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The brain’s connectivity skeleton—a rich club of strongly interconnected members—was

initially shown to exist in human structural networks, but recent evidence suggests a

functional counterpart. This rich club typically includes key regions (or hubs) frommultiple

canonical networks, reducing the cost of inter-network communication. The posterior

cingulate cortex (PCC), a hub node embeddedwithin the default mode network, is known

to facilitate communication between brain networks and is a key member of the “rich

club.” Here, we assessed how metabolic signatures of neuronal integrity and cortical

thickness influence the global extent of a functional rich club as measured using the

functional rich club coefficient (fRCC). Rich club estimation was performed on functional

connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects.

Magnetic resonance spectroscopy was measured in the same session using a point

resolved spectroscopy sequence. We confirmed convergence of functional rich club

with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC

is significantly correlated with age (p = 0.001), while the rich club coefficient showed

no effect of age (p = 0.106). In addition, we found a significant quadratic relationship

between fRCC and NAA concentration in PCC (p= 0.009). Furthermore, cortical thinning

in the PCC was correlated with a reduced rich club coefficient after accounting for age

and NAA. In conclusion, we found that the fRCC is related to amarker of neuronal integrity

in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area

was observed, suggesting that both cortical thinning and neuronal integrity in the hub

regions influence functional integration of at a whole brain level.
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INTRODUCTION

Functionally, human brains are known to exhibit a highly
organized structure (Meunier et al., 2010). Sub-networks
within the brain have been identified which activate while
performing various tasks related to visual stimuli (Calhoun
et al., 2001), action (Karni et al., 1995), cognitive tasks (Buckner
et al., 1996), or at rest (Damoiseaux et al., 2006). Brain
regions involved in each of these tasks organize into distinct
communities (Meunier et al., 2009). Underlying these segregated
communities is a set of highly inter-connected regions facilitating
functional connectivity between communities (Sporns et al.,
2007). Typically highly influential regions are both structurally
(van den Heuvel and Sporns, 2011) and functionally (van den
Heuvel et al., 2009) interconnected, forming the so called rich
club (Colizza et al., 2006). Despite advancements in imaging
analysis techniques regarding graph theoretical analysis for
functional MRI, there is currently little knowledge of the
biochemical and biological neurotransmitter underpinnings of
graph outcome metrics.

The rich club in human brains was first characterized
structurally using diffusion tensor imaging (DTI) (van den
Heuvel et al., 2013; Collin et al., 2014a), highlighting a consistent
set of key regions. High resolution DTI studies have identified
a myriad of rich club regions including frontal-temporal,
anterior and posterior midline regions, and posterior cingulate
cortex (van den Heuvel and Sporns, 2011). Functionally, there
are few studies exploring the rich club in human brains at
rest. One such study that found a significant enrichment of
the fRCC in healthy adults when compared to adolescents
(Grayson et al., 2014). While rich club like properties have
been observed in both structural and functional modalities of
brain imaging, fundamental underlying differences in imaging
techniques and their subsequent analysis preclude meaningful
direct comparison of the two. Most importantly, resting state
functional connectivity is susceptible to the transitive property,
particularly between highly correlated regions (Langford et al.,
2001), an effect that structural imaging does not suffer from.

Recent studies have identified a number of regions which
typically enter their active state during periods of rest with eyes
closed (Zhang and Raichle, 2010), commonly known as the
default mode network (DMN). Within the DMN the posterior
cingulate cortex (PCC) plays an important role, being directly
structurally connected to both the medial temporal lobe (MTL)
and the medial prefrontal cortex (MPFC) (Greicius et al.,
2009). Functionally, PCC is predominantly known as a core
component of the default mode network (Greicius et al., 2003).
However, it is also involved in other networks, such as the dorsal
attention network and the executive control network (Leech
and Sharp, 2014). Due to the extensive functional importance
of the PCC across multiple networks, we hypothesize that it is
a key hub node facilitating communication between multiple
canonical networks. While the importance of the PCC in
widespread communication between numerous brain networks
is well documented, little is currently known about the impact
of biochemical and structural alterations within the PCC on its
functional connectivity with other key areas. Hence, we sought to

elicit the impact of local biochemical and structural factors in the
PCC on the fRCC in a healthy population.

