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Type 2 diabetes mellitus is associated with accelerated cognitive decline and various

cerebral abnormalities visible on MRI. The exact pathophysiological mechanisms

underlying cognitive decline in diabetes still remain to be elucidated. In addition to

conventional images, MRI offers a versatile set of novel contrasts, including blood

perfusion, neuronal function, white matter microstructure, and metabolic function. These

more-advanced multiparametric MRI contrasts and the pertaining parameters are able

to reveal abnormalities in type 2 diabetes, which may be related to cognitive decline. To

further elucidate the nature of the link between diabetes, cognitive decline, and brain

abnormalities, and changes over time thereof, biomarkers are needed which can be

provided by advanced MRI techniques. This review summarizes to what extent MRI,

especially advanced multiparametric techniques, can elucidate the underlying neuronal

substrate that reflects the cognitive decline in type 2 diabetes.
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INTRODUCTION

Type 2 diabetes mellitus is a common metabolic disorder, characterized by chronic hyperglycemia,
in a context of insulin resistance and relative insulin deficiency (Gispen and Biessels, 2000).
Type 2 diabetes has commonly been considered a disease of elderly populations. However, with
today’s unhealthy lifestyle, also an increasing number of younger (that is, middle-age) people are
developing diabetes.

Type 2 diabetes has a broad range of serious clinical complications, including nephropathy,
retinopathy, and cardiovascular disease, and is often accompanied by cardiovascular risk factors
such as hypertension and dyslipidemia. Hyperglycemia damages a selection of cell types, including
neurons, which are unable to reduce the transport of glucose inside the cell, leading to high glucose
(Brownlee, 2005). Type 2 diabetes is also associated with cognitive deficits, accelerated cognitive
decline, an increased risk of dementia, and Alzheimer disease (AD) (Biessels et al., 2006). In type
2 diabetes, cognitive changes mainly affect learning, memory and information processing speed
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(Cheng et al., 2012). For recent reviews on cognition and type
2 diabetes, the reader is referred to specific recent reviews by
Koekkoek et al. (2014) and Geijselaers et al. (2015).

In recent years, numerous studies have highlighted the adverse
effects of diabetes on brain physiology and cognitive function
to assess contributing pathophysiological mechanisms (Biessels
and Reijmer, 2014; Brundel et al., 2014a). Most studies have
applied conventional MRI with multiple contrasts to detect
macrostructural cerebral changes. However, macrostructural
abnormalities on MRI reflect end-stage effects of impaired
tissue, and conventional MRI is probably not sensitive enough
to detect the earliest cerebral changes, expectedly more
closely reflecting mechanisms, associated with cognitive decline
(Tofts, 2003). For this purpose, potentially more-sensitive MRI
techniques, such as functional MRI (fMRI) and diffusion MRI
(dMRI), can be used, which could lead to a better insight
into the mechanisms that precede macrostructural (end-stage)
abnormalities.

The present narrative review summarizes recent literature
and provides an overview of the various brain abnormalities
associated with type 2 diabetes in combination with cognitive
decrements. The aim is to provide the available evidence for
neuronal substrates of cognitive impairment in type 2 diabetes. It
will explore the appropriateMRI techniques to study associations
with cognitive performance in patients with type 2 diabetes
(for an overview of typical abnormalities and the corresponding
techniques, see Figure 1), and will make recommendations for
future research. This review is structured according to the
various types of cerebral abnormalities and the appropriate MRI
techniques available to study pathophysiology, in the range from
routine clinical application to explorative research.

ATROPHY

Cerebral atrophy can generally be defined as the shrinkage of
brain tissue, which is a result of neurodegenerative processes,
such as the loss of neurons and their interconnections (Jobst et al.,
1994). Many studies on type 2 diabetes, using various structural
MRI techniques, report on atrophy (den Heijer et al., 2003; de
Bresser et al., 2010; van Elderen et al., 2010). Associations have
been found between brain atrophy and decreased performance
in various cognitive domains (Tiehuis et al., 2009; Hayashi et al.,
2011; Moran et al., 2013; Zhang Y. et al., 2014), including
memory, attention and executive function, as well as processing
speed, motor speed, and sensory speed. Also the progression of
atrophy was found related to cognitive decrements in type 2
diabetes (van Elderen et al., 2010; Reijmer et al., 2011).

