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The blood-brain barrier (BBB) is a complex network of microvasculature, comprised primarily
of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, which regulates
cellular, macromolecule, and metabolite passage between the peripheral circulation and the central
nervous system (CNS). Damage to the BBB has been linked to neurocognitive deficits sustained
in multiple diseases, including stroke, Alzheimer’s Disease, and numerous infections, including
human immunodeficiency virus type 1 (HIV-1) (Krizanac-Bengez et al., 2004; Salmina et al., 2010;
Logsdon et al., 2015). Although the development and deployment of anti-retroviral therapy (ART)
has transformed HIV-1 infection from an acute terminal diagnosis to a chronic pharmaceutically-
managed clinical condition (in the developed world), many clinical complications remain prevalent
in HIV-1-infected patients, including the spectrum of neurocognitive deficits collectively termed
HIV-1-associated neurocognitive disorders (HAND). While the current age of ART has decreased
the occurrence of the more severe manifestations of neurocognitive impairment in patients,
particularly with regards to the incidence of HIV-1-associated dementia (HAD), the overall
prevalence of HAND has not subsided (Cysique et al., 2004; Robertson et al., 2007; Tozzi et al.,
2007; Heaton et al., 2010, 2011; Cysique and Brew, 2011). In fact, it is currently estimated that
nearly 50–70% of HIV-1-infected patients on a successful ART regimen experience some level
of neurocognitive decline (Heaton et al., 2010, 2011, 2015; Simioni et al., 2010; Obermeit et al.,
2017). Implicated in the development of HAND in patients is a combination of toxic viral proteins
released into the CNS, a sustained host pro-inflammatory response in the CNS initiated by the virus,
deregulated endogenous small molecule metabolism, detrimental metabolic byproducts associated
with combination ART, as well as certain types of HIV-1 genetic variants that may cause some of
these pathogenic processes (Krebs et al., 2000; Wang et al., 2006; Ferrucci et al., 2011, 2012; Strazza
et al., 2011; Dahiya et al., 2013; Aiamkitsumrit et al., 2014; Gresele et al., 2014; Maubert et al., 2015;
Dampier et al., 2017; James et al., 2016).

Numerous in vitro and in vivomodels have demonstratedmolecular deregulation and functional
impairment of the BBB in the context of HIV-1 infection, including downregulation of key tight
junction complex components and upregulation of cell adhesion molecules on BMECs, aberrant
activation of astrocytes and pericytes, overall increased permeability, and enhanced immune cell
passage across the barrier (Toborek et al., 2005; Li et al., 2009; Roberts et al., 2010; Debaisieux et al.,
2012; Louboutin and Strayer, 2012; Nakagawa et al., 2012; Bagashev and Sawaya, 2013; Niu et al.,
2014; Rao et al., 2014; Hong and Banks, 2015; Maubert et al., 2015). However, while multiple HIV-1
proteins (including Tat, gp120, Vpr, and Nef) have been shown to deregulate numerous pathways
resulting in damage to the BBB, the role of HIV-1 in modulating the pathways relative to the repair
of the BBB and re-endothelialization (or the inhibition, thereof) have not yet been reported in
detail.
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Clinically, endothelial cell dysfunction and general wound
repair has been problematic in the HIV-1-infected patient
population, with several reports highlighting delays in healing
time and related complications, including secondary infections
of these wounds (Lord, 1997; Davis et al., 1999; Diz Dios et al.,
1999; Miyamoto et al., 2006; Arildsen et al., 2013; Wang et al.,
2013; Francisci et al., 2014; Balsam et al., 2015; Fitzpatrick
et al., 2016). While the mechanisms orchestrating endothelial
repair, particularly considering those of the BBB, are not entirely
defined, some molecular effectors and interconnecting pathways
have been identified in the literature for their demonstrated
involvement in repair processes in various model systems. In
particular, cellular Src kinase (c-Src), a ubiquitously expressed
member of the Src family of non-receptor tyrosine kinases, has
a defined role in endothelial cell regulation and repair, both
in vitro and in vivo (Takenaga et al., 2009; Liu et al., 2010; Franco
et al., 2013; Bai et al., 2014; Cao et al., 2015), the specifics of
which are described below. Importantly, c-Src is involved in
pathways linked to the activation of vascular endothelial growth
factor receptor 2 (VEGFR2) and N-methyl D-aspartate receptor
(NMDAR), both of which are expressed on human BMECs and
with demonstrated roles in BBB regulation and integrity (Sharp
et al., 2003, 2005; Andras et al., 2007; Holmes et al., 2007; Davis
et al., 2010; Reijerkerk et al., 2010; Hudson et al., 2014; Chen et al.,
2016; Fearnley et al., 2016).

