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Quantification of dynamic causal interactions among brain regions constitutes

an important component of conducting research and developing applications in

experimental and translational neuroscience. Furthermore, cortical networks with

dynamic causal connectivity in brain-computer interface (BCI) applications offer a more

comprehensive view of brain states implicated in behavior than do individual brain

regions. However, models of cortical network dynamics are difficult to generalize across

subjects because current electroencephalography (EEG) signal analysis techniques

are limited in their ability to reliably localize sources across subjects. We propose

an algorithmic and computational framework for identifying cortical networks across

subjects in which dynamic causal connectivity is modeled among user-selected

cortical regions of interest (ROIs). We demonstrate the strength of the proposed

framework using a “reach/saccade to spatial target” cognitive task performed by 10

right-handed individuals. Modeling of causal cortical interactions was accomplished

through measurement of cortical activity using (EEG), application of independent

component clustering to identify cortical ROIs as network nodes, estimation of

cortical current density using cortically constrained low resolution electromagnetic brain

tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative

cortical activity signals from each ROI, and quantification of the dynamic causal

interaction among the identified ROIs using the Short-time direct Directed Transfer

function (SdDTF). The resulting cortical network and the computed causal dynamics

among its nodes exhibited physiologically plausible behavior, consistent with past

results reported in the literature. This physiological plausibility of the results strengthens

the framework’s applicability in reliably capturing complex brain functionality, which is

required by applications, such as diagnostics and BCI.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), causality analysis, source localization,
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INTRODUCTION

Dynamic intra-cortical interactions offer a wealth of information
that can be used to develop an understanding of brain
functionality and quantify the effects of brain pathologies on
brain functionality. Traditional static functional characteristics
of individual brain regions, and dynamic interactions within
a network of brain regions (Moeller et al., 2015) offer limited
insight into brain function as they typically do not examine
the causality among these interactions. The advent of Granger-
causal analysis provided a framework to quantify the asymmetric
causal interactions between regions of the cortex through specific
frequency bands, which hold functional significance for those
regions (Barnett and Seth, 2014; Seth et al., 2015), and has
shed light on a large number of network-related disorders, such
as Alzheimer’s and Parkinson’s Disease (Pievani et al., 2014).
However, this connectivity information is not limited in use to
diagnostics, as an increasing number of brain-computer interface
(BCI) applications are utilizing connectivity features for intent
discrimination when conducting BCI-related tasks (Zhang et al.,
2012; Kabbara et al., 2016).

While a potential wealth of information is available in
intra-cortex interactions, a systematic algorithmic approach that
allows for reliable generalization of cortical network dynamics
across test subjects in a subject group is not readily available.
Many sophisticated tools exist (Linder et al., 2011; Niso
et al., 2013; Barnett and Seth, 2014), which allow for both
parametric and non-parametric estimation of dynamic causal
interactions among neural activity signals within an individual.
However, these tools exhibit various limitations, such as strict
channel-space applicability or lack of accounting of common
sources, thus, giving rise to spurious causal interactions within
the chosen cortical network (Trongnetrpunya et al., 2015).
Additional limitations exist in the source-localization algorithms
applied to reconstruct cortical-source activity from the measured
channel space data. Many popular algorithms stemming from
Independent Component Analysis (ICA) are not able to achieve
reproducible source localization outcomes across test subjects
(Bell and Sejnowski, 1995). The inability to control where these
algorithms localize the sources for decomposition on separate
subjects presents a large problem since the sources represent
nodes in a cortical network, and an ICA-based algorithm
could localize a different network for every subject in a group,
making group-level network comparisons difficult. Independent
Component (IC) ordering is a highly non-trivial task (Hyvärinen
and Oja, 2000) for which very few automated approaches
exist barring manual selection, a prohibitively tedious and time
consuming task for increasingly large datasets.

In this paper, we develop an algorithmic and computational
framework that addresses the aforementioned issues through
a multi-step, open-source pipeline of analytic tools (Delorme
et al., 2011; Iversen et al., 2014). The pipeline combines the
deconvolution power of ICA; the systematic modeling of the
geometry of gray matter, thereby creating a common source
space across subjects with the use of individually warped
boundary element models (BEMs); the selectivity afforded
by Cortical Low Resolution Electromagnetic Tomography

(cLORETA)—a source-space based, distributed source
localization algorithm; and the robustness of the Short-
time direct Directed Transfer Function (SdDTF)—a causality
measure, computed from Multivariate Autoregressive (MVAR)
model coefficients, that addresses the spurious connectivity
affecting Granger Causal methods (Korzeniewska et al.,
2003).

A similar approach to source localization and connectivity
analysis was proposed by Mullen et al. (2015) as a means
of demonstrating that the connectivity features considered in
this framework can be applied with great success in real-time
brain state identification. In order to demonstrate the power
afforded by this framework in group-level analysis, a BCI-
related task originally introduced by Park et al. (2014) was
employed, requiring subjects to reach and saccade to presented
visual targets while their cortical activity was recorded using
electroencephalography (EEG) as the neuroimaging modality.
The approach utilized for BCI-related task is a passive-
BCI approach, also described as an implicit human-computer
interaction, wherein passive EEG equipment that senses the user
is used to evaluate cognitive states of the user (Schmidt, 2000;
George and Lecuyer, 2010). While, in this case, the closed-
loop feedback elements of the task simply involve auditory
and visual confirmation of reach/saccade task completion, the
applicability of this approach to more active real-time closed-
loop feedback BCI systems is also discussed. Although the
motor activity present in the human cortex during simple
planned motor actions has been carefully documented with
respect to the activity of individual cortical regions (Johnson
et al., 1996; Filimon, 2010; Heider et al., 2010; Glover et al.,
2012), the dynamic interactions among these cortical regions
during planning and execution of the task have not been
documented as extensively. Park et al. were able to differentiate
between spatial movement of the arm and eye by employing
channel-space empirical mode decomposition, but did not
characterize connectivity between cortical regions underlying
these processes. The algorithmic approach implemented in
this paper was first described by Iversen et al. (2014), where
the method was applied to a smaller subject group. In this
paper, we introduce modifications to the original pipeline in
Iversen et al. (2014) including a new maximum-power heuristic
that captured previously undetected connectivity involving the
Supplementary Motor Area and Precuneus, regions expected
to exhibit connectivity given the motor-related BCI task,
and non-parametric statistical thresholding of the computed
causal connectivity values. Through application of our new
pipeline, described fully in the Methods section that follows,
we demonstrate in the Results section the strength and
specificity of the inference that can be made regarding the
dynamic causal interactions present among regions of the cortex
during reach/saccade planning and execution. The Discussion
section illustrates the physiological plausibility of the findings
reported in the Results section with reference to previous
findings reported in the literature. The Conclusion section
summarizes the features, the scalability, extensibility, and the
applicability of the proposed algorithmic and computational
framework.
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METHODS

Overview
Electrophysiological data were collected from human

participants conducting a BCI-monitored task, and processed

according to the methodology and computational tools outlined

in Figure 1, using MATLAB as the computational platform.