Proton magnetic resonance spectroscopy (MRS) enables the
identification of regionally specific metabolic signatures non-
invasively (Duncan, 1996). Of particular importance to the
present study, one particular metabolite, N-acetyl Aspartate
(NAA), can be identified using this technique. NAA is thought
to be present predominantly in neuronal cells, which has been
shown to be a biomarker for neuronal and axonal integrity
(Dautry et al., 2000; Demougeot et al., 2001). Another measure,
which can be acquired using T1-weighted structural images
allows for the quantification of neuronal and glial density (Li
et al., 2014), known as cortical thickness (CTh).

Cortical thinning has been shown to occur due to aging in a
healthy population (Salat et al., 2004). Furthermore, decreased
cortical thickness within the pregenual cingulate cortex has
been observed in patients suffering from late onset depression
(Mayberg, 2003; Lim et al., 2012). One recent study identified a
positive correlation between CTh and NAA in the dorsal anterior
cingulate cortex (Li et al., 2014). However, the relationship
between CTh, NAA, and the rich club coefficient are to our
knowledge unexplored.

Due to the highly influential nature of the PCC at a functional
level, we hypothesized that it exerts a substantial influence
on the functional backbone of the network. Furthermore, we
conjectured that both local metabolic and structural properties
impact on the extent of its influence. Hence, we sought to elicit
the impact of local metabolic and structural properties of the PCC
on the overall importance of the rich club.

MATERIALS AND METHODS

Forty eight healthy volunteers (33.08± 8.68 years) were recruited
in Magdeburg, Germany. The sample consisted of 35 males
and 13 females. Participants were excluded based on major
medical illness, pregnancy, history of seizures, current psychiatric
disorder or general MRI contradictions. The study was approved
by the institutional review board of the University of Magdeburg
and all subjects gave written informed consent before inclusion.

Data Acquisition
The fMRI data were acquired on a 3 Tesla SiemensMAGNETOM
Trio scanner (Siemens, Erlangen, Germany) with an eight-
channel phased-array head coil. Subjects were requested to lie still
with their eyes closed for the duration of the resting state scan. A
total of 488 volumes were acquired with an echo-planar imaging
sequence. The following acquisition parameters were used: echo
time = 25 ms, field of view = 22 cm, acquisition matrix = 44 ×
44, isometric voxel size= 5× 5× 5 mm3. Whole brain coverage
was achieved with 26 contiguous axial slices, using a repetition
time of 1,250 ms and flip angle of 70◦. The first 10 volumes
were discarded to allow for magnetic field homogenization. High
resolution T1-weighted structural MRI scans of the brain were
acquired for structural reference using a 3D-MPRAGE sequence
(TE = 4.77 ms, TR = 2,500 ms, T1 = 1,100 ms, flip angle = 7◦,
bandwidth = 140 Hz/pixel, acquisition matrix = 256 × 256 ×

192, isometric voxel size= 1.0 mm3).
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Data Preprocessing
Functional data were corrected for differences in slice time
acquisition, motion-corrected using a least squares approach and
a six-parameter (rigid body) linear transformation and spatially
normalized. The data were linearly detrended. All subjects had
less than 1 mm headmotion in any direction during the scanning
session. An additional regression of nuisance covariates was
applied during which the functional data was corrected for global
mean signal as well as for white matter and cerebrospinal fluid
signal and bandpass filtering between the frequencies of 0.01
and 0.1 Hz. Data were preprocessed using spm8 (Wellcome
Trust Center for Neuroimaging, London, England) using the data
processing assistant for resting-state fMRI (DPARSF version 2.3,
Yan and Zang, 2010).

The resulting volumes were parcellated into 102 nodes using
a modified version of the automatic anatomic labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) containing a fine grained
parcellation for the cingulate and insular cortices (Horn et al.,
2010; Lord et al., 2012). To compute the resting state functional
connectivity (rsFC) of the ROIs, the mean time course of every
voxel within each ROI was extracted and Pearsons correlation
coefficients were calculated pair-wise for all pairs of ROI’s,
resulting in 102 by 102 symmetric matrices.

