
REVIEW
published: 05 April 2017

doi: 10.3389/fnins.2017.00177

Frontiers in Neuroscience | www.frontiersin.org 1 April 2017 | Volume 11 | Article 177

Edited by:

Cintia Roodveldt,

Centro Andaluz de Biología Molecular

y Medicina Regenerativa, Spain

Reviewed by:

Toru Hosoi,

Hiroshima University, Japan

Rafael Linden,

Federal University of Rio de Janeiro,

Brazil

*Correspondence:

Caty Casas

caty.casas@uab.cat

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neuroscience

Received: 17 January 2017

Accepted: 17 March 2017

Published: 05 April 2017

Citation:

Casas C (2017) GRP78 at the Centre

of the Stage in Cancer and

Neuroprotection.

Front. Neurosci. 11:177.

doi: 10.3389/fnins.2017.00177

GRP78 at the Centre of the Stage in
Cancer and Neuroprotection
Caty Casas*

Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat Autònoma de Barcelona,

Barcelona, Spain

The 78-kDa glucose-regulated protein GRP78, also known as BiP and HSP5a, is a

multifunctional protein with activities far beyond its well-known role in the unfolded

protein response (UPR) which is activated after endoplasmic reticulum (ER) stress in the

cells. Most of these newly discovered activities depend on its position within the cell.

GRP78 is located mainly in the ER, but it has also been observed in the cytoplasm,

the mitochondria, the nucleus, the plasma membrane, and secreted, although it is

dedicated mostly to engage endogenous cytoprotective processes. Hence, GRP78 may

control either UPR and macroautophagy or may activated phosphatidylinositol 3-kinase

(PI3K)/AKT pro-survival pathways. GRP78 influences how tumor cells survive, proliferate,

and develop chemoresistance. In neurodegeneration, endogenous mechanisms of

neuroprotection are frequently insufficient or dysregulated. Lessons from tumor biology

may give us clues about how boosting endogenous neuroprotective mechanisms in

age-related neurodegeneration. Herein, the functions of GRP78 are revealed at the center

of the stage of apparently opposite sites of the same coin regarding cytoprotection:

neurodegeneration and cancer. The goal is to give a comprehensive and critical review

that may serve to guide future experiments to identify interventions that will enhance

neuroprotection.

Keywords: GRP78, BiP, neuroprotection, endogenous mechanisms, neurodegeneration, ER stress, autophagy,

ERAD

Several systems, including the nervous system, have a remarkable ability for repair under stressful
conditions. Conserved intrinsic mechanisms counteract damaging effects of endogenous and/or
exogenous toxic agents. Under circumstances of damage, intrinsic pro-survival pathways, that
collectively are termed endogenous neuroprotective mechanisms, are activated. Endogenous
protective mechanisms have been mainly investigated in diverse pathological states such as
vascular diseases, trauma, and cancer. The question of why neurodegenerative diseases occur
even when beneficial mechanisms have been triggered deserves in-depth analysis. GRP78 appears
to orchestrate several of these endogenous mechanisms. We herein describe the characteristics
and known functions of GRP78, explore its roles in tumor cell survival, proliferation, and
chemoresistance and reflect on how this knowledge should guide investigations into its functions
in neuroprotection.
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GRP78, A VERY IMPORTANT PROTEIN
WITH MULTIPLE FUNCTIONS IN MULTIPLE
LOCATIONS

Transcriptional and Post-translational
Regulation of GRP78 Levels
GRP78 has multiple functions in maintaining cell viability.
Its expression is highly regulated at different points. At the
transcription level, GRP78 is encoded by the geneHsp5a. It is the
most abundant protein within the heat shock protein-70 (Hsp70)
family, but, unlike the other members of this family, it is not
induced by heat shock because the promoter of GRP78 lacks the
heat shock element. Levels of GRP78 are maintained at relatively
low levels within the cell and are increased considerably under
stresses that affect the endoplasmic reticulum (ER) and calcium
homeostasis. Indeed, GRP78 was initially discovered in 1977 as
a 78-kDa protein strongly induced in chicken embryo fibroblasts
cultured in glucose-free medium (Shiu et al., 1977). Later, it was
observed that GRP78 expression can be induced by other stimuli
such as calcium ionophore A23187 (Resendez et al., 1985),
calcium depletors or chelators such as thapsigargin and BAPTA-
AM (Suzuki et al., 1991), and inhibitors of the protein secretory
pathway such as tunicamycin (Lee, 1987). The upregulation
of GRP78 expression under such a variety of stressful stimuli
is mainly due to the presence of conserved elements in the
promoter of the Hsp5a gene (Li and Lee, 2006) such as a CCAAT
box (Resendez et al., 1988), a cAMP responsive element CRE-
like (CREB; Alexandre et al., 1991), and the ER stress response
element (ERSE; Resendez et al., 1988). Transcription factors that
bind to these regulatory elements, including CBF/NF-Y (Roy and
Lee, 1995), CREB, activating transcription factor 2 (ATF-2; Chen
et al., 1997), YY1, YB1, Sp1 (Li et al., 1997), ATF4 (Luo et al.,
2003), TFII (Parker et al., 2001), ATF6 (Yoshida et al., 2001b),
and XBP1 (Yoshida et al., 2001a), participate in the regulation of
Hsp5a gene (Figure 1).

The post-transcriptional regulation of GRP78 is mediated
by the activation of internal ribosome entry sequence (IRES)
in the 5′ untranslated region of GRP78 mRNA (Macejak and

Abbreviations: GRP78, 78-kDa glucose-regulated protein; UPR, unfolded protein
response; ER, endoplasmic reticulum; PI3K, phosphatidylinositol 3-kinase;
Hsp70, heat shock protein-70; ERSE, ER stress response element; CREB,
cAMP responsive element CRE-like; IRES, internal ribosome entry sequence;
NSAP1, NS1-associated protein; miRNA, microRNA; ERdj, ER resident J-domain
co-chaperones; ERAD, endoplasmic-reticulum-associated protein degradation;
AMPK, AMP-activated protein kinase; IRE1, inositol-requiring enzyme 1; ATF,
activating transcription factor; PERK, protein kinase R-like endoplasmic reticulum
kinase; XBP1, X-box binding protein; Sig1R, sigma receptor 1; IP3R, inositol
trisphosphate receptor; KDEL, carboxyl-terminal ER-retention signal; OxPAPC,
oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; α2-M, α2-
macroglobulin; CPT1a, carnitine palmitoyltransferase 1a; ROS, reactive oxygen
species; ApoE, apolipoprotein E; SREBP1-c, sterol regulatory element-binding
protein 1c; MAM, mitochondria-associated ER membrane; SNc, substantia nigra
pars compacta; SOD1, superoxide dismutase 1; AD, Alzheimer’s disease; sCJD,
sporadic Creutzfeldt-Jakob disease; vCJD, variant CJD; BSE, bovine spongiform
encephalopathy; PD, Parkinson’s disease; PrPSc , pathological prion protein;
IPC, ischemic preconditioning; PrPC, prion protein; ALS, amyotrophic lateral
sclerosis; FAD, autosomal-dominant familial AD; PS, presenilin; APP, amyloid beta
precursor protein; Aβ, amyloid-β peptides; α-syn, α-synuclein.