SMALL VESSEL DISEASE

Cerebral small vessel disease (cSVD) can be generally defined as
pathological processes with various etiologies that affect the small
arteries, arterioles, venules, and capillaries of the brain (Wardlaw
et al., 2013). Signs of cSVD are white matter lesions, microbleeds,
silent brain infarcts and lacunar abnormalities, which are also
indicative for cognitive decline (Imamine et al., 2011).

White Matter Lesions
White matter lesions (WMLs) are typically observed as regions of
bright, high-signal intensity in the white matter (i.e., white matter
hyperintensities) depicted on T2-weighted and, especially, FLAIR
images (Wardlaw et al., 2013). The underlying pathophysiology
of WMLs is still poorly understood and is assumed to include
multiple factors of vascular (through ischemia or arteriosclerosis)
or inflammatory (through transudation of CSF) origin (Fazekas
et al., 1998).

WMLs are often divided in periventricular WMLs, which are
located close to the ventricles, and deepWMLs, which are located
in subcortical gray matter (Wardlaw et al., 2013). It was shown
that periventricular, but not subcortical, WMLs are associated
with the rate of cognitive decline in elderly non-demented
individuals (De Groot et al., 2002).

Numerous studies report on WMLs in patients with type
2 diabetes (Manschot et al., 2006; Jongen et al., 2007; van
Harten et al., 2007; Imamine et al., 2011). More specific, deep
(subcortical) WMLs, periventricular WMLs, and WMLs in
general are found in patients with type 2 diabetes. WMLs are
also related with impaired cognition in type 2 diabetes (Manschot
et al., 2006; Jongen et al., 2007; van Harten et al., 2007; Imamine
et al., 2011), especially in the domains of processing speed,
memory, attention and executive functioning, and motor speed.

Microbleeds
Cerebral microbleeds result from focal leakages of small blood
vessels (Wardlaw et al., 2013). They are thought to contain iron
deposits (Wardlaw et al., 2013). Typically, microbleeds are found
only incidentally on MRI, but are thought to play an important
role in cognitive decline (Wardlaw et al., 2013). The reported
prevalence of microbleeds increases with age (Imamine et al.,
2011). Microbleeds do not seem to be associated with type 2
diabetic patients with cognitive impairment (Moran et al., 2013),
which is also confirmed at high field (7T) (Brundel et al., 2014b).

Silent Brain Infarcts
Silent brain infarcts (SBIs) are clinically asymptomatic (i.e., they
lack stroke-like symptoms), but visible (generally 2–5mm in
diameter) as focal lesions on MRI, and are associated with
cognitive deficits that commonly remain unnoticed (vermeer
et al., 2007).

Patients with type 2 diabetes often display SBIs, which are also
related to impaired cognitive performance (Manschot et al., 2006;
Imamine et al., 2011). The number of SBIs and/or progression of
SBIs are especially linked to decrements inmotor speed, attention
and executive functioning (Imamine et al., 2011; Umegaki et al.,
2011).

Lacunar Abnormalities
Lacunes are pathologically defined as small areas (3–15 mm
in diameter) of infarction, which is a result from an occlusion
of one of the small penetrating branches of large cerebral
arteries (Wardlaw et al., 2013) and are associated with cognitive
impairment (Schneider et al., 2003). In type 2 diabetes, lacunar
infarcts often progress (van Harten et al., 2006; Umegaki, 2010),
likely caused by ischemia (Imamine et al., 2011).
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FIGURE 1 | Overview of structural abnormalities which may be found in patients with type 2 diabetes (b–g), and advanced MRI techniques sensitive to

more subtle cerebral alterations (h–k). This figure is an illustration from the authors’ clinic. (a) T1-weighted image of a healthy young brain. Structural abnormalities in

patients with type 2 diabetes, as highlighted with red arrows. (b) Atrophy (T1WI), (c) white matter lesions (FLAIR), (d) aneurysm (T2WI), (e) microbleeding

(T2*-weighted), (f) macrobleeding (T2*-weighted), and (g) lacunar infarct (FLAIR). Advanced MRI techniques: (h) fMRI, (i) dMRI, (j) arterial spin labeling, and (k) MRS.