MRS Data Acquisition and Analysis
ProtonMRS data were acquired from a single voxel (10× 20× 20
mm3), located in the PCC for each subject at rest (Figure 1). MRS
data were acquired using a point resolved spectroscopy (PRESS)
sequence with an echo time of 80 ms, repetition time of 2,000 ms,
256 averages, 1,200 Hz bandwidth, 853 ms acquisition time and
water suppression. Shimming was performed automatically, with
manual fine tuning to improve field homogeneity. To correct
for eddy currents, four pulses without water suppression (TR =

10 s) were averaged. Voxel acquisition time was 8 min and 40 s.
Spectra were analyzed using LCModel version 6.3.0 (Provencher,
2001). Sixteen different metabolites (Creatine, Glutamate, myo-
Inositole, Lactate, NAA, Phosphocholine, Taurine, Aspartate,
GABA, Glutamine, Glucose, Alanine, NAAG, Phosphocreatine,
Guanine, and Glycerophosphocholine) were fitted using a basis
set including all these substances. The concentration of NAA

was calculated as its ratio to creatine (Cr) as it is known to be
an appropriate reference (Yildiz-Yesiloglu and Ankerst, 2006).
Model fit error was estimated using the Cramer-Rao lower
bounds (CRLB) (Cavassila et al., 2001) measure, with spectra
deemed to be reliable if CRLBwas less than 20%. Otherminimum
quality criteria included a full width half maximum value of
smaller than 12 Hz and a signal to noise ratio of greater than
eight.

Cortical Thickness
Cortical thickness (CTh) was measured across the whole brain
using the CIVET pipeline (Zijdenbos et al., 2002). MR-images
were linearly transformed (rigid body, 6 degrees of freedom)
to standard Montreal Neurological Institute (MNI) space with
intensity and non-uniformity also corrected (Sled et al., 1998).
These images were then segmented into gray matter (GM), white
matter (WM), cerebral spinal fluid using a neural net classifier.
Next cortical surfaces were extracted for both the pial-cortical
surface and GM-WM boundary for each hemisphere separately
using a deformable mesh model implemented inside the
Constrained Laplacian Anatomic Segmentation using Proximity
algorithm (June et al., 2005). Both surfaces were non-linearly
registered to a high resolution standard template to ensure the
co-registration of all subjects to a common space (Lyttelton et al.,
2007). To minimize morphological distortion, the inverse of
the aforementioned transformation was applied for each subject
and CTh was measured in native space. To calculate the GM
percentage in the MRS voxel, the voxel was co-registered to the
subjects T1 image using SPM8. MRS voxels for each subject
were projected into template space using each subject’s affine
matrix calculated to transform each hemisphere to standard
space earlier.

Rich Club Coefficient
These matrices were rendered sparse by recursively removing
connections, starting with the lowest correlation until only 10%
of connections remain. The sparsity of 10% was selected as
networks with more edges tends to introduce weaker, noisy
effects obscuring between-group effects (Rubinov et al., 2009;
Lord et al., 2012; Borchardt et al., 2015). After thresholding

FIGURE 1 | Placement of MRS voxel in the PCC. An exemplar spectra for the MRS signal is on the right.
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no negative edges remained. To ensure that the graph didn’t
disconnect, edges which would cause a disconnection if removed
were retained even if their correlation was below the cutoff
threshold. These sparse networks were then binarized, and the
degree of each node is calculated.

The fRCC was then calculated across a range of degree
thresholds. This was done by removing nodes with a degree
of less than the chosen threshold and dividing the number of
connections in the remaining subnetwork with the maximum
possible number of connections. This ratio in and of itself is
known not to be a good measure of interconnectedness (van den
Heuvel and Sporns, 2011), thus we reference this information
against what we would expect by random chance. To this end,
we randomly move connections in the thresholded connectivity
matrix, creating a randomized matrix with the same degree
distribution (Maslov and Sneppen, 2002), preserving the degree
distribution of the network while destroying the connection
pattern. The rich club coefficient for each randomized graph was
then calculated and the ratio of the raw RCC to the mean RCC of
all randomized graphs at each degree threshold was computed. As
such, a normalized RCC of 1 speaks to the connectivity pattern of
the rich club being equal to a random graph, that is, high degree
nodes are no more or less likely to connect to each other than
by random chance. A value greater than 1 shows an affinity of
rich nodes to cluster more tightly than expected together, while
a value below 1 shows rich nodes predominantly connect with
non-rich nodes. Since all analysis using the rich club refers to the
normalized rich club and not the raw rich club, the normalized
rich club will be henceforth described solely as the rich club. The
regions included as rich club members were also extracted.

