.E.M.) Statistical significance was determined using a Student’s
t-test or One-way analysis of variance with Tukey’s multiple
comparison post-hoc. p < 0.05 was considered significant.

RESULTS

SL1SL2 Cell Line Produced
Exosomes-Associated αsyn Oligomers
Recent work from our group and others (Emmanouilidou et al.,
2010; Alvarez-Erviti et al., 2011; Danzer et al., 2012) suggests
that secretion of αsyn, and especially oligomeric species, is
in association with membrane vesicles, identified as exosomes.
These carriers of αsyn can be transported from cell to cell and
thusmay provide an explanation for the spread of αsyn pathology
in PD patients. Despite growing evidence for the role of these
extracellular vesicles as carriers of αsyn, little is known about
the mechanism of entry into neighboring cells. In this present
study we took advantage of a recently generated stable cell line
(Moussaud et al., 2015) to purify exosomes containing αsyn
oligomers and investigate internalization into H4 neuroglioma
recipient cells. Briefly, in this SL1SL2 cell line, two h αsyn proteins
fused to N- or C-terminal halves of a luciferase reporter can
reconstitute the enzymatic activity of gaussia luciferase when
αsyn-αsyn interactions occur, thus providing a readout for the
presence of αsyn oligomeric species. The culture medium of
SL1SL2 stable cells was collected and sequentially centrifuged in
order to isolate EVs. The resulting exosome pellet first underwent
quality control analyses. The homogeneity of the exosomes used
in this study was confirmed by nanoparticle tracking analysis
showing a population of vesicles with a size distribution peaking
at a diameter between 90 and 120 nm (Figure 1A). In this study,
the supernatant obtained after the first ultracentrifuge step was
kept and also analyzed by Nanosight. As presented in Figure 1A

(bottom), the amount of exosomes remaining in the supernatant
(1.02 × 108 particles/ml) is negligible compared to the much
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FIGURE 1 | Detection of αsyn oligomers in SL1 SL2 human neurogliomal cell derived -exosome. (A) Characterization of H4-derived vesicles by nanoparticle

tracking; (Top) Representative particle size distribution of exosome preparation; (bottom) Average concentration of nano vesicles in the exosomal fraction as well as in

the supernatant. (B) Immunoblot analysis of SL1SL2 cells and exosome-like vesicles for the exosomal markers flotillin-1, CD9, TSG101, the ER marker GM130, and

Actin. αSyn was detected with an antibody speficic for human αsyn (clone 4B12) in the cell line and in the exosome (C) αsyn oligomers detection via luciferase assay

in the supernatant and exosomes isolated from Sl1 to Sl2 cell line.

higher vesicle number in the exosome suspension (3 × 109

particles/ml).
Exosomes can also be characterized by the presence

and enrichment of specific proteins as a consequence of
their endosomal origin. Exosomes contain proteins involved
in membrane transport and fusion (annexins, flotilin), in
multivesicular bodies biogenesis (Tumor susceptibility gene 101;
TSG101) and also integrins and tetraspanins (CD9, CD63, CD81;
Thery et al., 2002) but will be devoid of proteins of mitochondrial,
nuclear, ER, or Golgi origin. Our preparations were characterized
by western blotting (Figure 1B) for the presence of exosomal

markers Flotillin-1, CD9, and TSG101 and the absence of Golgi
marker (GM130) or cytoskeleton marker (Actin) demonstrating
the purity of our vesicles. Importantly, we were able to detect
the presence of αsyn in our exosome preparation purified
from SL1SL2 conditioned media when probing with anti-αsyn
antibody (clone 4B12). To go further, the exosome pellet and
supernatant were analyzed for luciferase activity, indicative of
the presence of αsyn oligomeric species. As shown in Figure 1C,
luciferase activity was detected in both the supernatant and
the exosome samples. These data highlight the presence of two
populations of αsyn oligomers in our experimental set up. The
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αsyn oligomers found in the supernatant are considered as “free”
or “naked” αsyn, whereas αsyn oligomers in the exosome fraction
are exosome-associated αsyn.