Corresponding colored squares in (a) represent the approximate location where the structural abnormalities were found and where the single voxel for spectroscopy

was located, respectively.

Cerebral infarcts (i.e., lacunar, cortical, subcortical infarcts, or
infarcts in general) have been observed in patients with type 2
diabetes (Manschot et al., 2006; Moran et al., 2013). Most studies
report a relationship between cerebral infarcts and decreased
performance in various cognitive domains, including processing
speed, sensory speed, memory, executive function, and global
cognition.

For the detection of cerebral atrophy or cSVD, various
structural MRI techniques have been used. However, these
techniques cannot unravel more subtle details of tissue alterations
that underlie or precede the atrophy or cSVD. For this,
more-advanced MRI techniques can be used, which will be
discussed below.

IMPAIRED CEREBRAL PERFUSION

Cerebral perfusion is defined as the amount of blood flowing
through a definite volume of tissue in a given time (Filippi
et al., 2010) and can be estimated using Arterial Spin Labeling

(ASL) and Intravoxel Incoherent Motion (IVIM) imaging, or

measured globally using a velocity-sensitive, phase-contrast MRI
technique (Tiehuis et al., 2008; Brundel et al., 2012b; Novak
et al., 2014; Rusinek et al., 2015; van Bussel et al., 2015; Jansen
et al., 2016). The ASL technique is based on magnetic labeling of
arterial blood (e.g., blood in the common carotid artery), which

is used as an temporary endogenous tracer in the brain. The
IVIM technique enables assessment of both the parenchyma and
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microvasculature and is based on the diffusion of watermolecules
in parenchyma and incoherent motion of water molecules in
the microvasculature. The velocity-sensitive, phase-contrast MRI
technique is based on differences in phase of the magnetic spins.
An advantage of using ASL or IVIM is that these techniquesmake
it possible to investigate regional differences related to disease
pathology instead of only a gross measurement of total brain
perfusion with phase-contrast MRI (Le Bihan et al., 1986; Ryan
et al., 2014).

A fair comparison between ASL and IVIM is not trivial due
to the different complex physical mechanisms that contribute to
the detected signal. However, the former is a truly quantitative
method, which has been validated with PET (positron emission
tomography) perfusion measurements (van Golen et al., 2014),
whereas the latter is yet more experimental, though it can provide
a higher signal-to-noise ratio (SNR), and the possibility for an
increased spatial resolution.

Thus far, some studies, one using phase contrast MRI (1.5T)
(Tiehuis et al., 2008) and one using ASL (3T) (Rusinek et al.,
2015), did not find any differences in global perfusion between
patients with type 2 diabetes and controls, while other studies
(ASL, Novak et al., 2014; Xia et al., 2015a and IVIM, van
Bussel et al., 2015, all at 3T) observed regional differences
in perfusion. Possibly, differences in MRI methodology could
explain these conflicting results. Atrophy can be a big confounder
when assessing hypoperfusion using ASL, indeed most results
disappear after correction for atrophy (Jansen et al., 2016). A
recent ASL study applied a new analysis approach tallying the
“distributed deviating voxels,” and hypoperfusion was found in
patients with type 2 diabetes, which remained significant after
correction for atrophy in the subcortical gray matter (Jansen
et al., 2016).

One phase contrast MRI study observed a positive association
between perfusion and cognition, but this study was not able to
explain the link of diabetes with cognitive performance (Tiehuis
et al., 2008). Some studies did find a relationship between
perfusion and impaired cognition in patients with type 2 diabetes
(Brundel et al., 2012b; Xia et al., 2015a), although another study
did not find this relationship (Jansen et al., 2016). Promising
results regarding reduced cerebral perfusion in the insula cortex
and cognitive performance were shown in a pilot ASL study
(Novak et al., 2014). After insulin administration, memory
and verbal fluency improved, and perfusion was elevated in
the insula cortex of participants with diabetes, suggesting the
involvement of an insulin mechanism. In type 2 diabetes,
perfusion of the global gray matter was positively associated
with verbal fluency (Rusinek et al., 2015), although local
hippocampal perfusion (as measured using IVIM) had a negative
association with memory performance (van Bussel et al., 2015).
These results suggest the involvement of a vascular mechanism,
and that the association might be dependent on the brain
region.