The workflow in Figure 1 was employed to extract cortical

source information from a cortical network defined for all of the
participants, and, subsequently, identify statistically significant
spectro-temporal interactions among the nodes (sources) of this
network.

Participants and Task
Ten healthy, right-handed individuals (age: 20.8 ± 2.6 years)
participated in this study. The study was approved by the

FIGURE 1 | General outline for cross-subject quantification of cortical connectivity. Initial data processing and artifact rejection is conducted in EEGLAB

(Delorme and Makeig, 2004) (A,B). ROIs are selected through IC clustering, also conducted in EEGLAB (C). Head model construction and Electric Lead Field

calculation are conducted in MoBILAB (Ojeda et al., 2014) (D). Source localization is conducted in BCILAB (Delorme et al., 2011) through an implementation of

cLORETA that iteratively estimates regularization hyperparameters (E). Connectivity estimation is conducted using SIFT, an extension of EEGLAB (Delorme et al.,

2011) (F,G). All of the above software and their internal dependencies are run in MATLAB.
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Human Subjects Institutional Review Board of the University of
California, San Diego. Written informed consent was obtained
from all subjects prior to the start of the experiment.

The task involved a time-constrained eyemovement and reach
using the subject’s dominant hand (right) from a target in the
center of a touch-screen to a laterally-offset target as depicted
in Figure 2 (Park et al., 2014). Each trial was either a control
condition (lift), where the participant moved the stylus off of the
central fixation dock after a brief target onset period (500–700
ms), or a test condition (reach/saccade), where the participant
shifted their visual focus on and reached with the stylus to a new
target that appeared in the upper right or lower left of the screen.
Trials were defined as a combination of the planning period,
0 to 500 ms after the end of the target onset window, during
which the subject planned either the reach/saccade or lift, and
subsequent execution from 500 to 1000 ms after the target onset
window, during which the subject moved their hand and reached
for the new target. Each subject completed 256 trials, 96 of
which were control condition trials, with the remaining 192 being
test condition trials. The position of the new target randomly
varied by a small angular amount (± 5 degrees) about a 30-
degree direction centered at the position of the initial target—the

center of the screen. Detailed description of the cognitive task
performed by the participants can be found in Park et al. (2014).

EEG Recording
Scalp electroencephalographic (EEG) activity was recorded
with a sampling rate of 512 Hz from 64 electrodes
positioned on the scalps of the participants in an extended
International 10–20 system configuration. The electrode
array was grounded/referenced on a standard Driven Right
Leg/Common Mode Sense (DRL/CMS) reference (Biosemi
Inc., Amsterdam, The Netherlands), and each electrode was
individually impedance-tested to ensure low impedance across
the entire electrode array (below 5 k� for each electrode). The
3D position of each electrode was digitized in order to construct
individualized head models for each participant (see Park et al.,
2014 for details on the digitization system).

Preprocessing and Artifact Rejection
Scalp electroencephalographic (EEG) channel space data
preprocessing was conducted using EEGLAB (Delorme and
Makeig, 2004) through a procedure outlined in Figure 1A. EEG
data from each of the 10 participants were band-pass filtered,

FIGURE 2 | Depiction of experimental setup from Hyvärinen and Oja (2000). Participants (Top Right) were placed in front of a touchscreen while brain activity

was monitored by 64-channel EEG. Participants held stylus over a white fixation point in the center of the screen (Top Left) and were prompted for each trial to either

lift and retouch the stylus (Control Condition) or to reach and saccade (Test Condition) to a randomly generated green target (Bottom Left). Epoch structure (Bottom

Right) was identical for control and test conditions, with planning conducted while the participants remained on the fixation point with the green target present, and

execution beginning when the fixation point was removed. Analysis window includes both planning and execution periods of reach/saccade or lift. Direction of the

reach (upper right vs. lower left) was not discriminated since our focus was on the general causal dynamics involved in reaching rather than the encoding of spatial

directionality.
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retaining frequencies from 1 to 55 Hz, and re-referenced to
the channel average since the data was recorded reference-free.
The data were epoched, extracting the time period of interest,
which encompassed both the planning phase and the execution
phase of every trial. No distinction was made between reach
directions since the emphasis for this analysis was placed on
the general process of reach/saccade planning and execution
rather than directional discrimination and, as such, both upward
and downward angled reach trials were pooled and analyzed
together. The control trials (Lift) and test trials (Reach/Saccade)
were analyzed separately, using a cortical network defined
over the same ROIs. Differences between the control and test
conditions were examined by considering differences in network
dynamics between the control and test conditions during the
planning and execution phases. Noise and artifact laden trials
and channels were identified and removed in a semi-automated
manner. The kurtosis of each channel or trial was used as the
identification metric, with channels or trials exhibiting a kurtosis
Z-score > +5 or < −5 being flagged and subsequently visually
inspected before removal.

The epoched channel space data were decomposed into sets
of maximally independent components, where independence
was achieved by minimizing mutual information between
components using Infomax ICA (Bell and Sejnowski, 1995)
(process outlined in Figure 1B). These components represented
a combination of putative effective cortical sources, muscular
artifacts, ocular artifacts, and electrical activity from the heart,
among other noise sources. Through a semi-automated
procedure, cortical sources were defined by employing
independent components that both visually, by identifying
power spectra and topographical maps with dipolar cortical
source character, and computationally, through dipole-fitted
residual variance, corresponded to dipoles (each fitted to a dipole
with low residual variance). This procedure is particularly well
suited for EEG artifact removal since the electrophysiological
activity of interest present in the cortex manifests detectably
in the form of an electrical dipole. The linear mixing of the
electric fields generated by these dipoles, and corresponding
unmixing through ICA allows for very precise retention of
cortical data and rejection of non-cortical artifacts. Using the
weight matrix computed during ICA, the retained cortical
independent components were re-projected to channel space,
creating cleaned channel space electrical signals that were further
downsampled to 128 Hz for use in subsequent processing.