Sarnow, 1991). IRESs are often present in mRNAs that encode
proteins crucial for cell survival and stress recovery. Thus, in
circumstances where repression of global protein synthesis is
promoted, GRP78 mRNA is selectively translated (Yang and
Sarnow, 1997). In some situations, the presence of the IRES
serves to amplify translation ofGRP78mRNA. For instance, after
infection of foreskin fibroblasts with human cytomegalovirus,
activation of the GRP78 IRES by the viral machinery results in
a 3–4-fold increase of at the mRNA level but about a 50-fold
increase at the protein level (Buchkovich et al., 2010). Other viral
infections, including herpes simplex virus type 1 and poliovirus,
have also been reported to activate the GRP78 IRES (Kim et al.,
2001; Saffran et al., 2010). Several cellular proteins are implicated
in the translational activation of the GRP78 IRES including NS1-
associated protein NSAP1, SSB/La autoantigen, p50, and p95
(Yang and Sarnow, 1997; Kim et al., 2001; Cho et al., 2007;
Figure 1).

Another post-transcriptional regulatory mechanism acts on
protein stability. It has been shown that activation of PI3K/AKT
pathway in ER-stressed HEK-293 cells leads to an increase in
GRP78 protein stability through unknown mechanisms (Dai
et al., 2010). Regulation is also mediated through the action of
specific microRNAs (miRNAs) such as miR-181 (Ouyang et al.,
2012), miR-181a (Ji et al., 2017), miR-181b (Peng et al., 2013),
miR-376a (Iwamune et al., 2014), and miR-30a (Wang P. et al.,
2015) that bind to the GRP78 mRNA 3′-untranslated region
(Figure 1).

GRP78 Localization Reflects Multiple
Functions
GRP78 acts as a molecular chaperone (Haas andWabl, 1983) and
binds to nascent polypeptides. Like cytosolic HSP70, it contains
an N-terminal ATPase domain and a C-terminal peptide binding
domain (Määttänen et al., 2010). GRP78 is also a calcium binding
protein. It is inhibited by a high concentration of calcium ions,
and its ATPase activity is activated by calcium depletion. Due
to the presence of an ER signaling peptide, GRP78 is mainly
found in the ER lumen, although under some circumstances it is
redistributed to the cytosol, nucleus, mitochondria, or the plasma
membrane or is secreted (Suzuki et al., 1991). Thus, different
locations prime GRP78 to trigger different molecular signaling
events.

GRP78 Multifunction Associated with the

Endoplasmic Reticulum
At the ER, GRP78 has diverse functions and relies on a number
of interaction partners and co-chaperones, nucleotide exchange
factors, and signal transducers for its various activities. The
diversity of functions include translocating nascent polypeptides,
facilitating de novo protein folding and assembly, targeting
misfolded proteins to endoplasmic-reticulum-associated protein
degradation (ERAD) machinery, and maintaining calcium
homeostasis (since it is as a luminal calcium ER binding protein;
Gardner et al., 2013). GRP78 is usually the first chaperone to bind
a nascent polypeptide chain and prefers to bind surfaces with
alternating aromatic and hydrophobic amino acids. GRP78 shifts
to its tighter affinity substrate binding conformation after ATP
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FIGURE 1 | Graphical summary of the regulation and activities promoted by GRP78 within a cell. Induction and regulation of the transcription of the HSP5a

gene is mediated by several transcription factors that bind to ERSE or CREB motifs in the promoter of the gene. Alternative processing of its pre-mRNA can occur

under stressful conditions leading to retention of intron 1 (yellow line) that advance an stop codon, giving to GRP78va truncated protein that is retained in the cytosol

because it lacks the ER-signaling motif (purple triangle). Commonly processing GRP78 is submitted under post-transcriptional regulation either due to the action of

factors on its IRES motif or by the action of different miRNAs. GRP78 is found mainly in the luminal ER where it can promote the activation of the UPR, ERAD, or MAM

regulation. In some circumstances, GRP78 can be translocated to the cell surface where it can interact to multiple partners and hence modulate different pathways. It

is also be secreted where it can immunomodulate.
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hydrolysis to ADP (Blond-Elguindi et al., 1993). Several partners
participate in this process. The hydrolysis of ATP by GRP78 is
stimulated by ER resident J-domain co-chaperones (ERdj), ERdj1
and 2, homologs of yeast Sec63 (Otero et al., 2010), and also to co-
chaperones such as P58(IPK) (Tao and Sha, 2011). In addition,
the ADP-bound closed state of GRP78 is re-opened by exchange
of ADP for ATP, and this process is enhanced by the nucleotide
exchange factors GRP170 and Sil1, also known as BiP-associated
protein (BAP; for a review see Määttänen et al., 2010; Figure 1).

Newly synthesized proteins in the ER are subjected to a
rigorous quality control system and misfolded proteins are
retrotransported back into the cytoplasm to be degraded by
the ubiquitin-proteasome system. GRP78 associates with nascent
chains immediately and for properly folded proteins, transiently
upon synthesis. However, its association with misfolded or
mutant proteins is prolonged (Sörgjerd et al., 2006). This
prolonged association might be a signal for degradation of
the bound protein (Petrova et al., 2008). The multistep
process of ERAD, is initiated by GRP78 and other ER-resident
chaperones that recognize the misfolded protein. Together,
these chaperones facilitate deglycosylation and disassembling
of misfolded proteins. The chaperones drive substrates to the
translocon channel where they are pulled out of the membrane
by a complex of proteins with ATPase activity. The emerging
substrate is most likely ubiquitinated and addressed to the
proteasome for degradation (review in Printsev et al., 2016;
Figure 1). ERAD in combination with the ubiquitin-proteosome
system (UPS) is thought to be the mechanism for quality control
in long-lived cells such as neurons; hence, GRP78 is likely a
critical component of the endogenous neuroprotective program.