Taken together, all perfusion techniques observed a relation
with cognitive performance, which highlights the link between
a vascular mechanism and cognitive decline. However, to
observe regional differences in perfusion, the more-advanced
MRI techniques (i.e., ASL and IVIM) appear more sensitive to

contribute to the understanding of cognitive decline in patients
with type 2 diabetes.

NEURONAL DYSFUNCTION

Neuronal dysfunction refers to all impairments of the neuronal
system, including reduced functional activity of certain brain
regions and connectivity between different regions (Zhou
et al., 2010). Functional MRI (fMRI) offers the opportunity
to investigate to which extent neuronal regions are active, in
terms of blood oxygenation changes. The underlying principle
is that neuronal activity leads to locally increased blood flow
and oxygenation. Previous studies using the amplitude of
low frequency fluctuations (ALFF), a measure of spontaneous
neuronal activity, regional homogeneity, a measure of the neural
regional synchronization, and functional connectivity, assessed
by correlating time signals from distinct brain regions, reported
on abnormal brain activity in patients with type 2 diabetes (Zhou
et al., 2010; Musen et al., 2012; Xia et al., 2013; Cui et al., 2014).

Functional Connectivity
Reduced functional connectivity in the default mode network
(DMN), i.e., the network of active brain regions when the
brain is at rest and the participant is not focusing on anything
particular, has been observed in patients with type 2 diabetes
(Zhou et al., 2010; Musen et al., 2012; Chen et al., 2014, 2015,
2016; Hoogenboom et al., 2014; Cui et al., 2015; Xia et al.,
2015b; Zhang H. et al., 2015). Moreover, reduced functional
connectivity between the hippocampus and widespread regions
in the DMN (Zhou et al., 2010), including the medial frontal
cortex (Zhang H. et al., 2015) has been reported, in addition to
reduced functional connectivity between the posterior cingulate
and themedial frontal gyri and other regions in the DMN (Musen
et al., 2012; Hoogenboom et al., 2014). Furthermore, reduced
connectivity within the attention networks has been described
(Xia et al., 2015b), which was associated with neuropsychological
scores and glycated hemoglobin. Reduced connectivity of the
DMN was related to impaired memory (Zhou et al., 2010; Zhang
H. et al., 2015), executive function (Zhou et al., 2010), verbal
fluency (Zhang H. et al., 2015), and lower global cognition
(Zhang H. et al., 2015). The disrupted functional connectivity in
the DMN has been shown to be inversely correlated with insulin
resistance (Musen et al., 2012) in type 2 diabetes, hinting at an
underlying insulin-related mechanism. This thought is enhanced
by the observation of acutely increased functional connectivity
between the hippocampus andmultiple regions in the DMN after
intranasal insulin administration (Zhang H. et al., 2015).

Interestingly, it was recently shown that participants with
type 2 diabetes displayed altered fMRI network measures,
characterized by a higher efficiency, compared with control
participants (van Bussel et al., 2016c). Also subjects with
pre-diabetes were studied, whose network measures fell
between those with diabetes and control participants. The
authors suggested that functional reorganization of the cerebral
networks might act as a compensatory mechanism for cognitive
decrements (van Bussel et al., 2016c).
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Signal Fluctuations
ALFF and regional homogeneity alterations have been reported
in a variety of DMN brain regions (including temporal lobe
and frontal lobes) in patients with type 2 diabetes (Xia et al.,
2013; Cui et al., 2014; Zhou et al., 2014). The altered ALFF and
regional homogeneity values were related to impaired cognition,
especially in the domains of attention and executive function
(Xia et al., 2013; Cui et al., 2014; Zhou et al., 2014), speed (Xia
et al., 2013; Cui et al., 2014), memory (Cui et al., 2014), and
global cognition (Zhou et al., 2014). Moreover, ALFF values in
the middle temporal gyrus were also inversely related to glycated
hemoglobin (Xia et al., 2013) and insulin resistance in the diabetic
group was negatively correlated with altered neuronal activity
(Cui et al., 2014).