Rich club membership was defined on an individual level.
That is, for each individual the degree threshold giving the
highest RCC was identified, then the regions identified as
members at this threshold were selected. At the group level, rich
club members were identified as those regions appearing in at
least 50% of subjects.

RESULTS

A positive rich club coefficient was observed for all subjects,
with the largest fRCC across the group at a degree threshold of
9 (Figure S1). Twenty-one rich club members were consistent
in at least half of the participants (Figure 2), with seven out of
21 regions from within the cingulate cortex, including the PCC
(Table 1). No correlation between global signal and fRCC was
observed (Figure S2).

NAA in the PCC negatively correlated with age (Figure 3A, r
= −0.456, p = 0.001, t = −3.475, df = 46), while no significant
correlation exists between rich club coefficient and age (r =

0.2356, p = 0.107, t = 1.644, df = 46, Figure 3B). Furthermore,
a significant quadratic relationship was identified between RCC
and NAA/Cr in the PCC (Equation 1, Figure 4, p = 0.009). This
relationship was not observed using a linearmodel (r=−0.041, p
= 0.093, t = −1.708, df = 46). The model fit was formally tested
using the bayesian information criterion (BIC), which revealed
that a quadratic model fit the data better than a linear model
(delta BIC=−3.16) or any higher order polynomial (Figure S3).

FIGURE 2 | Rich club members.

TABLE 1 | Rich club members.

Subjects Region

45 Frontal Sup Orb R

44 Frontal Mid L

43 Rostral ACC R

43 Pregenual ACC R

42 Temporal Sup R

41 Rostal ACC L

40 Post Insula R

38 Temporal Sup L

37 Thalamus R

36 Temporal Pole Sup L

35 Frontal Inf Tri L

34 Posterior MCC R

33 Caudate R

33 23d L

32 dPCC R

31 Frontal Inf Orb L

31 vPCC L

30 Occipital Mid R

30 Occipital Inf L

28 Medial Prefront Upper R

26 Anterior Insula L

Linear correlates between low and high RCC values were assessed
post hoc. The data were split into two groups, below the RCC
value predicted to give the lowest concentration of NAA/Cr
(2.44), and above this value. A negative linear correlation was
observed in the low RCC values (r = −0.365, p = 0.036, t =
−2.185, df = 31), while a trending positive linear correlation
was observed in the high RCC values (r = 0.473, p = 0.075, t =
1.935, df = 13). Using a Fisher R-to-Z transformation, these two
correlations were significantly different (z = −2.62, p = 0.009,
Figure S4). In contrast this did not translate into dependency
of global metrics (SWI and CC), which did not correlate with
PCC-NAA.

Nonlinear relationship between NAA/Cr in the PCC and

the RCC. F = 5.206, p = 0.009254.

y = 1.933− 0.621x+ 0.127x2 (1)
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FIGURE 3 | Linear correlates of age with (A) NAA (r = −0.456, p = 0.001, t = −3.475, df = 46) and (B) rich club coefficient (r = 0.2356, p = 0.107, t = 1.644,

df = 46).

Cortical thickness in the PCC positively correlated with the
rich club coefficient after accounting for age and NAA/Cr as
covariates (Figure 5, FDR corrected). Although extensive
parts of the cortex showed reduced CT as a factor of
age (Figure S5), this did not overlap with the previous
finding. CT was also positively correlated with NAA/Cr,
predominantly in the mid cingulate cortex, but did not
overlap with the fRCC correlation with CT in the PCC
(Figure S6). After accounting for age as a covariate, fRCC
and mean CTh in the PCC was positively correlated (r =

0.339, p = 0.015, t = 2.519, Figure 6). When considering
only age as a covariate, a cluster of vertices in the same
location is observed at an uncorrected threshold only
(Figure S7).

DISCUSSION

Although the rich club coefficient has become increasingly

studied in both functional and structural networks in human

brains (van den Heuvel et al., 2012; Collin et al., 2014b; Grayson
et al., 2014), little is currently known about the impact of local

metabolic and structural properties of key rich club regions on
the integrity of the club as a whole. Hence, we sought to identify
effects of neuronal integrity and cortical thinning in the PCC on
the density of connections within this functional backbone of the
human brain.

Regional distribution of rich club members in this study were
in line with previous work (van denHeuvel and Sporns, 2011; van
den Heuvel et al., 2013), showing most of the members of the rich
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FIGURE 4 | Quadratic relationship between RCC and NAA/Cr. The

equation for this curve is: y = 1.933 – 0.621x + 0.127x2 where x is the rich

club coefficient.