Evidence from studies carried out in yeast indicates that
when the ERAD system is saturated, macroautophagy removes
both soluble and aggregated forms of unfolded proteins
and dysfunctional organelles. Macroautophagy can be induced
by various forms of cellular stress including nutrient or
growth factor deprivation, hypoxia, reactive oxygen species,
DNA damage, protein aggregates, damaged organelles, or
intracellular pathogens (Klionsky et al., 2016). GRP78 plays
a role in autophagic protein quality control, participating
in the destruction of misfolded proteins in the cytosol.
The autophagic process can be roughly divided into three
steps: autophagosome formation, autophagosome-lysosome/late
endosome fusion (autophagosomematuration), and degradation.
The formation of autophagosomes necessitates the concerted and
sequential action of autophagy related (ATG) proteins, originally
identified in yeast (Itakura and Mizushima, 2010; Klionsky et al.,
2016).

ATG proteins are regulated by conserved nutrient and
energy-dependent signaling cascades that crucially involve the
mammalian target of rapamycin (mTOR), a serine/threonine
protein kinase belonging to the phosphatidylinositol kinase-
related (PIKK) family, and AMP-activated protein kinase
(AMPK). Starvation, amino acid deprivation, and growth factor
withdrawal inhibit mTOR activity and lead to autophagy
induction. AMPK is a major positive regulator of autophagy
that is activated by low ATP availability (Kroemer et al., 2010).
Both mTOR and AMPK control the cascade of events leading

to the activation of the phosphatidylinositol 3-kinase class III
(PI3KC3 also known as VPS34; Russell et al., 2013). PI3KC3,
together with beclin 1, p150, and ATG14L, translocates to the
initiation site of autophagosome formation (Matsunaga et al.,
2010). At the ER, PI3KC3-mediated phosphatidylinositol 3-
phosphate production (Axe et al., 2008; Hayashi-Nishino et al.,
2009) fosters the formation of the phagophore. The phagophore
sequesters cargo before closing in on itself to form the
autophagosome. Phagophore expansion requires the conjugation
of microtubule-associated protein 1A/1B-light chain 3 (LC3) to
phosphatidylethanolamine, a process also called LC3 lipidation
(Kabeya et al., 2000; Hamasaki et al., 2013). The LC3-positive
autophagosome sequesters cytoplasmic material by binding to
sequestosome 1 SQSTM1/p62. The autophagosome then fuses
with an endosome or lysosome for cargo breakdown, and the
degraded material is transported to the cytoplasm. SQSTM1/p62
binds LC3 and recruits proteins into autophagosomes for final
degradation by lysosomal hydrolases.

GRP78 acts on the autophagic process at several points.
Evidence for a role in the initiation and formation of
the autophagosome is based on the finding that GRP78
overexpression increases autophagic signaling by stimulating
AMPK (Cook and Clarke, 2012; Wen et al., 2012; Figure 1).
In addition, GRP78 can interact to VPS34 and GRP78
overexpression activates the Class III PI3K-mediated autophagy
pathway (Li et al., 2015). When GRP78 expression is inhibited,
AMPK signaling activation does not occur (Cook and Clarke,
2012) and formation of autophagosomes is blocked (Li et al.,
2009), although GRP78 deficiency does not prevent LC3
lipidation. GRP78 also acts at the final steps of macroautophagy
since GRP78 binds to misfolded proteins and to SQSTM1/p62
in cells under stress. GRP78 binding induces a conformational
change in SQSTM1/p62 that favors cargo delivery into the
autophagosome for its subsequent degradation into amino
acids (Jin et al., 2014; Kim et al., 2014; Abdel Malek et al.,
2015; Cha-Molstad et al., 2015, 2016). Thus GRP78 acts as a
chaperone for aggregation-prone misfolded proteins leading to
their degradation by macroautophagy.

Macroautophagy is a pro-survival mechanism activated
within the cell under stressful conditions. As it does in
macroautophagy, GRP78 has a role in another cytoprotective
process, the unfolded protein response (UPR) as well GRP78
(Paschen, 2004). The UPR is well-conserved from yeast to
mammalian cells. Impaired processing and folding reactions that
lead to an accumulation of misfolded proteins or potentially
toxic aggregates, ATP depletion, and disturbances in calcium
homeostasis, produce ER stress and UPR activation. To cope
with ER stress, UPR activation coordinates the increase in ER-
folding capacity through a broad transcriptional upregulation of
ER folding, lipid biosynthesis, and ERADmachinery components
with a decrease in folding load through selective mRNA
degradation and translational repression (Gardner et al., 2013).
GRP78 orchestrates the UPR by functionally regulating three ER
transmembrane proteins that act as the main effectors: inositol-
requiring enzyme 1 (IRE1), activating transcription factor 6
(ATF-6), and protein kinase R-like endoplasmic reticulum kinase
(PERK; Schröder and Kaufman, 2005; Wang and Kaufman,
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2016). GRP78 binds to IRE1, PERK, and ATF6 in unstressed cells
and dissociates from these UPR sensors during acute ER stress
(Bertolotti et al., 2000; Okamura et al., 2000; Shen et al., 2002;
Figure 1).

IRE1 can also be directly activated by binding to unfolded
proteins. Although ligand-induced oligomerization activates
IRE1 (Shamu et al., 1994), GRP78 association stabilizes the
inactive, monomeric form of IRE1 preventing its over response
to low levels of ER stress (Korennykh et al., 2009; Pincus et al.,
2010; Gardner and Walter, 2011). The RNase activity of IRE1
generates spliced mRNA encoding the X-box binding protein
(XBP1), and XBP1 protein upregulates the expression of GRP78.
ATF6 is cleaved by site 1 protease (S1P) and site 2 protease
(S2P) to generate a p50-ATF6 fragment that has transcriptional
activity. Upon cleavage, the p50-ATF6 fragment upregulates
the expression of GRP78 through an ERSE in the promoter
region of the GRP78 gene as mentioned above. PERK has a
kinase domain that phosphorylates the translation factor eIF2a,
thereby suppressing most of the de novo protein synthesis during
ER stress but stimulating the translation of certain mRNAs,
including that encoding ATF4.