Exosome-Associated αsyn Are Efficiently
Internalized vs. Free αsyn Oligomers
Several lines of evidence suggest that exosomes are taken up
by neighboring cells. To investigate the specific internalization
of αsyn oligomers we set up an uptake assay using naïve H4
cells as recipient cells. Recipient cells were treated with either
exosomes containing αsyn oligomers or free-αsyn oligomers
from the supernatant and the subsequent entry into target cells
was monitored using a luciferase assay at different time point.
Luciferase activity was detected as early as 1 h after the addition
of exosomes or the supernatant (Figures 2A,C) indicating rapid
uptake of exosomes, and αsyn oligomers entered recipient
cells in a time-dependent manner. Initially, no difference was
observed in the internalization of free oligomers (supernatant)
vs. exosome-associated oligomers suggestive of uptake that
is independent of vesicle-association. However, to distinguish
between internalized and surface-bound αsyn, we repeated the
uptake assay including a brief trypsinization step before the
luciferase assay. Interestingly, trypsinization of recipient cells
had no effect on the luciferase activity from exosome treated
cells (Figure 2B) but dramatically reduced the luciferase activity
in cells treated with free αsyn oligomers to background levels
(Figure 2D). These data demonstrate that whereas exosome-
associated αsyn oligomers are internalized into recipient cells,
free αsyn oligomers appear to remain bound to the extracellular
cell surface and are not internalized.

Effects of Endocytosis Inhibitors on
Internalization of αsyn-Associated
Exosome
The uptake mechanism of exosomes has been a matter of
debate with the mechanism of entry of these nano vesicles
still poorly understood. Multiple pathways that can mediate
endocytosis, including phagocytosis, macropinocytosis, clathrin-
mediated endocytosis, caveolae-mediated endocytosis have been
hypothesized as possible routes of entry depending on the nature
of the recipient cells. First, to rule out if exosomes containing
αsyn oligomers enter cells through direct fusion with the plasma
membrane of recipient cells (non-energy dependent process) or
via endocytosis, we investigated the uptake efficiency at 37 or
4◦C for 1 h incubation respectively. In this context we observed
that incubation at 4◦C efficiently attenuated significantly the
uptake (Figure 3A), suggesting an energy-dependent process
rather than passive membrane passage and consistent with an
endocytic process rather than membrane fusion as exosomes
followed a time (Figures 2A,B) and temperature-dependent
pathway (Figure 3A).

Most experimental evidence suggests that EVs are taken
up into endosomal compartments via endocytosis (Mulcahy
et al., 2014). To further study the mechanism of αsyn oligomer
internalization we next sought to define the distinct, cellular
pathways associated with the endocytotic uptake of αsyn

oligomers exosomes. To this end, we use specific pharmacological
inhibitors chlorpromazine (CPZ) and nystatin to address the
potential role of clathrin- and caveolin-mediated endocytosis,
respectively. Before applying inhibiting treatments to study the
uptake pathway, several control experiments were carried out.
The efficacy of endocytosis inhibitors is cell type dependent
and therefore controls of endocytosis inhibition were performed
on H4 cells to test the activity of the treatments. Following
addition of inhibitors we used fluorescent microscopy to evaluate
the internalization of fluorescently labeled endocytic markers,
transferrin (Tfn), and cholera toxin B (CTB), which are known
to be specifically internalized by clathrin- and caveolin-mediated
endocytosis respectively. Drug concentrations were optimized
and conditions chosen such that the uptake of the relevant
control substance was completely inhibited with no impaired
cell morphology observed (Supplementary Figures 1A,C). To
inhibit clathrin-mediated endocytosis, H4 cells were treated
with CPZ at 9 µg/mL for 30 min prior to the addition of
exosomes. This treatment completely blocked the endocytosis
of Tfn (Supplementary Figure 1A) but did not significantly
inhibit the entry of the exosomes (Figure 3B). Next, H4 cells
were preincubated with 25 ug/ml nystatin before exposure to
exosomes. Surprisingly, as with CPZ treatment, nystatin had no
significant effect on the exosomal uptake (Figure 3C).

Another major endocytosis pathway, macropinocytosis, was
then considered in our experimental procedure and we tested the
macropinosome inhibitor, cytochalasin D at 2 µM. Once again
there was no significant inhibitory effect on the internalization
of the exosomes (Figure 3D) despite cytochalasin efficiently
inhibiting the uptake of the specific fluid phase marker, Dextran
D (Supplementary Figure 1B). Taken together, none of the
inhibitors tested in this present study had a significant inhibitory
effect on the internalization of αsyn containing exosomes.