FIGURE 5 | Positive correlation between RCC and CTh (FDR corrected)

incorporating age and NAA as covariates. Blue represents FDR corrected

significant differences. Red/yellow represent FWE corrected significant

differences.

club surrounding the inter-hemispheric fissure. Furthermore,
we observe many areas of the cingulate cortex as members of
the rich club, suggesting a high level of communication both
within the cingulate cortex as well as to other regions of the
brain. This result speaks to the central role of the cingulate
cortex in information transfer at a whole brain level. Indeed, one
third of all rich club members were subregions of the cingulate
cortex, including pregenual and rostal parts of the ACC, posterior
MCC, dorsal and ventral PCC and Brodman area 23d. During
preprocessing we regressed out global signal from out resting
state data. This procedure has met with criticism as it can
introduce spurious relationships within the data. We observed
no relationship between fRCC and GSR, suggesting our results
are not driven by the global signal.

The quadratic relationship between the functional rich club
and NAA/Cr initially declines linearly, then increases at higher
RCC levels. This suggests that other factors, in addition to the
NAA/Cr concentration in the PCC, influence the functional
rich club coefficient. Confirming this, we found a significant

reduction of CTh in the PCC related to the RCC, after accounting
for age and NAA/Cr. These results show that both the neuronal
integrity and cortical thickness affect the richness of the network.

The directionality of correlations will require further in
depth analysis, at best including suitable behavioral parameters.
Lower NAA is normally considered indicative of reduced
neuronal integrity while its relevance to functional rich club
alterations is less clear. Age related whole network changes
for example in Alzheimers disease found effects rather in
peripheral functional connections leaving the core network
rather undisturbed (Daianu et al., 2015) at least for functional
connectivity properties. In clinical context, schizophrenia was
associated with reduced rich club connections, speaking in favor
of a beneficial role of higher functional rich club routing and
routing efficiency.

Nodes of the structural rich-club are especially resilient to
targeted attacks and enhance global information flow by acting
as a “highway” system (van den Heuvel and Sporns, 2011; van
den Heuvel et al., 2012; Xia et al., 2016). Nevertheless, the
structural rich-club is a relatively high-cost component of brain
networks because the wiring cost is greater between members
of the rich club than between less well-connected nodes in
the periphery (Collin et al., 2014b). Also, structural rich-club
nodes have higher levels of metabolic energy consumption than
peripheral nodes (Collin et al., 2014b). Structural rich clubs
were shown to connect early and are maintained through in
maturation (“rich-get-richer”), suggesting that these nodes may
have a key developmental role (Schroeter et al., 2015). Thus,
it has been argued that maintenance of such a costly network
component should offer advantages to the brain’s computational
performance. In line with this thought, mature rich-clubs
were indeed shown to be of great importance for routing of
spontaneous activity flow in the network frequently acting as
brokers for spontaneous multi-unit activity, suggesting a role of
rich-clubs for orchestrating coordinated activity in the network,
for example switching between different network states (Crossley
et al., 2013; Leech and Sharp, 2014; Senden et al., 2014; Schroeter
et al., 2015).

In our case we found lower fRCC associated with higher
NAA, thus a direct interpretation in terms of functional relevance
will be difficult, particularly since we only investigated healthy
subjects.

Our results are in line with previous accounts for the
influence of local metabolism within a node on brain network
configuration. Horn et al. reported that functional resting state
connectivity between pgACC and anterior insula was correlated
with Glx concentrations in pgACC (Horn et al., 2010). This
effect was localized in that insula MRS did not show similar
influences on this connectivity. More recently, Demenescu et al.
(2016) show that anterior insula MRS predicted long range
resting state connectivity, however toward temporo-parietal and
visual cortices. Importantly, these findings of glutamatergic
modulations were found explicitly for depressed patients, while
healthy controls did not show the same correlation (Horn
et al., 2010). This was interpreted as a reflection of a primary
glutamatergic deficit in MDD, as supported by respective
meta-analyses (Taylor, 2014) while in the absence of a direct
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FIGURE 6 | Partial correlation between the rich club coefficient and mean cortical thickness in the PCC (r = 0.339, p = 0.015, t = 2.519).

metabolic deficit variance of the metabolite was considered to be
too low.