Brain Activation
Altered brain activation has also been found in patients with
type 2 diabetes during a memory task, especially in task-related
regions of the DMN (Marder et al., 2014), frontal cortex (Chen
et al., 2014; Marder et al., 2014; He et al., 2015), parietal cortex
(He et al., 2015) and the fronto-parietal network (Zhang Y. et al.,
2016). Moreover, functional activation or connectivity is not only
associated with memory performance (Zhang Y. et al., 2016), but
also insulin resistance (Marder et al., 2014; Xia et al., 2015c),
glycated hemoglobin (Marder et al., 2014; He et al., 2015), plasma
glucose (Marder et al., 2014), and cholesterol (Xia et al., 2015d),
suggesting a major role of glucose and lipid metabolism.

Overall, all functional MRI studies consistently show evidence
of altered neuronal activity or functional connectivity in patients
with type 2 diabetes and cognitive decrements.

WHITE MATTER TRACT ABNORMALITIES

White matter tract abnormalities refer to impaired integrity or
altered organization of axonal bundles and can be investigated
using diffusionMRI (dMRI). This technique is based on diffusion
of water molecules, and during the dMRI acquisition, tissue is
sensitized with the local characteristics of molecular diffusion.
The measures most often analyzed by dMRI are fractional
anisotropy (FA) and apparent diffusion coefficient (ADC). FA is
a measure of tract directionality and ADC is a measure of water
diffusivity. Clinically, an increase in ADC has been associated
with reduced (neuronal) cell packing and increased extracellular
space, possibly due to failure of neurogenesis or cell loss (Eriksson
et al., 2001). Recently, analysis methods have become available
that allow the assessment of the integrity and efficiency of
structural networks, using graph theoretical analysis on dMRI
data (Reijmer et al., 2013b).

Local Alterations
Microstructural abnormalities have been published for various
brain regions in type 2 diabetes (Yau et al., 2009, 2010; Falvey
et al., 2013; Zhang J. et al., 2014, 2016; van Bussel et al., 2016b;
Xiong et al., 2016). Reduced FA has been observed in the white
matter (Yau et al., 2010; Falvey et al., 2013) mostly concentrated
in frontal and temporal regions (Yau et al., 2009), while elevated
ADC values were found in a number of brain regions, including

the hippocampus (Falvey et al., 2013) and multiple gray matter
regions (Yau et al., 2010). Temporal lobe abnormalities were
associated with impaired memory (Yau et al., 2009; van Bussel
et al., 2015).

Network Alterations
Altered network and structural connectivity in type 2 diabetes
have been shown using tractography (Reijmer et al., 2013a,b;
Hoogenboom et al., 2014; van Bussel et al., 2016b; Yang et al.,
2016; Zhang J. et al., 2016). Local and global network properties
(i.e., cluster coefficient, global efficiency, path length) were
altered and associated with impaired processing speed (Reijmer
et al., 2013b). Elevated ADC and reduced FA were found in
different tracts, including the superior longitudinal fasciculus
(Reijmer et al., 2013a), uncinate fasciculus (Reijmer et al.,
2013a; Hoogenboom et al., 2014), inferior longitudinal fasciculus
(Reijmer et al., 2013a), corpus callosum (Reijmer et al., 2013a),
and cingulum bundle (Hoogenboom et al., 2014). These tract
abnormalities were associated with impaired processing speed
andmemory (Reijmer et al., 2013a; Hoogenboom et al., 2014) and
highlight an underlying glucose-mediatedmechanism as glycated
hemoglobin and fasting blood glucose were also related to these
tract abnormalities (Hoogenboom et al., 2014). Moreover, altered
hippocampal white matter connectivity appear to be associated
with memory decrements and type 2 diabetes (van Bussel et al.,
2016b).

Diffusion MRI studies implicate that patients with type 2
diabetes show evidence of white matter microstructure, tract, and
network abnormalities.