All of these processes are necessary to attenuate the
accumulation of unfolded proteins during ER stress. IRE1 and
ATF6 are especially critical in the prevention of ER stress-induced
apoptosis via their upregulation of GRP78 expression (Gardner
et al., 2013). Prolonged activation of IRE1 and CHOP can trigger
apoptosis in cells under certain physiologic and pathophysiologic
conditions (Szegezdi et al., 2006). In normal physiology, UPR-
induced apoptosis may be a means to eliminate the few cells in
an ER-stressed environment that remain uncorrected despite the
actions of the UPR. Overexpression and antisense approaches
in cell systems show that GRP78 can protect cells against cell
death caused by disturbance of ER homeostasis (Morris et al.,
1997; Yu et al., 1999; Jeon et al., 2016). Overexpression of
GRP78 attenuates ER stress, both by enhancing protein folding
and by helping to maintain IRE1, ATF6, and PERK in their
inactive states (Bertolotti et al., 2000; Laybutt et al., 2007) and
preventing CHOP induction to avoid apoptosis (Wang et al.,
1996; Oyadomari and Mori, 2004).

GRP78 at the Mitochondria and the

Mitochondria-Associated ER Membrane
GRP78 has also been observed in the mitochondria in
association with co-chaperones known to be involved in calcium-
mediated signaling between the ER and mitochondria that is
important for bioenergetics and cell survival. ER stress and
UPR signaling induce the overexpression of GRP78, which
results in its mitochondrial localization. Sub-mitochondrial
fractionation studies showed that GRP78 is mainly localized in
the intermembrane space, inner membrane, and mitochondria
matrix (Sun et al., 2006). GRP78 plays a direct role in controlling
efflux of calcium ions from the ER by closing the Sec61 channel
during protein translocation and in the absence of translocation
(Hamman et al., 1998; Haigh and Johnson, 2002; Alder et al.,
2005). In addition, upon calcium depletion from the ER via the
inositol trisphosphate receptor IP3R, the calcium-sensitive co-
chaperone sigma receptor 1 (Sig1R) dissociates from GRP78 and

associates with IP3R, thereby protecting the otherwise unstable
IP3R from ERAD and prolonging calcium signaling to the
mitochondria (Hayashi and Su, 2007; Figure 1).

Secreted and Cell-Surface GRP78
Finally, GRP78 can be located at the plasmamembrane where it is
cytoprotective. In cultured cells, the ER stress agent, thapsigargin,
actively promotes cell surface expression of GRP78, as the
increase in cell surface GRP78 is several fold higher than the
increase in intracellular GRP78 induced by thapsigargin (Zhang
et al., 2010). Nonetheless, ER stress is not required for cell-surface
localization of GRP78. Ectopic expression of GRP78 can induce
its translocation in the absence of ER stress as indicated by the
lack of CHOP induction. Moreover, deletion of the carboxyl-
terminal ER-retention signal (KDEL) alters GRP78 relocation.
This suggests that the KDEL retrieval system plays a significant
role in regulating how much GRP78 leaves the ER.

Although GRP78 translocation have been studied mainly
in cancer cell lines and have been found to be cell context-
dependent (Tsai et al., 2015), there exist some common details
for its mechanism of action. GRP78 can be translocated
and anchored to the cell surface by binding to the ER-co-
chaperone HTJ-1/MTJ-1 (Birukova et al., 2014; Figure 1).
The translocation is promoted by accumulation of oxidized
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
(OxPAPC), a phospholipid that directly interacts with GRP78,
induces membrane accumulation of the GRP78/HTJ-1 complex
and its targeting to caveolin-enriched microdomains (Birukova
et al., 2014). Once the complex is at the membrane, it activates
Src/Fyn kinase leading to assembly of the PI3K complex and
activation of mTOR and sphingosine-1-phosphate receptor 1.
This in turn results in cortical actin cytoskeletal remodeling
in endothelial cells. Thus, GRP78 regulates OxPAPC-mediated
cytoskeletal remodeling.

In the plasma membrane, GRP78 functions as a signal-
transducing receptor or co-receptor for soluble ligands such
as α2-macroglobulin (α2-M; Misra et al., 2005b), tumor
differentiation factor (Sokolowska et al., 2012), and vaspin
(Nakatsuka et al., 2012). Other molecules that bind to
GRP78 include glycosylphosphatidylinositol-anchored proteins,
for example, T-cadherin (Philippova et al., 2008) and Cripto,
the teratocarcinoma-derived growth factor (Shani et al., 2008),
among others (Ni et al., 2011). In-depth details of activated
downstream signaling due to these interactions have been
extensively reviewed by Ni et al. (2011). The binding of GRP78
to most of these ligands activates the AKT/PI3K pro-survival
pathway (Misra et al., 2004, 2006; Philippova et al., 2008;
Figure 1). Soluble Cripto has also been shown to bind cell-
surface GRP78/BiP initiating PI3K and MAPK signaling via Src
activation (Gray and Vale, 2012) or binding directly to c-Src (Gu
et al., 2015). Indeed, cell-surface GRP78 is also involved in cell-
matrix adhesion by α1-integrin interaction and focal adhesion
kinase (FAK) regulation. This interaction has been related to
cell migration and invasion process, an effect partly mediated
through its association with uPA–uPAR protease system (Li
et al., 2013). The interaction with α1-integrin, considered also
important for axonal regeneration, might be interesting to be

Frontiers in Neuroscience | www.frontiersin.org 5 April 2017 | Volume 11 | Article 177

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Casas GRP78 Relevance for Neuroprotection

further explored since GRP78 was found to promote neurite
outgrowth in vitro (Satoh et al., 2000). Other interacting partners
have been recently described that appear to be related to
neurodegeneration which will be discussed below in other
sections.

A recent study using a combination of biochemical,
mutational, FACS, and single molecule super-resolution imaging
approaches, reports that GRP78 mainly exists as a peripheral
protein on plasma membrane via interaction with other
cell surface proteins including glycosylphos-phatidylinositol-
anchored proteins since it lacks a true transmembrane domain
(Tsai et al., 2015). In addition, the authors discovered that cell-
surface GRP78 expression requires its substrate binding activity
but is independent of ATP binding.

Accordingly, GRP78 has also been observed as a secreted
protein even in the human peripheral circulation (Delpino
and Castelli, 2002). Secreted GRP78 can be found as well in
the oviduct where apparently modulates sperm-zona pellucida
binding (Marín-Briggiler et al., 2010). In a totally different
context, the extracellular GRP78 has been proofed to have
powerful immunomodulatory and anti-inflammatory properties
by increasing IL-10 and reducing TNF-α (Corrigall et al., 2004;
Panayi and Corrigall, 2014; Figure 1). This observation suggests
that it would be relevant to determine such immunomodulatory
property within the central nervous system.