HSPGs Does Not Mediate αsyn-Exosomes
Uptake
Heparan sulfate proteoglycans (HSPGs) are transmembrane
and lipid-anchored cell surface receptors that interact with a
variety of ligands triggering internalization. Previous studies
have found a crucial role for HSPGs in selectively binding and
internalizing exosomes in the cancer field (Christianson et al.,
2013) and in internalizing infectious prion protein, aggregated
tau, or Aβ monomer (Horonchik et al., 2005; Kanekiyo
et al., 2011). Moreover Holmes et al. (2013) observed a clear
colocalization of αsyn with HSPGs and found that they mediated
the internalization of recombinant αsyn fibrils in vitro. Thus, we
speculated that HSPGsmight potentiallymediate cellular binding
and internalization of oligomeric αsyn-associated exosomes and
that these anionic proteoglycans on the cell surface may serve
as binding sites for the exosomes. To test the hypothesis,
we performed an uptake assay using proteoglycan- deficient
Chinese hamster ovary (PGD-CHO) cell lines as recipient cells.
These cell lines have been widely characterized (Esko et al.,
1985; Broekelmann et al., 2005) and were successfully used to
demonstrate the critical role of HSPG in cellular Aβ binding
and uptake (Kanekiyo et al., 2011). We used cells line lacking
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FIGURE 2 | Exosomes-associated αsyn oligomers are preferentially internalized by H4 cells. Exosomes-associated αsyn oligomers bind to the cell

membrane of recipient cell (A), and get internalized (B) in a time dependent manner as seen by a significant increase of luciferase activity over time (*p < 0.05 as

compared to control). (C) Free αsyn oligomers bind to the H4 recipient cells membrane but are not internalized (D), trypisinization of the cell abolishes completely the

luciferase signal observed previously (p > 0.0.05). Data are given as mean ± S.E.M., from three independent experiments. Statistical analysis was performed with

one-way ANOVA, followed by Tukey HSD Multiple Comparison test; n.s, not significant.

xylosyltransferase, an enzyme critical for glycosaminoglycan
synthesis (pgsA-745), and the pgsD-677 cells deficient in
N-acetylglucosaminyltransferase/glucuronyltransferase and
compared exosome internalization to the wild-type control cell
line, CHO-K1. Exosomes were added to the mutant and wild-
type CHO cells as previously described and the internalization
was assessed by monitoring intracellular luciferase activity.
Surprisingly, we found exosomes containing αsyn oligomers
were taken up equally well by cells that lack HSPGs as cells with
HSPGs (CHO-K1) (Figures 4A,B), suggesting these molecules
are not necessary for exosome endocytosis and may not be
critical mediators of αsyn oligomer internalization.

DISCUSSION

EVs, and in particular exosomes, appear to play an important
role in several physiological and pathological processes. They are
seen as delivery machines capable of traveling between cells and
unloading their contents across cell membranes mediating inter-
cellular transfer. Several cell types can release these nanoparticles

in the extracellular space and a number of aggregated proteins
involved in neurodegenerative disease have been associated with
EVs. A body of evidence suggests that exosomes may be involved
in the spreading of misfolded neurodegenerative disease-
associated proteins such as Prp, Tau, Aβ, and αsyn, and may
be efficient initiators of disease propagation (Bellingham et al.,
2012; Schneider and Simons, 2013). Recent studies have shown
that exosomal αsyn can be detected in human cerebrospinal
fluids (CSF; Stuendl et al., 2016) and blood plasma from PD
patients (Shi et al., 2014) further emphasizing the importance of
these nanovesicles in αsyn spreading mechanism. However, the
exosome–cell interaction mode and their intracellular trafficking
pathway in recipient cells remains incompletely understood.
In this study, exosome internalization associated with αsyn
oligomers was examined in a cellular assay. As previously
reported by our group we confirmed oligomeric species of αsyn
are detected in both the exosomal pellet and the exosome-free
supernatant from the conditioned media (Danzer et al., 2012).
Using an in vitro uptake assay combined with luciferase activity
assay we provide direct evidence that free-αsyn oligomers cannot
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FIGURE 3 | Internalization is independent of clathrin- and caveolin-mediated endocytosis or macropynocytosis. (A) Exosomes were added to recipient

cells and incubate at 37◦C or 4◦C for 1 h. The temperature affects exosomal uptake with a significant decrease of luciferase activity at 4 degrees suggesting an

energy-dependent process rather than passive membrane uptake (*p > 0.05). (B–D) Represent the % of internalization of exosomes with and without

pharmacological treatment. The cells were pretreated with the following drug were used: CPZ 9 µg/ml (clathrin-dependent pathway inhibitor), nystatin 25 µg/ml

(non-clathrin, caveolar-related pathway inhibitor) and Cytocholasin D 2 µM (macropinocytosis inhibitor) and add again with the exosomes. The luciferase signal was

measured 1h later. None of the inhibitors significantly blocked the exosomal uptake (P > 0.05, n.s). Data were obtained from 3 independent experiments and are

expressed as the % uptake relative to the control recipient cell. Values are the mean ± S.E.M.