METABOLIC DYSFUNCTION

Proton magnetic resonance spectroscopy (1H-MRS) enables the
assessment of metabolic changes through the identification and
quantification of spectral peaks associated with tissue metabolites
(Jansen et al., 2006). 1H-MRS is often used to investigate
N-acetylaspartate (NAA), Choline (Cho), Creatine (Cr), myo-
inositol (mIns), γ-aminobutyric acid (GABA), and glutamate.
NAA is a measure of neuronal integrity and a surrogate marker
of normal functioning neurons. Cho is an indirect marker of
myelination and cell membrane metabolism. Cr is a measure of
energymetabolism, andmIns has been proposed as a glial marker
and as an end-product of persistent hyperglycaemia (Jansen et al.,
2006). GABA and glutamate are major inhibitory and exhibitory
neurotransmitters, respectively. However, in vivo detection and
quantification of these neurotransmitter concentrations at low
field strengths (<3T) are complicated due to spectral overlap with
other metabolites. Another relevant metabolite in the context of
diabetes is glucose, which typically requires high field strengths
(>3T) for reliably detection with 1H-MRS (Gruetter et al., 1996).
An alternative method to study brain glucose levels using MR
spectroscopy is 13C-MR spectroscopy (van De Ven et al., 2012).

MR spectroscopy studies on type 2 diabetes in relationship
with cognition have thus far been proven to be challenging, and
often no associations betweenmetabolic alterations and cognitive
performance were found (Haroon et al., 2009; Tiehuis et al.,
2010). However, a recent study found higher GABA+ levels
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in participants with type 2 diabetes, and higher GABA+ levels
in participants with both high HbA1c levels and less cognitive
performance (van Bussel et al., 2016a). The authors concluded
that participants with type 2 diabetes have alterations in the
GABAergic neurotransmitter system, which are related to lower
cognitive functioning, which hints at the involvement of an
underlying metabolic mechanism.

INTERPRETATION

Table 1 provides an overview of all studies on type 2
diabetes, in which cognitive performance is related to diverse
cerebral MRI contrasts. From this it can be appreciated that
neuroradiologically visible MRI biomarkers (atrophy, WMLs,
and lacunar abnormalities) and more subtle abnormalities
(impaired cerebral perfusion, neuronal dysfunction, and white
matter tract abnormalities) are related to cognitive decline, with a

striking agreement between studies. For the other abnormalities
(including microbleeds, SBIs, and metabolic dysfunction) the
evidence of relationships with cognition is less convincing.

Most studies are associated with various methodological
limitations. Most notably, often only a limited number of
subjects is included. Furthermore, the studies show a pronounced
diversity regarding subject selection, matching of subjects,
diagnosis and classification of diabetes, adjustment for risk
factors, and data analysis methods. Due to the different designs
and limited number of available studies, it is difficult for
studies reporting negative results to assess whether the applied
techniques (or study methods) are not sensitive enough to pick
up cognitive performance-related alterations, or whether these
alterations are not present at all. Interestingly, in those studies
where cerebral changes were found, these weremost often located
in the frontal and/or temporal lobe (den Heijer et al., 2003; Zhou
et al., 2010, 2014; Musen et al., 2012; He et al., 2015; van Bussel

TABLE 1 | Overview of neuroimaging abnormalities associated with cognitive performance in type 2 diabetes mellitus.

Brain abnormalities MRI techniques Major outcomes References

CLINICAL APPLICATIONS

Atrophy – T1WI

– T2WI

– FLAIR

– IR

Cerebral atrophy increases with cognitive decline den Heijer et al., 2003; Manschot et al.,

2006; van Elderen et al., 2010; Hayashi

et al., 2011; Reijmer et al., 2011

SMALL VESSEL DISEASE

White matter lesions – T2WI

– FLAIR

White matter lesion load increases with cognitive decline Manschot et al., 2006; Jongen et al.,

2007; van Harten et al., 2007; Imamine

et al., 2011

Microbleeds – T2*WI No evidence of microbleeds with cognitive decline Moran et al., 2013; Brundel et al., 2014b