Alternative Variants of GRP78 in the Cytoplasm
In addition to its localization in membrane-associated structures
and organelles, GRP78 is observed in the cytoplasm. GRP78
can be relocated from the ER to the cytoplasm through several
mechanisms: (i) via the ERAD pathway (Duriez et al., 2008),
(ii) via a Bax/Bak-dependent change in membrane permeability
produced during ER stress-induced apoptosis that allows luminal
proteins to flow out (Wang et al., 2011), (iii) through GRP78
alternative splicing of GRP78 nuclear pre-RNA. The alternative
processing results in retention of intron 1, which leads to
an mRNA with an alternative translation initiation site and a
premature stop codon that causes the loss of the ER signaling
peptide in the encoded truncated isoform termed GRP78va (Ni
et al., 2009; Figure 1).

LESSONS FROM CANCER

Cancer cells are characterized by altered glucose metabolism,
and the tumor microenvironment is marked by impaired blood
flow and hypoxia, all of which can cause ER stress. GRP78
is involved in several aspects of cancer development including
tumor survival and proliferation, chemoresistance, angiogenesis,
and metastasis. Many tumor cells overexpress GRP78 on the
outer plasma membrane. In addition, in different types of
cancer, such as those of prostate, breast, and melanoma origins,
abnormally high GRP78 expression is correlated with tumor
resistance, greater risk for cancer recurrence, and an overall
decrease in patient survival (reviewed in Pfaffenbach and Lee,
2011). Thus, GRP78 at the cell surface has been postulated to be a
promising target for cancer therapeutics and a useful prognostic
marker.

The utilization of knockdown and overexpression techniques
and genetic mouse models has furthered our understanding of
the role of GRP78 in cancer. In a transgene-induced endogenous
mammary tumor model, GRP78 haploinsufficiency resulted
in delayed tumor latency, decreased tumor proliferation, and
increased apoptosis (Wang et al., 2010). Strikingly, in mice
harboring bi-allelic conditional knockouts of both GRP78 and
PTEN in the prostate epithelium, prostate tumorigenesis was
potently arrested, providing the first evidence that GRP78 is
required for tumorigenesis driven by loss of PTEN and activation
of the PI3K/AKT oncogenic pathway (Fu et al., 2008). Indeed,
ligation of cell-surface GRP78 by antibody slowed growth rate
and blocked PI3K/AKT signaling (Misra and Pizzo, 2010b).

Through formation of complexes with other proteins on the
cell surface such as α2-M or Cripto, GRP78 is reported to
mediate tumor cell signal transduction. Autoantibodies from
serum of prostate cancer patients against a segment of GRP78
(Leu 98-Leu115) induces cell proliferation, suggesting that these
antibodies serve as agonists of activated α2-M, which recognizes
the same site of GRP78 (Gonzalez-Gronow et al., 2006). The
interaction of α2-M with cell-surface GRP78 promotes cell
proliferation by activating ERK1/2, p38 MAPK, and PI3K
and enhances cell survival by inducing the AKT and NF-
kB signaling cascades (Misra et al., 2004, 2006). In addition,
in highly metastatic and invasive 1-LN prostate cancers, cell-
surface GRP78 acts as a receptor for activated α2-M leading
to activation of PAK-2, and together with LIMK and cofilin
phosphorylation, increases motility enhancing metastasis (Misra
et al., 2004, 2005a). Another pathway is triggered by binding to
Cripto oncoprotein. The complex of Cripto and GRP78 enhances
tumor growth via inhibition of TGF-β signaling. Furthermore,
blockade of Cripto binding to cell-surface GRP78 by an antibody
against the N-terminus of GRP78 inhibits oncogenic Cripto
signaling and this involves the MAPK/PI3K and Smad2/3
pathways (Kelber et al., 2009). A commercial polyclonal antibody
directed against the C-terminus of GRP78 was reported to induce
apoptosis in melanoma cells (A375) and prostate cancer cells (1-
LN, DU145) but not in the PC-3 prostate cancer cell line. GRP78
expression was undetectable on the surface of the PC-3 cells
but was present on the other cell types (Misra et al., 2009). The
proposed mechanism is that this antibody leads to suppression
of Ras/MAPK and PI3K/AKT signaling (Misra et al., 2009; Misra
and Pizzo, 2010a,b).

A different pathway has also been revealed recently. Katherine
L. Cook and collaborators showed that GRP78 specifically
inhibits de novo fatty acid synthesis in breast cancer cells
and reduces mitochondrial β-oxidation through inhibition of
mitochondrial carnitine palmitoyltransferase 1a (CPT1a), which
catalyses the primary regulated step in overall mitochondrial fatty
acid oxidation (Cook et al., 2016).

It has been suggested that GRP78 acts in concert to coordinate
tumor cell growth to accommodate cancer cells to nutritional
changes through facilitation of macroautophagy (Li et al., 2015).
In agreement, one study showed that functional blockade of
the proteasome induces GRP78, promoting autophagosome
formation and enhancing myeloma survival (Abdel Malek et al.,
2015). In tumor cells this activation can lead to autophagic
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degradation of IκB kinase, which caused inactivation of NF-κB
pathway, an important mediator of apoptotic signaling.

The alternative cytosolic form, GRP78va is also important in
tumorigenesis. This isoform is overexpressed in leukemic cells
and leukemia patient samples. In the cytosol, GRP78va may
associate with P58(IPK), which acts as inhibitor of PERK during
UPR, antagonizing it and increasing cell survival under ER stress
(Rutkowski et al., 2007). This study suggested that GRP78va has
the potential to influence survival of cancer cells in adaptation to
ER stress through modulating UPR signaling.

In summary, tumor cells use GRP78 to orchestrate the
stimulation of processes such as macroautophagy, to combat
the presence of reactive oxygen species (ROS), and to activate
pro-survival signaling pathways.

GRP78 IN NEURODEGENERATIVE
PROCESSES

Age-related neurodegenerative diseases are commonly associated
with the accumulation of misfolded and aggregated proteins
and the presence of oxidative stress, calcium dysregulation, and
mitochondrial dysfunction, particularly at the mitochondria-
associated ER membrane (MAM). Neurodegenerative disorders,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and prion-related diseases,
have different clinical manifestations, but all present common
events that also occur in neurodegenerative processes triggered
by brain ischaemia or trauma. Aging, which is a risk factor for
most neurodegenerative diseases, is accompanied by decreases in
activity of several endogenous neuroprotective mechanisms that
certainly may contribute to their etiopathogenesis.