ROI Selection Methods-Clustering
Cortical regions of interest (ROIs) for source localization
were determined by spatially and functionally clustering the
ICs aggregated across all datasets/participants into a common
cortical volume, as outlined in Figure 1C. The clustering feature
vector for each IC was constructed by combining information
from: the topographical scalp map of the IC, the event
related potential (ERP) associated with the IC and its power
spectrum, the spectral power content of a rolling window Fourier
Transform (FT) across the IC time-series data before ERP-type
averaging, known as the Event-Related Spectral Perturbation
(ERSP) of the IC, the associated phases from this rolling FT

window that give the Inter-Trial Coherence (ITC) of the IC,
the ERP-image constructed from concatenation of all trials for
the epoched event, and the three dimensional location of the
equivalent current dipole fitted to the IC (Makeig, 1993). These
features were selected to ensure that the IC clusters were both
spatially tight and functionally homogeneous, thus promoting
the creation of clusters from the same cortical region that
demonstrated similar spectro-temporal dynamics during the
conducted task. PCA was used to reduce both the dimensionality
of each of the above features, as well as the final feature vector
for each IC to 10 dimensions corresponding to the 10 highest-
eigenvalues, and, subsequent, K-means clustering of the ICs was
conducted withK = 14 groups, whose clustering outcome yielded
more spatially tight and functionally homogeneous clusters than
the outcomes for K = 9 and K = 16 groups. The centroid of
each cluster was computed and anatomically labeled using the
Talairach atlas (Lancaster et al., 2000).

Head Model Construction
The (BEMs) that defined the geometry of the cortical source
space for current localization were constructed using MoBILAB
(Ojeda et al., 2014), as outlined in Figure 1D. The BEM
approximation for the cortex of each participant included a
standardized head model—the MRI MNI Colin27 three-layer
BEM comprised of scalp, skull, and cortical layers. The cortical
layer, where the source localization n occurs, was discretized
into a triangular mesh containing 4825 vertices, which were
automatically aggregated into anatomical regions based on the
MNI standard gray matter atlas, used for ROI selection. A
customized head model was constructed for each of the 10
participants based on the digitized electrode positions on EEG
cap conforming to the participant’s scalp during the experiment.
Using standard electrical conductance values for the three BEM
layers (0.33 S/m Scalp, 0.022 S/m Skull, 0.33 S/m Cortex
Oostendorp et al., 2000), an electrical lead field matrix was
derived, relating the conduction of electric fields generated by
current dipoles from the cortical mesh (bottom layer) to the top
of the skin (outer layer) where the field potential is recorded by
scalp electrodes. This lead field matrix, along with the discrete
surface Laplacian of the cortex layer of the BEM, were computed
using the OpenMEEG toolbox (Gramfort et al., 2010) which was
also used later for computing the current density during source
localization.

Source Localization-Cloreta
Cortically Constrained Low Resolution Electromagnetic
Tomography (cLORETA) (Pascual-Marqui et al., 1994) was used
for source localization due to the fixed source-space it required
for current localization, allowing for cross-participant ROI
consistency. The source-space was the cortical BEM constructed
in the previous section that accounted for the conduction of
electric fields generated in the cortex and projected to the
surface of the scalp where they were detected by EEG. The
cortical constraint placed on the BEM was also necessary due
to the inability of EEG to reliably resolve electrophysiological
activity in subcortical regions of the brain. Source localization
(procedure outlined in Figure 1E) was conducted independently
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for every epoch in each dataset in order to prevent regularization
parameters and current activations from being computed
by concatenating temporally non-contiguous epochs. The
solution to the minimum-norm Lagrange multiplier problem for
cLORETA is the Tikhonov regularized pseudoinverse solution
for cortical current density expressed as follows:

J = TΦ (1)

T = (KTK + λ2HTH )
−1

KT (2)

where J is the current density on the cortex, Φ is the channel
space data, T is the optimal transformation matrix from channel
space to current density space, K is the discrete electrical lead
field matrix, and H is the 2D spatial Laplacian of the cortical
head model, introduced to spatially regularize the localized
current on the head model grid points. λ is a regularization
parameter initialized on a log-space, using generalized cross
validation (GCV), and subsequently inferred using an iterative
EM formulation derived from the Bayesian structure of the
original current localization problem (Trujillo-Barreto et al.,
2004). The cLORETA implementation in BCILAB (Delorme
et al., 2010) was used for source localization.

Since the regularization parameter λ was recomputed for
every epoch, a new transformation matrix (T) was also
computed, leading to dynamic increases and decreases of
spatial regularization in the final current solution as needed.
This prevented both over-regularization in cases where current
density ramped quickly between grid points, and under-
regularization when channel space, and therefore current density
magnitudes, were lower. A representative signal was extracted
from each ROI by computing the signal power of the current
localized at each gridpoint within a given ROI and selecting the
gridpoint that exhibited the maximum power.

Based on this max-power selection heuristic, representative
current signals were generated for the ROIs—a process which was
applied to each of the 10 subjects individually, greatly simplifying
network-level comparisons across test subjects since the nodes
of the cortical network (the ROIs) were localized in the same
location every time. This approach differs from traditional ROI
determination methods involving ICs because the latter rely
heavily on the common spatial localization of ICA outcomes,
which is not guaranteed for multiple separate runs of ICA on
different data, and, thus, may lead to inconsistencies for group
level connectivity analysis (Thompson et al., 2011).

Connectivity Analysis–Sift
Application of the maximum power heuristic on the results of
cLORETA created a single time series that represented cortical
current dynamics for each ROI selected through clustering.
These time series representing ROIs (ROI signals) were used to
construct linear (MVAR) models from which spectro-temporal
causal interactions between ROIs were computed using the
Source Information Flow Toolbox (SIFT) (procedure outlined
in Figure 1F) (Delorme et al., 2011). Specifically, for each
participant, the ROI signals were preprocessed by employing
detrending and normalization across time and ensemble. The
MVAR models were constructed by applying the Vieira-Morf

lattice algorithm to the ROI signals, using a sliding window with
a length of 550 ms and a window step size of 10 ms, leveraging
the window size to decrease the number of the estimated MVAR
coefficients (ratio of data points to parameters > 10:1)—a
necessary provision arising from the lack of regularization in
the Vieira-Morf algorithm. The optimal order for the MVAR
model was determined automatically by averaging the optimal
orders estimated by six different information criteria: Akaike
Information Criterion, corrected Akaike Information Criterion,
Hannan-Quinn Criterion, Schwarz-Bayes Criterion, Rissanen
Prediction Error, and logarithm of Akaike’s Final Prediction
Error (Rissanen, 1978; Tu and Xu, 2012). Each of these
information criteria was computed for the range of possible
model orders between 1 and 30, and the optimal model order for
each participant was automatically determined by identifying the
minimum value for each of the six generated curves, computing
the average, and rounding down to the nearest integer. The
model order for the Lift and Reach/Saccade conditions were
determined independently. After model order determination,
tests of stability and consistency were performed for each MVAR
model in order to validate the ability of the model to capture
the dynamics of the ROI signal. The autocorrelation function
and three different portmanteau tests were used to determine the
whiteness of the model residuals. The percent consistency of the
model was evaluated for every sliding window within the epoch,
indicating, as a percentage, the relative amount of correlational
structure within the data that had been captured by the model.
A stability test was conducted on every window within the epoch
the MVAR coefficient matrix was evaluated.