Silent brain infarcts – T1WI

– T2WI

– FLAIR

Progression of silent brain infarcts seems related to cognitive

decline

Imamine et al., 2011; Umegaki et al., 2011

Lacunar abnormalities – T1WI

– T2WI

– FLAIR

Cerebral ischemic lesions are related to cognitive decline Manschot et al., 2006; Umegaki, 2010

Impaired cerebral perfusion – ASL

– PC-MRI

– IVIM

Diverse results regarding perfusion in diabetes. Perfusion related

to cognitive decline

Tiehuis et al., 2008; Brundel et al., 2012b;

Novak et al., 2014; Rusinek et al., 2015;

Xia et al., 2015a; van Bussel et al., 2015;

Jansen et al., 2016

NEURONAL DYSFUNCTION

Functional connectivity – fMRI

(connectivity)

Reduced functional connectivity in relationship with cognition;

higher efficiency in T2DM with cognitive decrements

Zhou et al., 2010; Xia et al., 2015b; Zhang

Y.-W. et al., 2015; van Bussel et al., 2016c

Signal fluctuations – ALFF Altered ALFF related to impaired cognition Xia et al., 2013; Cui et al., 2014; Zhou

et al., 2014

Brain activation – fMRI

(activation)

Altered neuronal activity in relationship with cognitive decline Zhang Y. et al., 2016

WHITE MATTER TRACT ABNORMALITIES

Local alterations – dMRI

(diffusion measures)

Temporal lobe abnormalities were associated with impaired

memory

Yau et al., 2009; van Bussel et al., 2016b

Network alterations – dMRI

(connectivity)

Tract abnormalities and network alterations related to impaired

cognition

Reijmer et al., 2013a,b; Hoogenboom

et al., 2014; van Bussel et al., 2016b

Metabolic dysfunction – MRS Insufficient evidence regarding metabolic alterations and cognitive

performance

Haroon et al., 2009; Tiehuis et al., 2010;

van Bussel et al., 2016a

Only MRI references in combination with cognitive performance are included in this table. T2(*)WI, T2(star)-weighted images; IR, inversion recovery images; ASL, arterial spin labeling;

PC-MRI, (velocity-sensitive) phase-contrast MRI; IVIM, intravoxel incoherent imaging; fMRI, functional MRI; ALFF, amplitude of low frequency fluctuations; dMRI, diffusion MRI; MRS,

magnetic resonance spectroscopy.
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et al., 2015), which is in close agreement with the type of cognitive
decline typically experienced in type 2 diabetes (Gold et al., 2007).

Type 2 diabetes is also known to increase the risk of
developing AD (Steen et al., 2005; Cheng et al., 2012). MRI
studies show that gray matter loss, insulin resistance, and medial
temporal lobe atrophy are associated with AD (Thompson et al.,
2003; Biessels et al., 2006), traits also present in patients with type
2 diabetes (den Heijer et al., 2003). These results suggest that
diabetes might to some extent be linked to Alzheimer’s Disease
(AD) and that diabetes and AD might share similar mechanisms
underlying cognitive decline (Ryan et al., 2014).

FUTURE OUTLOOK

As the neuronal mechanisms underlying cognitive decline
associated with type 2 diabetes still remain to be elucidated, and
studies usingmore-advanced and potentially more-sensitiveMRI
techniques are scarce, intensified research is needed to investigate
the underlying mechanisms of brain damage (Jouvent et al.,
2010). It will also be interesting to investigate cognitive decline in
pre-diabetic stages such as the metabolic syndrome or impaired
glucose mechanism (Grundy, 2006; van Bussel et al., 2016c).

In addition to the imaging techniques discussed in this
review, other novel MRI approaches might also yield interesting
new biomarkers, such as Dynamic Contrast Enhanced MR
Imaging, which is an MRI technique where T1-weighted scans
are acquired dynamically after injection of a contrast agent, and
pharmacokinetic modeling of the enhancing tissue signal can
provide information about physiological tissue characteristics,
including BBB integrity in terms of leakage of contrast medium
(Taheri et al., 2011). It could be relevant to study the role of BBB
in diabetes, because disruption of the BBB is also considered to
be a result of cSVD.