FIGURE 4 | HSPGs inhibition do not block αsyn oligomers uptake. CHO-K1 (wild-type), CHO-pgsD-677, or CHO-pgsA-745 cells were incubated with

exosomes for 1 h at 37◦C. Internalization of αsyn was analyzed by luciferase assay. (A) The three types of CHO cells used as recipient cells were able to significantly

internalize αsyn oligomers (*P > 0.05) after 1 h, and no significant differences could be observed in the uptake when comparing the wild type cells (CHO-K1) to the

cells genetically modified for HSPGs (CHO- pgsD-677 and pgsA-745) (B). Data are given as mean ± S.E.M., from 3 independent experiments. Statistical analysis:

one-way ANOVA followed by Tuckey’s multiple comparison test. n.s, not significant.

be internalized efficiently into recipient cells but only associate
with the external surface of plasma membranes, as they could
be removed by simple trypsinization. In contrast, trypsinization

had no effect on exosome-treated cells because exosomes were
readily internalized inside recipient cells. Our observations imply
that although oligomeric αsyn occur in the extracellular milieu
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independent of exosomes, a small fraction of extracellular αsyn
is released within EVs and is more prone internalization by
recipient cells.

One of the central issues associated with secreted αsyn is to
understand which species of αsyn are internalized by recipient
cells that will eventually initiate intracellular toxic effects. In our
hands, secreted vesicular αsyn appears to be readily internalized
by neuroglioma cells compared to free αsyn oligomers and we
and others have previously shown that exosomal αsyn confers
toxicity on neighboring cells (Emmanouilidou et al., 2010;
Danzer et al., 2012). By utilizing a protein complementation
assay we directly track soluble αsyn oligomers and monitor αsyn
aggregation with a surrogate luciferase readout. Therefore, we
cannot exclude the possibility that free monomeric αsyn or free
high molecular weight species of αsyn are efficiently internalized
by neuroglioma recipient cells. Although in a parallel experiment
(not shown) we performed an ELISA assay and still failed to
detect internalization of αsyn in recipient cells indicating that
free monomeric species were not taken up. In support of our
data recent evidence suggests that αsyn uptake by neuronal
cells (Luk et al., 2009) depends on the fibrilarization state of
αsyn and cationic liposomes have been shown to be necessary
for the internalization of recombinant fibrillar αsyn species
into neuronal cells. Furthermore, Lee et al. (2008) suggested
that aggregated αsyn is internalized more efficiently and via a
different pathway, compared to monomeric αsyn protein. They
suggest that monomeric αsyn directly translocate through the
plasma membrane, which we were unable to measure with
our complementation assay. It also appears that oligomers of
αsyn exert greater cytotoxicity in recipient cells than soluble
monomers (Desplats et al., 2009; Emmanouilidou et al., 2010),
however, these data should be interpreted with caution, because
they are based on high amounts of recombinant protein. Of
note, our experimental setup used only cell-produced αsyn
oligomers.

As described earlier, more free αsyn oligomers are detected in
the preparation than exosome-associated. Although, the origin
of free αsyn oligomers is still unclear it could be explained by
extracellular degradation of the exosomalmembrane by proteases
or lipases allowing the release of proteins from the exosomal
lumen to the extracellular matrix (Hughes, 1999). Nevertheless,
in support of our observation only a small fraction of Aβ

peptide is found associated with exosomes (Rajendran et al.,
2006), and EV-associated proteins have been found in amyloid
plaques of post mortem human brains (Thompson et al., 2016).
In addition, Grey et al. showed that the propensity of αsyn to
aggregate is increased by the presence of exosomes (Grey et al.,
2015). Thus, one could speculate that exosomes may provide a
favorable environment for the oligomerization process. In fact
it has been shown that lipid-mediated oligomerization seems to
be important in amyloid formation and polyunsaturated fatty
acids have been shown to trigger multimerization of recombinant
αsyn (Perrin et al., 2001). Interestingly when exosomes were
isolated from CSF of PD patients, Stuendl et al. reported that
the EVs were able to induce αsyn aggregation in a naïve cell
line (Stuendl et al., 2016). The authors speculate that pathogenic
αsyn oligomers may be preferentially sorted into exosomes and

act as a seed into recipient cells. It is tempting to believe that
exosomes may carry a pathogenic from of αsyn however, further
in depth studies will be needed to determine if this is the
case.