Pairwise causal relationships between ROIs were computed
from the validated MVAR models by employing the (SdDTF)
(Korzeniewska et al., 2008). The SdDTF connectivity η2ij

(

f , t
)

at

a given spectro-temporal point
(

f , t
)

between ROI-i and ROI-j
is computed as follows:

η2j→i

(

f , t
)

=

∣

∣Hij

(

f , t
)∣

∣

∣

∣Pij
(

f , t
)∣

∣

∑

f

∑

kl

∣

∣Hkl

(

f , t
)∣

∣

2∣
∣Pkl

(

f , t
)∣

∣

2
(3)

where Hmn (f , t) is the MVAR transfer matrix between network
nodes (ROIs) m and n, and Pmn (f , t) is the partial coherence
of the signals for nodes m and n. The SdDTF connectivity
metric is similar to conditional spectral Granger Causality,
but only reports direct causal relationship between signals,
removing spurious or indirect relationships caused by upstream
network topology, particularly common inputs. Unlike Granger
Causality, which utilizes AR model residuals to determine causal
influence, SdDTF utilizes the AR transfer functions themselves
(see Equation 3) allowing for straightforward generalization of
the metric to multivariate systems, in this case a network with
more than two cortical nodes. To control for the potentially large
and unregularized AR transfer functions, DTF normalization
is conducted across incoming and outgoing signals, and across
frequencies. This normalized term is weighted by the partial
coherence in order to incorporate the direct relationships
between source nodes, thus mitigating the phantom source
problem present in Granger causal metrics and yielding the
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full form of the direct Directed Transfer Function. This metric
is further developed by evaluating it over a short sliding
window across the epoch, an additional feature which serves to
promote local stationarity of the ROI source signals and observe
changes in connectivity dynamics between signals as the epoch
progresses. The SdDTF measure was computed separately across
epochs and frequencies of interest in this way, yielding a spectro-
temporal asymmetrical causal connectivity matrix of SdDTFs
with causal source nodes (FROM) defining the columns and sink
nodes (TO) defining the rows of the connectivity matrix. Note
that the diagonal elements of this matrix do not have relevant
physical meaning for the purposes of this network analysis, and
were, therefore, omitted.

A permutation-bootstrap approach was employed to
determine the statistical significance of each SdDTF value within
the asymmetric connectivity matrix (outlined in Figure 1G).
The permutations were created by randomly mixing ROI-
current density epochs from the control and test conditions
with equal representation, generating an epoch ensemble on
which connectivity analysis was conducted. The resulting ROI
connectivity matrices from each permutation were accumulated
to create a surrogate distribution. The values of each spectro-
temporal position in this distribution were, then, sorted in
ascending order, allowing for the associated p-value of the
tested connectivity value to be computed in a non-parametric
manner through its place in the ranked connectivity values at
that spectro-temporal position of the surrogate distribution.
This process was applied to both the Lift and Reach/Saccade
conditions, where the null hypothesis (H0) was the lack
of significant increase or decrease in connectivity between
the evaluated condition and the case of randomly mixed
ROIs. The alternative hypothesis (H1) was that the evaluated
condition individually exhibited connectivity structure that was
significantly different from the structure acquired by randomly
intermixing the two conditions. The p-value for each spectro-
temporal point was determined by using an averaged surrogate
distribution computed across all 10 participants. A surrogate
distribution for each of the 10 participants was computed by
conducting connectivity analysis on 300 permutations of the
original data, yielding 300 SdDTF values for each spectro-
temporal position. The average surrogate distribution was
computed by applying spectro-temporal position-wise averages
across all 10 surrogate distributions for each of the 300 values
and, subsequently, sorting in ascending order the resulting
average values at each spectro-temporal position. With 300
permutations computed for each subject, there was sufficient p-
value resolution to establish which time-frequency points passed
the α= 0.05 threshold. This threshold was automatically adjusted
since the statistical significance of each spectro-temporal point
was evaluated independently by applying the False Detection
Rate (FDR) control method as a means of accounting for the
multiple comparisons problem (Benjamini and Hochberg, 1995).

The difference between statistically significant values of
average connectivity matrices corresponding to the Lift condition
and Reach/Saccade condition was computed in order to
determine the statistically significant changes in the cortical
network between the two conditions.

RESULTS

IC Clustering Outcome
The ROIs selected for source localization based on the
cluster centroids were: bilateral (left/right) inferior occipital
(Occ), superior parietal (Par), and precentral gyrus motor
(Mot) cortices, as well as, anterior cingulate cortex (ACC),
supplementary motor area (SMA), and precuneus, whose left and
right hemisphere grid point regions were combined and treated
as a single anatomical region during source localization and ROI
collapse.

Figure 3 depicts the clustering outcome for the reach/saccade
condition, showing the dipole cluster and average scalp
projection for the eight clusters from which ROIs were
determined. The 3D dipole maps plotted on a standard MNI
MRI volume demonstrate the spatial tightness of the clusters
selected as candidates for ROIs, while the average composite
topographical maps indicate that there is consistency in both the
orientation and di-polarity of the ICs in each cluster. All of the
selected clusters feature a relatively tight positive spike in electric
potential over the cortical area where the equivalent dipoles are
placed; suggesting that the collection of dipoles within the cluster
originate from similarly oriented pyramidal cells in gray matter,
generating electrical dipoles whose resultant field produces the
positive potential present in the scalp maps. Were the IC clusters
not as spatially tight, or comprised of dipoles oriented in different
directions, the average scalp maps would have electric potential
much lower in magnitude and dispersed over a much wider area
of the brain. The spatial tightness of the dipoles and the scalp
maps suggests that a robust clustering outcome was achieved,
and the associated ROIs were reliably utilized with this data in
subsequent analysis.

The determination of ROIs from ICs is not necessarily a
one-to-one mapping. A single cluster can provide evidence for
inclusion of multiple ROIs, as is the case with cluster 5, for
example, whose dipole locations span across both hemispheres.
So, when identified with the Talairach atlas, the ROIs fall in
bilateral regions of the Occipital Cortex (Inferior gyri) that
are too far from each other to be grouped across the medial
longitudinal fissure, as was the case with all of the other midline
ROIs.

All nine ROIs selected for the cortical network are displayed
in Figure 4, with color-coded grid-points associated with each
ROI as follows: midline ROIs are colored Red (ACC, SMA,
Precuneus), and bilaterally (left and right) situated ROIs away
from the midline (Mot, Par, and Occ) are dark blue, light blue,
and yellow respectively.