In contrast, work on PCC MRS in healthy subjects reported
an interrelation of both glutamate and GABA on PCC functional
connectivity, at least when investigating the default mode
network as a whole via independent component analysis
(Kapogiannis et al., 2013). Therefore, it is plausible that also in
healthy conditions, variance of both functional connectivity and
brain metabolites as acquired in MRS is large enough to detect
covariations in healthy cohorts. Such covariations should then
reflect a common biological mechanism and the most prominent
mechanism in healthy cohorts would be that of aging.

Age related brain changes have been investigated in greater
extent and prominent effect have ben postulated for NAA (Block
et al., 2002). Indeed we found NAA to be correlated with age
and RCC however there was no direct correlation between
RCC and age. Furthermore, the relationship of PCC cortical
thickness was controlled for potential age effects, thus pointing
toward a second, age independentmechanism, which relates PCC
functional integrity as evident in cortical thickness and NAA
levels toward RCC. It must also be stated that the sample included
in our study is of rather young age and thus neurodegenerative
effects, previously investigated may not be the main driver.

Although Grayson et al. (2014) found an enriched rich club
in adolescents, we did not see a significant correlation between
age and fRCC (p = 0.1068), which may be explained by the vast
developmental changes in the brain during the adolescent period
(Giedd, 2004) in comparison the putative effects in our sample.

An alternative interpretation would consider the mild
apparent, if not statistically significant increase of fRCC with age
as a subtle counterpart to the significant age dependent NAA

decrease. As such MRS would be considered a very sensitive
age marker while secondary effects of age on whole brain
organization would be more subtle and not yet detectable in the
observed age range between early twenties and mid-fifties. This
would then be reflected by the linear component fRCC increase
with decreasing NAA, and may, in a far stretch, be interpreted as
a sign of age related “hyper-efficiency.”

However, such interpretation would not work for the observed
quadratic relationship, which for brains with very high RCC’s
rather found the inverse relationship of increasing fRCC with
higher NAA. This suggests that other factors, in addition to
the NAA/Cr concentration in the PCC, influence the rich club
coefficient. In support of this interpretation, one may add that we
found linear negative relationship of CTh in the PCC and fRCC.
However, we found this after accounting for age and NAA/Cr,
therefore results at this stage should best be appreciated in that
we found evidence that both the neuronal integrity and cortical
thickness affect the richness of the network and the parallel,
potentially driving, or counteracting effects of age and other
sources of inter-individual variation will be subject to future
investigations in larger cohorts.

Within the context of these considerations, our results in a
comparably large, young adult population point toward an effect
of local neuronal integrity or at least neurobiological constitution
on resting state network configuration.

The new advance in our finding is first the extension to
NAA, after previous reportsmainly focused on neurotransmitters
GABA and Glutamate. Secondly after previous research as
investigated metabolite influence on direct connections of a
region, either in terms of seed based edges or in terms of the
independent component which hosts the location of the single
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MRS voxel, we extend the view toward a much more global effect
on network constitution. This effect is very likely due to the
central role of the PCC within the rich club. While we cannot test
this explicitly at this stage, we would assume that the relationship
found here is mainly representative of the central role of the PCC
within a backbone of small network organization rather than
due to the specific impact of NAA in comparison to GABA or
glutamate. Ideally, to test such claim, one would request MRS
sequences which allow assessment of all mentioned metabolites
within the scope of a single session along a number of regions and
further leave time for additional resting state assessments. Such
methods are available for higher field strengths, making explicit
use of the improve line separation (Dou et al., 2013; Li et al, 2016).

LIMITATIONS

Only 13 out of 48 subjects included in this study were female.
Due to the small sample of females included, gender effects have
not been discussed. However, future work would benefit from
investigating gender specific variation in the context of NAA,
CTh and RCC.

CONCLUSION

The rich club in fMRI is an area of growing interest, with
implications in neurological development (Grayson et al., 2014)
and psychiatric disease (van den Heuvel et al., 2013; Collin
et al., 2014a). Our findings add evidence to this growing avenue
of research, progressing our understanding of the impact of

metabolic and structural factors on the rich club. To our
knowledge, this is the first study identifying the impact of these

factors targeted to the PCC, showing a relationship between CT
and NAA/Cr neurotransmitter levels and its effects on this core
subnetwork of resting state functional connectivity via the PCC.
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