GRP78 in Alzheimer’s Disease
AD is a neurodegenerative disease characterized by cognitive
alterations and memory loss. Early-onset cases of autosomal-
dominant familial AD (FAD) are often caused by mutations
in the genes encoding amyloid beta precursor protein (APP)
or presenilin proteins (PS1, PS2). Aspartyl proteases PS1 and
PS2 are components of the γ-secretase complex that, together
with β-secretase, process APP to produce amyloid-β peptides
(Aβ) of 40 and 42 amino acids (Aβ40, Aβ42). Hallmark lesions
in AD are amyloid plaques and neurofibrillary tangles, both
arising from protein misfolding. In plaques there is an abnormal
increase in the Aβ42:Aβ40 ratio, whereas neurofibrillary tangles
are composed of the aberrantly phosphorylated tau protein
(Mattson, 1994).

The bulk of immature APP associates with GRP78 in the
ER. GRP78 facilitates correct folding of APP and modulates
intracellular APP maturation and processing (Yang et al., 1998;
Kudo et al., 2006). Under ER stress, overexpression of GRP78
retains APP in the early secretory compartments resulting in a
reduction of Aβ generation because β/γ-secretase activity itself
is thought to be located in late secretory compartments, such
as the Golgi apparatus and endo-lysosomal system (Kudo et al.,
2006). In other way, GRP78 is a key player in APP processing
also through ERAD. Some authors have found that another

ER-resident protein dnj-27 (the ortholog of mammalian ERdj5),
which works as an enhancer of ERAD together with GRP78
and EDEM, protects against the aggregation of both Aβ and α-
synuclein (α-syn), involved in PD pathogenesis, in C. elegans
(Muñoz-Lobato et al., 2014).

GRP78 levels are two-fold higher in AD temporal cortex
and hippocampus compared to non-demented control cases as
shown by immunohistochemistry. This increase was found in
neurons in AD brains that were still healthy and that do not
co-localize with neurofibrillary tangles indicating that GRP78
overexpression may slow down neurodegeneration (Hoozemans
et al., 2005). Intriguingly, in the triple transgenic mice bearing
FAD-linked mutations in APP and presenilins (3xTg-AD), which
serve as an AD model, GRP78 levels are increased only by 1.5–
2-fold in 2 month-old 3xTg-AD mice compared to controls,
and this increase is associated with the presence of accumulated
toxic Aβ peptide (Soejima et al., 2013). It is remarkable that this
level of overexpression of GRP78, reported in vivo in this animal
model and similar to those observed in post-mortem human AD
tissue, is minor compared to the levels induced by ER stress
(e.g., by using tunicamycin) in a wild-type animal, which can be
more than 3-fold in several tissue types (Li et al., 2012; Galán
et al., 2014). This observation suggests that the degree of GRP78
level increased in AD models and human AD neurons might be
insufficient to cope with sustained ER stress. This observation is
supported by age-related difficulties for GRP78 increase after ER
stress as described further down in the aging section. In addition,
it would be interesting to know where GRP78 is located within
the neurons in AD tissues, as its functions depend on localization
as discussed above. Importantly, the extracellular chaperone α2-
M, a ligand of GRP78 at the plasma membrane, is co-localized
with plaques in AD (Yerbury and Wilson, 2010), and it has been
shown both to protect cells from Aβ toxicity and to favor Aβ

removal from the brain (reviewed in Yerbury and Wilson, 2010).
It is likely that some of these beneficial effects occur through the
intervention of GRP78, although this has not been demonstrated
yet.

Tau hyperphosphorylation is another pathological hallmark
in AD brain and other Tauopathies. In a recent study,
it was found that overexpression of GRP78 induced tau
hyperphosphorylation via activating glycogen synthase kinase-3β
(GSK-3β), an important tau kinase in AD brain, and increased
the association with tau and GSK-3β. This was concurrent with
SIL1 down regulated expression (Liu et al., 2016). However, when
the authors forced the expression of both proteins prevented ER
stress-induced tau hyperphosphorylation and GSK-3β activation
suggesting the importance of ATP binding activity for beneficial
effects promoted by GRP78.

In addition to APP processing, other abnormalities have
been found associated to AD pathology where GRP78 can
have also an opportunity for neuroprotection. Calcium level
is dysregulated in AD brains, although its role in pathology
is not well-understood. Calcium signaling may act even
upstream of APP processing, as elevations in Ca2+ can increase
production of oligomeric Aβ peptides (Itkin et al., 2011).
Indeed, stabilizing ER calcium with dantrolene, a ryanodine
receptor antagonist, restores normal synaptic function and
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plasticity and reduces amyloid load in the brains of 3xTg
AD mice and knock-in FAD mice (reviewed in Frazier et al.,
2017). A recent review by Area-Gomez (Area-gomez and
Schon, 2016) proposed that the pathogenesis of AD might
be mediated by increased ER-mitochondrial communication,
which may cause aberrant increases in calcium trafficking
between the two organelles, unusual phospholipid profiles,
perturbed cholesterol homeostasis, changes in mitochondrial
function and morphology, and an increased Aβ42:Aβ40 ratio.
In particular, the authors argue that the altered ER membrane
topology at the MAM in AD could explain the shift in
the location of the γ-secretase cleavage toward Aβ42. In
this regard, GRP78 localized at the MAM might have an
important role in neuroprotection as a calcium binding
protein.

One mechanism through which Aβ peptides cause
cytotoxicity is by production of ROS via facile copper-
redox cycling (Barnham et al., 2004), which can, in turn,
result in oxidative damage to neuronal proteins and lipids
(Mark et al., 1997). Imbalances in ROS production and
detoxification are strongly implicated in AD neurodegeneration,
as reflected by cerebral elevations in oxidized lipids and
proteins (Sayre et al., 1997; Greilberger et al., 2008). According
to recent studies revealing important roles of GRP78 in
regulation of lipid content and inhibition of lipotoxicity
resulting from lipid peroxidation and ROS generation
(Cook et al., 2016) it is possible that overexpression of
GRP78 can have neuroprotective properties against ROS as
well.