MVAR Model Construction and Validation
Model order selection was conducted with an average MVAR
parameter-to-datapoint ratio of 0.096 for the Lift condition and
0.034 for the Reach/Saccade condition. The window size was
selected so that, in all cases, this ratio never exceeded 0.1, as is
recommended for a well-posed MVAR model computed via the
Vieira-Morf Lattice Algorithm. For the Lift condition, the average
model order across all subjects was 7.4 with a standard deviation
of 1.35, and for the Reach/Saccade condition, the model order
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FIGURE 3 | Clustering outcome across all test subjects for the Reach/Saccade condition. IC dipole locations in each cluster are displayed in blue on a

standard MRI volume, with the cluster centroid in red (centroid itself is not an IC, interpolated from other dipoles in cluster). The scalp maps are composites displaying

the average electric potential on the scalp arising from the equivalent IC-dipoles within each cluster. The cluster centroids provide the foundation for subsequent ROI

selection by association with the anatomical structure(s) the cluster occupies. The associated ROIs for each cluster are shown in table y. Note that for non-bilaterally

separated ROIs, the areas in the left and right hemispheres were combined due to close proximity across the medial longitudinal fissure.

average was 7.2 with a standard deviation of 1.03. Figure 5 shows
the output of the model order selection criteria pertaining to the
MVAR model order of the Lift condition for a single participant.
The top graph shows the average (across epochs and sliding
windows) value of each criterion over model orders from 1 to

30. The histograms that follow show the order distribution using
each of the criteria.

The MVAR model validation results averaged across all
subjects and both conditions are shown in Figure 6. The average
model performance was highly representative of the individual
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FIGURE 4 | Cortical boundary element head model with the nine selected ROIs marked with color. Red color indicates that the left and right hemispheres of

the ROI were merged and treated as a single ROI during source localization and signal extraction. Other colors indicate that bilateral cortices were selected across the

hemispheres. ROI abbreviations are: Mot, Precentral Gyrus; ACC, Anterior Cingulate Cortex; SMA, Supplementary Motor Area; Prec, Precuneus; Occ, Inferior

Occipital Gyrus; Par, Superior and Inferior Parietal Gyri.

FIGURE 5 | MVAR model order selection for the lift condition of a single test subject. Each of six information criteria (Schwarz-Bayes Criterion, Akaike

Information Criterion, Corrected Akaike Information Criterion, Final Prediction Error, Hannan-Quinn Information Criterion, and Rissanen Prediction Error Rissanen,

1978; Tu and Xu, 2012) were evaluated for model orders 1–30 and averaged across all condition trials. Optimal model order corresponds to the minimum of each

information criterion curve. Distributions of optimal model order for all trials are shown in histograms for each of the six information criteria used. Center lines and

shaded regions in each histogram indicate the mean and standard deviation respectively for each information criterion.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2017 | Volume 11 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Courellis et al. Group-Level Dynamic Causal Connectivity Analysis

FIGURE 6 | Model validation criteria for Lift (left) and Reach/Saccade (right) Conditions averaged across all 10 subjects. Whiteness of AR model residuals

(top row) evaluated using Autocorrelation function (ACF) and three different Portmanteau tests. None of the MVAR models passed any of the whiteness tests,

suggesting that none of the models captured adequately the modeled temporal dynamics. Percent consistency (middle row) indicates percent of correlational

structure of original data captured by the model. Percent consistency was uniformly high as its values were in the order of 90% with small standard deviations.

Stability index (bottom row) is log of largest eigenvalue of AR model. Negative index implies that largest eigenvalue is less that one, and thus, the MVAR models were

stable. Note, that all tests were conducted individually for every sliding window (43 in total) across the epoch, hence the 43 data points in each graph.

performance of each subject’s MVAR model since, in all cases,
the MVAR model was stable across the entirety of the epoch, as
indicated by the natural logarithm of the largest eigenvalue being
negative (Figure 6 Stability Panel). The percent consistency for
both Lift and Reach/Saccade conditions was above 90% and
the standard deviation in the percent consistency was <1.0%
(0.877% for Lift and 0.712% for Reach/Saccade), indicating that
the high consistency of the MVAR model with respect to the
data was maintained for the duration of the epoch (all 43 sliding
windows within each epoch). None of the computed MVAR
models passed the residual-whiteness tests at any point during
the epoch, suggesting that there was statistically significant
correlational structure exhibited by the MVAR model residuals,
and that the MVAR modeling did not succeed in capturing the
entirety of the temporal dynamics exhibited by the network
nodes during the epoch.

Spectro-Temporal Connectivity
The connectivity computed between the ROIs in the defined
cortical network is displayed in Figure 7 for the lift condition
and Figure 8 for the reach/saccade condition, with statistically
significant spectro-temporal connectivity (p < 0.05) thresholded
for each matrix respectively.

The difference between the p-value thresholded connectivity
matrices for Lift and Reach/Saccade, shown in Figures 7, 8

respectively, was computed and shown in Figure 9. Since the
lift (control) condition was subtracted from the reach/saccade
(test) condition, the warmer (brighter red) regions of the matrix

indicate that connectivity was stronger during the reach/saccade
and the cooler (brighter blue) regions indicate that connectivity
was stronger during the lift.

The majority of lift-dominant causal interactions originate
from the supplementary motor area, parietal areas and the
Precuneus. During Lift, the SMA exhibits notable outflow to
the Left Parietal Area (L Par) and the Precuneus. The SMA
drives activity in the L Par over a constant frequency range
(8–15 Hz) during both planning and execution (Figure 9A).
However, a dichotomy between planning and execution exists in
the connection form the SMA to the Precuneus, with sporadic
low-frequency connectivity (3–14 Hz) present during planning
that narrows in frequency band (8–14 Hz) and becomes more
consistent during execution (Figure 9B). From L Par, the only
significant outflow of information occurs to the Precuneus,
dominating lower frequencies (3–14 Hz) during part of the early
planning phase and the entirety of the execution phase of the lift
(Figure 9C). From R Par, information flows to the ACC across
low frequencies (3–14 Hz) during the planning phase and for
some of the execution phase, though the causal connection is
limited to a narrow frequency band (10–14 Hz) by the end of the
epoch (Figure 9D). Similar connectivity is present with the SMA,
although in the case of information flow from R Par to SMA, the
connectivity does not subside as late in the execution phase as in
the case with the ACC (Figure 9E). The R Par exhibits another
connectivity motif, providing strong causal influence on both
the Left Parietal Area and the Precuneus during the planning
phase of the lift over a low frequency band (3–10 Hz), and with
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FIGURE 7 | p-value thresholded spectro-temporal asymmetric cortical connectivity matrix for the lift condition. Network sources are tabulated at the

columns and sinks at the rows. The dynamic causal relationship between each source and sink is expressed by the corresponding SdDTF. Non-zero connectivity is

displayed only at spectro-temporal points with p < 0.05, thus only displaying statistically significant connectivity in the cortical network for the Lift condition. Note the

frequency axis is plotted on a logarithmic scale to more clearly show lower frequency band connectivity, where the majority of causal flow occurs in this network.