Furthermore, metabolites that are relatively difficult to detect,
such as GABA, dedicated MRS spectral editing sequences exist to
identify and quantify these metabolite concentrations (Puts and
Edden, 2012). The use of a specifically designed MRS acquisition
scheme allows for the selective recording of signals only from the
desired metabolite, while other metabolites are eliminated.

Another important direction is the application of high field
MRI (Brundel et al., 2012a), as most studies in this review were
performed at 1.5T. High field MRI (≥3T) has several benefits as
it provides higher spatial resolution and improved SNR, although
it is more susceptible for artifacts. Additionally, future studies
should incorporate a multiparametric approach, to provide a
more complete picture of the locations and nature of affected
cerebral regions. Also, analysis approaches for fMRI and dMRI
should focus on cerebral networks, as cognitive functions affected
by diabetes correspond to networks, rather than localized brain
regions.

Additionally, future, preferably large multicenter studies, are
required to validate current findings, or provide a more definitive
answer regarding issues for which currently contradictory
findings have been reported in different studies (such as
the inconsistencies reported regarding type 2 diabetes and
global perfusion). For this, quantitative measures are essential,
regarding both quantitative MRI as neuropsychological tests to

characterize and define in more detail the cognitive status of the
population under investigation.

CLINICAL RELEVANCE

The application of neuroimaging techniques to study diabetes
associated accelerated cognitive decline is relevant as we expect
to obtain new insights regarding affected brain regions, networks,
and tissue abnormalities. Furthermore, MRI measures might
provide early biomarkers for cognitive decline (see Table 1 for
an overview), and could potentially be used to identify patients at
risk. Follow-up studies can be performed to confirm that subjects
with sufficient cerebral MRI alterations eventually develop
cognitive problems, and one could consider an interventional
study with a combination of diet, exercise or medication (Zhang
H. et al., 2015) to explore whether cerebral MRI alterations also
delay, or even improve, after intervention (Raji et al., 2015).
Hence, by performing advanced neuroimaging, a more complete
picture can be obtained of the effect of diabetes on the brain,
it might provide a better timing of (preventive) therapy, and it
could shed some light on the course and efficacy of the therapy to
prevent or halt cognitive decline.

CONCLUSIONS

Cognitive decline in type 2 diabetes is associated with brain
alterations, which can be detected using neuroimaging. The
battery of MRI techniques available to study this topic is highly
versatile, and several aspects of brain function and integrity can
be studied noninvasively. Advanced, novel MRI techniques are
expected to reveal more subtle brain alterations compared with
only structural MRI. Therefore, more-advanced multiparametric
MRI techniques should be implemented in future studies to
investigate the role of diabetes on cognitive performance, and the
underlying pathophysiological mechanisms.

LITERATURE SEARCH

We searched PubMed for articles published until September 19,
2016, with the following terms and combinations of these terms:
“arterial disease,” “arterial spin labeling,” “atrophy,” “axon
damage,” “brain,” “cerebral,” “cogniti∗,” “connectivity,”
“diabet∗,” “diffusion tensor imaging,” “DTI,” “fMRI,”
“functional MRI,” “imaging,” “lacun∗,” “lacunar infarct,”
“microbleeds,” “microstructural abnormalit∗,” “MRI,” “MRS,”
“MR spectroscopy,” “neuronal dysfunction,” “neuronal function,”
“neuropathy,” “perfusion,” “syndrome,” “type 2,” “vessel disease,”
“white matter lesion.”

We included articles identified from these searches and
relevant references cited in the articles.

The neuropsychological terminology is subdivided in (1)
(verbal) memory, (2a) (information) processing speed, (2b)
sensory speed, (2c) motor speed, (3) IQ, (4) global cognition,
(5) attention functions, (6) executive functions, (7) psychomotor
functions, (8) visuoconstruction, and (9) fluency, according to
Hebben and Milberg (2009). Speed is subdivided into three
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components: (1) processing speed (central part/brain), (2)
sensory speed (visual aspects) and (3) motor speed (conducting
part of a test/trail).

Animal studies, studies on patients with type 1 diabetes
mellitus, and studies in which MRI results were presented
without addressing correlations with cognitive performance were
not included. Only articles written in English were included.
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