Finally, sporadic AD (SAD) comprises the vast majority
of AD cases. Mutations in the gene encoding apolipoprotein
E (ApoE), particularly the ApoEε4 allele, are the strongest
genetic risk. ApoEε4 promotes transient membrane cholesterol
loading, which increases Aβ42 secretion and its accumulation
in plaques in patients with AD and in cognitively normal
people (reviewed in Sato and Morishita, 2015). Cholesterol and
phospholipids have been shown to modulate the activity of
APP-related secretases (Di Paolo and Kim, 2011). ER function
is also affected by lipid composition and lipid biosynthetic
enzymes (Lagace and Ridgway, 2013). Exogenous expression of
GRP78 by adenoviral administration reduces liver lipogenesis
by inhibiting activation of the central lipogenic regulator,
the sterol regulatory element-binding protein 1c, SREBP1-c
(Kammoun et al., 2009). Further, supporting the hypothesis
that GRP78 modulates lipid metabolism, GRP78 heterozygous
mice are resistant to obesity when placed on a high fat
diet (Ye et al., 2010). Overexpression of GRP78 reduces the
expression of lipogenic genes and plasma triglycerides and
rescues the levels of the ER-processed ABCG5-G8 heterodimer
transporter of cholesterol in the liver of obese mice lacking
the receptor of leptin (db/db mice; Wang Y. et al., 2015).
The mechanisms by which GRP78 functions in lipid and
cholesterol management are far from clear, particularly in the
brain, in light of these results in other tissues, it would be
very interesting to further investigate its involvement in the
lipid-related pathophysiology of neurodegenerative diseases such
as AD.

GRP78 in Parkinson’s Disease
Parkinson’s disease is an idiopathic movement disorder
characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNc) and the presence of Lewy
bodies. Lewy bodies are distinct protein inclusions composed of
aggregated α-syn. Studies on post-mortem brain samples have
revealed immunoreactivity for UPR activation markers (Bellucci
et al., 2011). Indeed, α-syn induces ER-stress and activates the
UPR pathway in dopaminergic neurons in the SNc (Gorbatyuk
et al., 2012).

In cell and animal models of α-syn accumulation, there is
evidence that GRP78 forms a complex with α-syn (Bellucci et al.,
2011; Colla et al., 2012; Gorbatyuk et al., 2012). Interestingly,
both the level and localization of GRP78 are altered in different
models of PD. For instance, in a rabbit model of PD, it has
been demonstrated that GRP78 translocates from the ER to
the nucleus and cytosol in response to treatment with MPP+,
which causes a marked reduction in Tyrosine Hydroxylase-
positive cells in the SNc (Ghribi et al., 2003). In cultured neurons,
extracellular α-syn binds to GRP78 located at the cell surface,
triggering a signaling cascade leading to cofilin 1 inactivation
and stabilization of microfilaments, thus affecting morphology
and dynamics of actin cytoskeleton. Inactivation of cofilin 1
and stabilization of actin cytoskeleton also occurs in fibroblasts
derived from PD patients, suggesting that extracellular GRP78
might be the responsible. Dysregulation of actin turnover has
been shown to lead to deficits in synaptic function that normally
precede neurodegeneration in PD models. In addition, the
interaction with extracellular α-syn renders GRP78 sequestered
and clustered at the cell surface, which impedes its proper
recycling toward the ER and results in a virtual depletion from
the ER. Accordingly, overexpression of GRP78 was found to be
neuroprotective, through a mechanism that involves decreases
in the levels of UPR target genes, preventing the loss of
dopaminergic neurons and dopamine in the SNc (Ni et al., 2011).

GRP78 in Amyotrophic Lateral Sclerosis
ALS is a progressive neurodegenerative disease, involving the
selective degeneration of motoneurons in the spinal cord, most
of the brainstem, and the cerebral cortex. Many different
mutations are associated with familial ALS, but all lead to
proteinmisfolding and aggregation. Thesemutations are in genes
encoding superoxide dismutase 1 (SOD1), TAR DNA-binding
protein 43-KDa, FUS, and other proteins. SOD1 aggregates have
been observed in patients with sporadic ALS (Ezzi et al., 2007;
Chattopadhyay et al., 2008; Bosco et al., 2010). Mutant SOD1
aggregates, but not wild-type SOD1, forms highmolecular weight
species that interact with GRP78 as observed in microsomal
fractions of spinal cords derived from mouse models of ALS
(Kikuchi et al., 2006).

Saxena’s group investigated the pattern of expression of the
ER folding network in vulnerable and resistant motoneurons
and found that the ER folding network has a relevant role in
ALS (Maharjan and Saxena, 2016). Remarkably, the knock-in
mice that express mutant GRP78 lacking the KDEL sequence
have age-related motor problems concomitant with loss of
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selective vulnerable motoneurons and aggregation of wild-
type SOD1 reminiscent of ALS symptoms (Bosco et al.,
2010; Jin et al., 2014). Several co-chaperones of GRP78, such
as SIL1 and Sig1R, are important in ALS. SIL1 is mostly
expressed in resistant motoneurons, suggesting it is involved
in neuroprotection. Accordingly, SIL1 deficiency enhances
ALS pathology, whereas SIL1 overexpression affords significant
neuroprotection related to improved ER proteostasis and
reduced SOD1 aggregation (reviewed in Rozas et al., 2017).
Chronic treatment with PRE084, an agonist of Sig1R lead to
increase neuroprotection of motoneurons in a mouse model of
ALS (Mancuso et al., 2012). For all these reasons, it is possible that
overexpression of GRP78 would mediate neuroprotection in ALS
patients.

GRP78 in Prion-Related Diseases
Human prion diseases are rare, rapidly progressive, invariably
lethal neurodegenerative diseases, symptomatically characterized
by severe memory impairment and a general decline in cognitive
functions, which may include motor, linguistic, executive, and
social skills (Wadsworth et al., 2003). Most often, human prion
diseases have a sporadic etiology [e.g., sporadic Creutzfeldt-
Jakob disease (sCJD)], but hereditary (e.g., fatal familial
insomnia and Gerstmann-Sträussler-Scheinker syndrome), and
infectiously acquired [e.g., iatrogenic CJD, kuru, and variant
CJD (vCJD)] forms of the disease also exist. Prion diseases
have also extensively been described in animals; these include
bovine spongiform encephalopathy (BSE) in cattle and scrapie in
sheep.