relatively higher power compared to its other causal influences
(Figure 9F). The Precuneus exhibits the greatest amount of
causal outflow during lift, acting as an information source for
the majority of the other ROIs in the network. The Precuneus
has relatively lower-power (lighter blue shading) influence on
both precentral gyri, during both planning and execution, with
the band of active connectivity narrowing when transitioning
from planning to execution (Figure 9G). The Precuneus sends
information with a similar spatiotemporal structure to the ACC,
but with slightly greater causal power, hence the brighter shading
of the connectivity during the planning period (Figure 9H). The
influence the Precuneus has on the SMA is stronger still (even
darker shade of blue), and now occupies the entire duration of the
epoch and maintains signal bandwidth (3–14 Hz) (Figure 9H).
The Precuneus influences both parietal areas very strongly during
lift, with R Par receiving information only during the planning
phase across a low frequency band (3–10 Hz) (Figure 9I), and L
Par receiving information across a slightly larger band (3–14 Hz)
and for both planning and execution. During execution, however,
the connectivity is limited to the higher end of that frequency
band (10–14Hz) (Figure 9J).

Within reach/saccade-dominant activity regions, which
are defined by the red spectro-temporal regions of Figure 9,
greater connectivity is present in the frontal regions of the
cortex. Specifically, both the left and right precentral gyri
exhibit stronger connectivity to the left parietal composite area
during the planning phase of the epoch across lower frequencies

(3–14 Hz), with this connectivity decreasing in power relative
to lift during the execution phase (Figure 9K). Additionally,
the anterior cingulate cortex (ACC) exhibits increased outflow
of information across lower frequencies (3–14 Hz) to both
precentral gyri again during the planning phase (Figure 9L).
The ACC also appears to feed information to the left and right
visual cortices across a narrower frequency band (8–14 Hz)
during the planning phase (Figure 9M), with the bandwidth of
information flow encompassing lower frequencies from ACC
to R Occ as the epoch progresses from planning to execution.
For the reach/saccade condition, the SMA exhibits a greater
amount of causal influence on the ACC than any other cortical
node, with a strong 14–40 Hz communication band present
during the planning phase that dips down to lower frequencies
(3–8 Hz) as the subject transitions from planning to execution
(Figure 9N). The ACC reciprocates some of this activity to the
SMA, with higher frequency (15–40 Hz) communication during
the planning phase that dies down during the execution phase
(Figure 9N). The SMA also exhibits some information outflow
to the visual cortices, with the L Occ flow subsiding by the end
of the planning period, and the R Occ flow remaining constant
in both frequency band and relative amplitude over the entire
epoch (Figure 9O). The right parietal composite area (R Par)
exhibits causal influence on the Precuneus in higher frequencies
(20–25 Hz) during the planning phase, and significantly stronger
lower frequency (3–13 Hz) influence during reach/saccade
execution in comparison to the lift execution (Figure 9F). The
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FIGURE 8 | p-value thresholded spectro-temporal asymmetric cortical connectivity matrix for the reach/saccade condition. Network sources are

tabulated at the columns and sinks at the rows. The dynamic causal relationship between each source and sink is expressed by the corresponding SdDTF in the

pertinent location in the connectivity matrix. Non-zero connectivity is displayed only at spectro-temporal points with p < 0.05, thus only displaying statistically

significant connectivity in the cortical network for the Reach/Saccade condition. Note the frequency axis is plotted on a logarithmic scale to more clearly show lower

frequency band connectivity, where the majority of causal flow occurs in this network.

last of the significant communication motif that is strong during
the reach/saccade conditions originates from the Precuneus.
The influence of Prec on L/R Occ is most prevalent during
the execution phase (Figure 9P). In both cases, however, the
precuneus predominantly drives lower frequency activity (3–14
Hz), with a significant decrease in connectivity magnitude above
14 Hz. There is also evidence of temporally localized higher
power bursts of connectivity across low frequency from the
Precuneus to the right parietal area, beginning early in the
planning period in the 14–20 Hz band and terminating at the
end of the epoch after drifting down to 8–13Hz (Figure 9I).

DISCUSSION

Neurophysiological Connectivity
A cortical network associated with the Lift and the Reach/Saccade
conditions was identified across 10 subjects, involving distinct
ROIs, and the dynamic causal interactions between pairs of ROIs
were computed for each condition. The cortical network, the
ROIs, and the dynamic causal connections between pairs of ROIs
exhibited physiological plausibility consistent with previous
results reported in the literature, although some important
differences were noted as outlined further below. The bilateral
Inferior Occipital Gyri coupled with adjacent Occipital regions,
known to form the Visual ROIs, represent primary processing
of the visual stimuli present in the reaching task (Blumberg and
Kreiman, 2010) . The various motor regions, including bilateral
Precentral Gyri (housing the Left and Right Motor Cortices)

and the bilaterally grouped Supplementary Motor Area, have
been implicated in the planning and execution of the physical
movement, e.g., in this case of the participant’s arm to reach
the presented target as well as the saccade of the eyes to focus
on the target (Johnson et al., 1996; Nachev et al., 2008; Wang
et al., 2010). Parietal activity is largely implicated by existing
literature in guiding action directed at visual targets (Blangero
et al., 2009; Filimon, 2010). The Anterior Cingulate Cortex, a
grouped ROI consisting of the Left and Right cortices merged
across the longitudinal fissure, is thought to be involved in higher
level decision making and, of particular interest in this case,
the translation of intentions to actions (Kennerley et al., 2006).
The Precuneus, also bilaterally grouped across the longitudinal
fissure, has been shown to be directly involved in both visual
and non-visual reaching tasks in both macaque monkeys and
humans, being responsible for the processing of both visual and
proprioceptive sensory information during the task (Filimon
et al., 2009).

Though entirely possible to treat the three grouped ROIs
(SMA, Prec, and ACC) as distinct, the close proximity of the
bilateral ROIs to each other within the longitudinal fissure
and the spatially-regularized source localization can lead to
significant overlap of posterior current density between the ROIs,
generating spurious causal interhemispheric coupling, which is
avoided by considering those three ROIs to be trans-hemispheric.