Since cell-to-cell propagation of pathogenic proteins has been
deemed important in PD and neurodegenerative disorders, it
is of interest to understand the pathway by which exosomes
enter into cells. Most experimental evidence suggests that EVs
are usually taken up via endocytosis (Mulcahy et al., 2014)
but yet there appears to be little agreement in the literature as
to which type of endocytic mechanisms are most important,
with clathrin-dependent, caveolae dependent (Svensson et al.,
2013), macropinocytosis (Fitzner et al., 2011; Tian et al., 2014),
phagocytosis lipid raft-mediated uptake (Feng et al., 2010)
or direct fusion with plasma membrane being the current
postulates. Exosomal uptake is extremely rapid. We identified
exosomes inside cells as early as 30 min after exposure. Our data
also demonstrate that incubation at 4◦C significantly reduces
αsyn oligomer internalization, suggesting that uptake is an
energy-requiring process as previously described (Christianson
et al., 2013; Mulcahy et al., 2014; Tian et al., 2014). However,
30% of our exosomal population still gained access into
the cells despite the low temperature. We therefore cannot
neglect the fact that direct fusion with the plasma membrane
may occur. Also, macropinocytosis-, clathrin-, and caveolin-
dependent endocytosis inhibitors had no significant effect on
exosome internalization in our assay. In a control experiment
(not shown), exosomes isolated from cells in the presence of
tetracycline and therefore not overexpressing αsyn underwent
internalization that could not be blocked by cytochalasin D
or nystatin suggesting that the presence of αsyn oligomers
in exosomes does not contribute to the lack of inhibition.
These differences might reflect the heterogeneity both in EV
populations and in the cell types being used in the literature.
The context of experiments may also affect the outcome and
account for the observed discrepancies and different entry
routes might reflect cell specialization or conditions. We can
also speculate that multiple entry routes might even coexist
in the same cell. Indeed any of the common endocytosis
inhibitors used in our study abrogate exosome internalization
suggesting that they may simultaneously trigger a number of
different gateways and that different mechanisms are involved in
internalization of recipient cell. Further experiments with tools
such as antibodies to prevent receptor ligand interactions or
RNAi may be of help to elucidate the endocytosis mechanisms
involved.

Lastly various complexes, including viral particles and
lipoproteins, use HSPGs to help gain entry into cells. Recently,
cancer cell exosomes have been shown to depend on cell-
surface HSPGs for their internalization (Christianson et al.,
2013; Franzen et al., 2014). Interestingly, treatment of EVs with
heparinase to remove surface proteoglycans had no effect on
uptake, suggesting that it is the presence of HSPGs on the
cell surface that are important for mediating vesicular entry
(Christianson et al., 2013). Furthermore, Holmes et al. (2013)
suggested that HSPGs mediate the uptake and seeding of αsyn
recombinant fibrils. Even though evidence tends to suggest a
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crucial role of HSPGs in internalization of exosomes we could not
observe this effect in our assay as cells genetically modified to be
depleted of proteoglycans were still able to internalize exosome-
associated αsyn. It is important to note that in the Holmes et al.
study (Holmes et al., 2013) recombinant fibrillar proteins were
used, which may explain the different results. Also, this result
strongly correlates with our hypothesis that exosomes may gain
entry into a cell via more than one route.

Further advancement of our understanding of both the EV
uptake mechanism and interaction of αsyn with EVs are crucial
and will enable development of therapeutic strategies for PD
and others neurodegenerative disorders. Preventing the release
of exosomes may become a novel and attractive approach to stop
the spreading of oligomers of αsyn.
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Supplementary Figure 1 | Internalization of control fluorescent markers

for clathrin- and caveolin mediated endocytosis or macropynocytosis.

Fluorescence images represent internalization of (A) Alexa Fluor 488-Transferrin

(Tfn), (B) Alexa Fluor 488-Dextran D, and (C) Alexa Fluor 488-Cholera Toxin B

(CTB) in H4 cells with and without drug treatment. CPZ (clathrin-dependent

pathway inhibitor), Cytochalsain D (macropinocytosis) and nystatin (non-clathrin,

caveolar-related pathway inhibitor) were able to significantly decrease the

internalization of their proper marker at the given concentration. Scale bars,

15 µm.
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