At the neuropathological level, human prion diseases are
characterized by the accumulation of pathological prion protein
(PrPSc), neuronal loss, astrogliosis, and spongiosis. During
human prion disease progression, normal prion protein (PrPC)
is converted into insoluble, β-sheet rich PrPSc aggregates. Once
formed this pathological PrPSc conformer ensures conversion
of native PrPC into PrPSc and propagation of pathology to
neighboring cells (reviewed in Wadsworth et al., 2003). One
study reported increased expression of GRP78 and several
other ER chaperones in post-mortem brain samples of sCJD
and vCJD patients, although signal was not compared to
controls (Hetz et al., 2003). In brain tissue samples from
animals naturally infected with BSE, GRP78 is upregulated
only by up to 2.3-fold (Tang et al., 2010). Increases in
UPR markers such as GRP78 are thought to be an attempt
of the neurons to cope with ER stress and are essentially
markers of neuroprotective processes as mentioned. In a recent
study, Jin and collaborators showed that GRP78 interacts
transiently with PrPc in the ER, in agreement with its
involvement in the folding of nascent PrPc polypeptides (Jin
et al., 2000). GRP78 might remain associated for an extended
period of time with some isoforms of mutant PrP causing its
subsequent retrotranslocation for proteasomal degradation and
so preventing the formation of homo-aggregates (Jin et al.,
2000). It will be interesting to determine whether boosting
GRP78 expression further will lead to neuroprotection as
was demonstrated for another chaperone GRP58 (Hetz et al.,
2005).

GRP78 in Neurodegenerative Processes
after Ischemia or Trauma to the Nervous
System
Neurodegeneration is a secondary event after traumatic
brain injury and ischaemia. Ischemic preconditioning (IPC)
is a sublethal ischemic episode that engages endogenous
cytoprotective mechanisms to protect cells from subsequent
severe ischemia (Zhang et al., 2015). As suggested by researchers
in the field, uncovering the mechanisms of brain ischemic
preconditioning might lead to the development of effective
treatments for ischemic cerebrovascular disease that could
be exploited therapeutically. Several studies have observed
that IPC leads to upregulation of GRP78, which activates
autophagy. Accordingly, specific suppression of GRP78 with
pharmacological and genetic approaches inhibits autophagic
activation and abolishes ischemic tolerance (reviewed in Zhang
et al., 2015).

Overexpression of GRP78 is important for protection of
astrocytes after ischemic injury as it reduces the flux of Ca2+

from the ER to the mitochondria, increases Ca2+ uptake capacity
in isolated mitochondria, reduces free radical production, and
preserves respiratory activity and mitochondrial membrane
potential after stress (Ouyang et al., 2011).

After trauma, it has been demonstrated that GRP78 plays
a relevant role. After abrupt proximal axotomy or avulsion of
the nerve root, a retrograde neurodegenerative process occurs
in spinal motoneurons. In contrast to root avulsion, after
distal axotomy, motoneurons can engage signaling pathways
that allow them to survive and regenerate. In these conditions,
GRP78 is downregulated during neurodegenerative processes but
overexpressed in the regenerative condition (Penas et al., 2009,
2011a). Indeed, forced expression of GRP78 or pharmacological
activation of its co-chaperone Sig-R1 in a root avulsion model
leads to neuroprotection (Guzmán-Lenis et al., 2009; Penas
et al., 2011a,b). These observations suggested that GRP78 plays
a relevant role activating endogenous neuroprotection and that
its effects can be mimicked to exert neuroprotection in different
conditions.

GRP78 during Aging
A commonality in neurodegenerative diseases is that the UPR
is not correctly activated. In ex vivo human diseased brain
tissue and in vivo models, there is significant depletion of ER
molecular chaperones involved in the UPR despite ER stress (Lee
et al., 2010; Gorbatyuk et al., 2012; Drake, 2015). Although, the
mechanisms that underlie UPR dysfunction are unclear, aging
might be a determinant factor. It has been reported that during
aging, the quality control mechanism becomes inefficient since
ER chaperones are less responsive to ER stress, as evidenced by
decreased levels and activities of ER chaperones in aged tissue
(Nuss et al., 2008). This defect has been attributed to increased
oxidation of several key ER chaperones (Rabek et al., 2003), which
would agree with the mitochondrial free radical theory of aging
(Cadenas and Davies, 2000).

In particular, a reduction in GRP78 levels has been observed
during aging and throughout progression of degenerative
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disorders (Paz Gavilán et al., 2006). Old mice (20–24 months
old) have 20% less GRP78 ATPase activity than young mice (3–
5 months old), which is consistent with a 2-fold higher level
of GRP78 carbonylation in old mice. Such findings support the
hypothesis that loss of ER or other cellular functions, often seen
in age-related diseases, is caused by the life-long accumulation
of oxidative damage to key proteins (Nuss et al., 2008; Salganik
et al., 2015). Another study reported that there was about 73% less
GRP78mRNA in old (900 days old) compared to young (21 days
old) rats, suggesting that loss of GRP78 activity and the associated
physiological declines occur at both the protein and transcript
levels (Erickson et al., 2006). This suggests that the loss of GRP78
function could be a predisposing factor for neurodegenerative
disorders associated with age (Brown and Naidoo, 2012).

A decrease inmacroautophagy with age has also been reported
in a variety of systems (Martinez-Lopez et al., 2015). The
exact mechanisms by which protein aggregation contributes to
neuronal degeneration remain to be fully elucidated; however,
accumulating evidence suggests that defects in autophagy-
related pathways contribute substantially to premature aging
(Rajawat et al., 2009) and neurodegeneration (Ravikumar
et al., 2004). Indeed, landmark studies have demonstrated
that enhancing autophagy confers a protective effect in AD,
PD, and Huntington’s disease (reviewed in Ntsapi and Loos,
2016), whereas genetic suppression of basal autophagy causes
neurodegeneration (Hara et al., 2006; Komatsu et al., 2006).

Successful and precise targeting of the autophagy process
in the clinical setting has thus far not been accomplished,
but it would be very interesting to know whether restoring
GRP78 levels after ER stress in an aged-brain improve autophagy

efficiency, reduces the extent of mitochondria dysregulation and
protein aggregation.

CONCLUDING REMARKS

GRP78 or BiP is a very important protein. It has a relevant
role to promote survival in tumor cells by activating potent
endogenous cytoprotective mechanisms. Regarding these
lessons, it is possible that engaging the same mechanisms in
the nervous system this would be capable to cope with multiple
stressful situations in the course of a disease. Multifunctional
GRP78 can elicit neuroprotection by attenuating ER stress,
managing misfolded proteins to avoid its accumulation,
inducing macroautophagy, buffering calcium unbalance,
facilitating mitochondria-ER crosstalk and activating pro-
survival signaling pathways. Thus, GRP78 is an excellent
target to take into consideration for neuroprotective
therapeutical strategies targeting specifically neurons to avoid
any putative undesirable side effect although GRP78 itself is not
proto-oncogenic.
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