Inspection of the connectivity during the lift and
reach/saccade condition, shown in Figure 9, reveals that
the cortical network exhibits relatively lower strength, but

Frontiers in Neuroscience | www.frontiersin.org 12 May 2017 | Volume 11 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Courellis et al. Group-Level Dynamic Causal Connectivity Analysis

FIGURE 9 | Difference of statistically significant values (p < 0.05) of the connectivity matrix between the Reach/Saccade and Lift condition. Warmer

colors indicate Reach/Saccade > Lift, cooler colors indicate Lift > Reach/Saccade. Note, that during Reach/Saccade, information flow is facilitated from both

precentral gyri (L/R Mot) to left parietal area (K) and ACC exhibits greater influence on precentral gyri during planning (0–0.5 s) as well as the visual cortices (L/R Occ)

during both planning and execution (L,M); during Lift, Precuneus is much more active both inflow (B,C,F) and outflow (G,H,J,P) except when communicating with the

right parietal area (I), especially during the execution phase (0.5–1.0ms) of the task. The SMA also drives activity in the visual cortices (O), as well as displaying

outflow to the ACC (N) and L Par (A) during Reach/Saccade and Lift respectively. Also during Reach/Saccade, the parietal region ipsilateral to the moving arm (R Par)

demonstrates reduced outflow to both ACC and SMA (D,E) relative to Lift. Brighter red and brighter blue show stronger Reach/Saccade and Lift connectivity

respectively.

widespread effective connectivity during the reach/saccade
condition, and more focal, higher-strength connectivity during
the lift condition. In the case of the reach/saccade condition,
the ACC exemplifies this widespread, low-power connectivity
profile, driving activity in both Left and Right Precentral Gyri
during the planning period, and driving activity in both visual
cortices for both planning and execution of the reach. The
connection from the ACC to L/R Mot (Figure 9L) suggests a
causal influence of a decision making center in the frontal cortex
onto regions directly involved in the planning and execution
of a reach and saccade, a connectivity motif that has been
observed before using other neuroimaging modalities (Asemi
et al., 2015). Furthermore, this causal influence is shown only to
exceed lift-connectivity magnitude during the planning period,
indicated by the lack of ACC to L/R Motor interaction after
0.5 s, suggesting that after the movement is planned, execution
no longer requires direct influence of the ACC onto the Motor
cortices. On the other hand, the ACC to L/R Visual connections
(Figure 9M) remain elevated for the entirety of the epoch during
the reach/saccade condition, indicating a possible involvement
of the cognitive-control and error detection functions of the
ACC (Stevens et al., 2011) in visual processing during execution.
The task-positive connections formed by the ACC exhibit higher
frequency connectivity (Figures 9 L–N), with the lower end of

these connectivity bands lying in the α (8–13 Hz) wave range,
which is expected considering the motor-relevance of the α-band
to indicate inactivation of motor regions (Brinkman et al., 2014),
and the higher end of these connectivity bands stretching into the
30–50 Hz range, consistent with the generally higher-frequency
content of cognitive cortical processes (Buzsáki and Silva, 2012).

However, this does not seem to be the case for the information
flow from the SMA to the ACC (Figure 9N), wherein a high
α/low β band connection (10–20 Hz) present during the planning
period migrates down to lower frequencies (3–8 Hz), occupying
the θ band by the end of execution. A possible explanation for
this exception stems from the suggested involvement of the SMA
in the real-time control of actions during execution, by which
it might provide feedback to the ACC regarding the accuracy
of the conducted reach (Nachev et al., 2008). The connections
from L and R Mot to L Par (Figure 9K) exhibit a connectivity
profile similar to the ACC → L/R Mot interaction, with lower-
power, reach/saccade-dominant connectivity during planning
that is absent during execution. While both the composite
parietal regions and the precentral gyri have been implicated
in visuo-spatial processing and reaching to identified targets,
the analysis indicates that their interaction is limited during the
planning phase of a reach, and is not required in order for the
reach to be executed after planning. A strong, sharply divided
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connection is also observed from the Right Composite Parietal
Region to the Precuneus (Figure 9F)—a connection which is
facilitated during lift-planning and reach/saccade-execution, and
suppressed during reach/saccade-planning (for low frequencies)
and lift-execution. The connectivity profile suggests that during
reach/saccade planning, R Par predominantly communicates
with the Precuneus through higher frequencies (14–30 Hz),
which is of great significance to the Precuneus since it normally
communicates with other nodes in the Default Mode Network
through this frequency band (Neuner et al., 2014). The transition
to lower frequency connectivity (3–14 Hz) during Reach/Saccade
execution may simply be a feature of task demands, since similar
communication was seen in Figures 9H,I,M,N,P, suggesting
a generalized tendency for visuo-spatial and motor related
cortical regions to communicate through lower frequency bands
when the reach/saccade is being executed. The reach/saccade-
dominant dynamics of the connection from the Precuneus to R
Par (Figure 9I) also exhibit characteristics similar to the other
motor regions, where the high-frequency planning connectivity
gives way to lower frequency execution connectivity. However,
during the epoch, the frequency range of the connectivity varies
periodically, dipping to lower frequencies and, subsequently,
returning to higher frequencies (Figure 9I, red profile) at the rate
of 5 Hz. This behavior suggests that the Precuneus dynamically
alters the frequencies over which it communicates with R Par in
a periodic manner. The persistence of this behavior through both
planning and execution suggests that the behavior is associated
with generalized motor-reach information processing, though
the decrease (Figure 9I, red profile) at the transition between
planning and execution at 0.5 s supports the involvement of this
periodicity in the motor task being executed by the subject.

Connectivity present in the cortical network is summarized in
Figure 10, where the Reach/Saccade condition is shown in a 3D
(BrainMovie3D) rendering of a cortical volume (Delorme et al.,
2011). The ROIs are represented by labeled spheres of varying
size and color, with the magnitude of causal information in-
flow indicated by color and the magnitude of causal information
out-flow indicated by size. Larger size spheres indicate larger
information out-flow and warmer colored spheres (brighter
red) indicate larger information in-flow. Connections between
ROIs are represented by tapered cylinders with varying color
and diameter. Cylinder tapering indicates the direction of
information flow, while cylinder width indicates flow magnitude,
and cylinder color represents the dominant frequency of
communication, with cooler colors for lower frequencies and
warmer colors for higher frequencies. Causal information flow
is integrated across all computed frequencies (2–50 Hz), and
is shown here (Figure 10) for t = 250 ms, that is, during the
planning period. The 3D rendering demonstrates the dominant
role of the Precuneus as an information source, indicated by its
large size, the higher power/frequency coupling of frontal regions
(ACC, SMA, L/R Mot), indicated by warmer colored and larger
connecting cylinders, and the higher frequency communication
present in the network during reach planning.

Framework Limitations
The above discussion of neurophysiologically relevant findings
serves to demonstrate the nature of the conclusions that

can be drawn through the application of this algorithmic
framework. Application of this method yields findings that are
both consistent with existing literature, and reveal connectivity
information in the cortex with an immense degree of detail,
allowing for the documentation of source-space spectro-
temporal information flow. There are, however, limitations with
the current approach which must be considered.

The source orientation assumptions applied to the cortical
BEM for the source space held that all cortical dipoles were
oriented normally to the surface of the BEM, a canonical
assumption that has been previously employed for BEM
construction (Fuchs et al., 2002), and is motivated by the
perpendicular orientation of cortical pyramidal cells to the
cortical surface. Applying this assumption simplifies solving the
inverse problem by reducing the number of variables to be
estimated to Ng (number of BEM grid-points) from 3 ∗ Ng , as
is the case when accounting for the x, y, and z components of
the current at each grid-point. However, this assumption greatly
restricts the form of the computed current density, and does not
allow for any data-driven flexibility with the computed dipoles.
Utilizing the position-free BEM and associated Lead Field Matrix
would allow for much greater flexibility, allowing for cortical
dipole orientation to be computed either jointly with the current
density, or after source localization using the current density, and
thus identifying orientations through observed data instead of
through a prior model.

Another potential drawback of the current source-localization
algorithm is the Laplacian regularization utilized by cLORETA.
The smoothing features of the discrete Laplacian when used as
a Tikhonov matrix cause the estimated current density to be
blurred over large regions of the cortical surface. This blurring
can cause current density from a single source to spill over into
multiple adjacent ROIs and potentially skew causal interactions
between these ROIs in a manner that is not corrected by using
the SdDTF connectivity metric. Preliminary investigations using
this data suggest that this spill-over does not have a significant
effect on causal analysis in this proposed framework, but further
investigation would be prudent to ensure that the computed
connectivity dynamics are not skewed by the choice of cLORETA
as the source localization algorithm.

The validity of the presented connectivity dynamics is
supported by the statistical analysis of the SdDTF connectivity
matrix and the validation conducted on the fitted MVARmodels.
Though a large amount of the computed connectivity was
statistically significant, the residuals of the computed MVAR
models failed the whiteness tests because not all correlational
structure of the localized current was captured by the models,
suggesting the existence of non-linear dynamics. These non-
linear dynamics are readily visible in the model prediction error
and suggest that non-linear ARmodeling is required to effectively
capture these dynamics in the MVAR coefficients. However, all
models exhibited a large Percent Consistency in the order of
90%, indicating that a very large percentage of the correlational
structure of the localized current in each node was captured
by the MVAR. The high percent consistency of the model
indicates that these nonlinearities constitute a small portion of
the localized current, and the computed MVAR models are able
to account for the vast majority of the observed dynamics.
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FIGURE 10 | Cortical connectivity present during the planning phase of the Reach/Saccade condition, shown in a 3D (BrainMovie3D) rendering of a

cortical volume (Delorme et al., 2011). ROIs are represented by labeled spheres of varying size and color, with the magnitude of causal information in-flow

indicated by color and the magnitude of causal information out-flow indicated by size. Connections between ROIs are represented by tapered cylinders with varying

color and diameter. Cylinder tapering indicates the direction of information flow, cylinder width indicates flow magnitude, and cylinder color represents the dominant

frequency of communication, with cooler colors for lower frequencies and warmer colors for higher frequencies. Causal information flow was integrated across all

computed frequencies (2–50 Hz), and is shown here for t = 250 ms, during the planning period. The 3D rendering demonstrates the dominant role of the Precuneus

as an information source, indicated by its large size, the higher power/frequency coupling of frontal regions (ACC, SMA, L/R Mot) indicated by warmer colored and

larger connecting cylinders, and higher frequency communication present in the network during reach planning.

Extensions to Real-Time BCI Applications
In spite of the potential limitations discussed in the previous
section, the proposed algorithmic framework has great potential
as a means for extracting connectivity features in real time
that can be used for brain state identification and BCI control.
While in its current form, the framework is designed for off-
line processing, Mullen et. al have demonstrated in Mullen et al.
(2015) that elements of this framework can be applied in a
real-time BCI setting and, with high accuracy, decode brain
states using the spectro-temporal connectivity features computed
through the use of this framework. The linear nature of the
inverse problem formulated through cLORETA allows for rapid
localization of current density in the cortex by application of

the closed-form solution given in equation 2. Furthermore, the
lattice algorithm used for MVAR coefficient estimation, while
well suited for off-line analysis where all data is available for
fitting, can be replaced by alternative estimation algorithms
which take advantage of the convexity of MVAR model-fitting
to compute robust models quickly and with relatively few
data-points. In addition, the development of online recursive
ICA (Hsu et al., 2014) allows for robust online artifact rejection,
source identification, and lends to the overall feasibility of this
approach in real-time BCI applications. There are other elements
of the pipeline, such as the data-driven identification of ROI’s
for connectivity analysis, which must be adapted to account for
the lack of all data present, or meet the computational demands
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in real-time analysis. Nevertheless, there is great potential use
for this framework in both a clinical and research settings for
real-time BCI control.

CONCLUSION

The presented algorithmic and computational framework
successfully identified a cortical network, across several subjects,
associated with a cognitive task, using EEG signals recorded
from individuals performing the task with the aid of a
BCI. It also computed statistically significant causal dynamic
connectivity profiles among the ROIs comprising the nodes
of the identified cortical network. The modular nature of the
presented framework allows for flexibility and scalability. The
algorithm computing the cortical network can easily scale up to
include a greater number of participants without compromising
the reliability or accuracy. The ease of incorporating large
amounts of data comes as a consequence of utilizing a distributed
source localization method with a BEM-defined source space.
The flexible-yet-fixed source space geometry allows for warping
head models to align with a realistic 3D representation of
each participant’s cortex by way of the digitized electrode
positions, while retaining the identity of anatomical ROIs and
their associated gray matter grid points in the head model.
Should the user deem it necessary, the modular nature of this
framework allows for substitutions of preprocessing algorithms,
source localization methods, and connectivity analysis tools
as is seen fit. As long as a source-space based localization
algorithm is utilized to maintain consistent anatomical regions
across subjects, the user is free to create a customized pipeline
that best suits their needs, and is not strictly limited to
usage of the algorithmic pipeline with the proposed software
and algorithms. The proposed analytical approach allows for
extraction of information rich connectivity features which
account for spectro-temporal connectivity dynamics during the
performance of a cognitive task. This feature extraction is
made possible by coupling the segmentation-MVAR modeling
of cortical signals with the SdDTF—a connectivity metric that is
evaluated independently for different frequencies, leading to the
asymmetric spectro-temporal connectivity dynamics displayed

in Figures 7–9. The presented framework also includes a non-
parametric statistical test to assess the statistical significance
of the extracted features—the spectro-temporal connectivity
dynamics. The physiological plausibility of the cortical network
and the causal dynamic features characterizing interaction
among the nodes of the network computed by employing this
framework strengthens the framework’s applicability in reliably
capturing complex brain functionality, which is required by
applications, such as diagnostics and BCI.
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