Of note, HIV-1 infection and c-Src activation have been shown
to have a reciprocal relationship in the literature with reports
demonstrating that c-Src activation was increased in human
Jurkat T cells 24 h after HIV-1 infection (Phipps et al., 1996)
and in activated primary human CD4 T cells within 1 h of
infection, as compared to uninfected controls, and that both
chemical inhibition and siRNA knockdown of c-Src decreased
infectivity of Nef-deficient HIV-1 reporter viruses by more than
50% in primary human CD4 T cells, in vitro (McCarthy et al.,
2016). In addition, siRNA knockdown of c-Src decreased proviral
integration of Nef-competent X4 and R5HIV-1 laboratory strains
by several-fold and significantly attenuated replication of these
viral strains in primary human CD4 T cells, in vitro (McCarthy
et al., 2016).While this observation links c-Src to HIV-1 infection
in cells, it is known that BMECs and endothelial cells in general
are not infected.

Given this point, it is more likely that extracellular viral
proteins would interact with the BMECs causing dysfunction
or inhibiting repair. At the level of isolated viral proteins,
previous reports have indicated that HIV-1 gp120 can activate
the NMDAR through direct binding of NMDAR subunits (Xin
et al., 1999) in numerous in vitro systems, including in primary
rat (Pattarini et al., 1998) and human (Pittaluga et al., 1996)
neuronal synaptosomes; indirect activation of the NMDAR by
gp120 exposure through the enhanced secretion of NMDAR
agonists from proximal glia (Meucci and Miller, 1996) as well
as activation of other receptor-mediated pathways which affect
NMDAR activity in primary rat cultures (Xu et al., 2011) has also
been reported. Additionally, it has been demonstrated that HIV-
1 Nef activates c-Src in an in vitro yeast model system (Trible
et al., 2006; Narute and Smithgall, 2012). Most strikingly, though,
c-Src, VEGFR2, and NMDAR have all been shown to be activated

by exposure to HIV-1 Tat protein in a number of cell types,
suggesting that Tat may be involved in inhibiting themechanisms
of BBB repair in HIV-1 disease. With respect to Tat, this may be
of particular importance in ART-suppressed patients given recent
evidence that shows Tat can be detected in cells, cerebral spinal
fluid, and plasma of these individuals (Falkensammer et al., 2007;
Mediouni et al., 2012; Bachani et al., 2013).

To further support the role of c-Src in BBB health and
repair, it has been reported that inhibition of c-Src by siRNA
limited permeability of human umbilical vein endothelial cells
(HUVEC) exposed to vascular endothelial growth factor (VEGF,
a known inducer of permeability of the BBB; Holmes et al.,
2007; Davis et al., 2010; Hudson et al., 2014; Cao et al., 2015;
Fearnley et al., 2016). In addition, chemical inhibition of c-
Src with the inhibitor 1-(1,1-dimethylethyl)-3-(4-methylphenyl)-
1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) accelerated healing
of wounded HUVEC (Franco et al., 2013), in vitro. Furthermore,
in vivo treatment with the broad Src family inhibitor 4-amino-
5-(4-chlorophenyl)-7-(t-butyl)-pyrazolo[3,4-d]pyrimidine (PP2)
in rats subjected to ischemic insult resulted in the rescue of
ischemic BBB leakage (Takenaga et al., 2009) and improved
neurological deficit scores (Bai et al., 2014) in the presence of
the inhibitor. Moreover, c-Src has been identified as an upstream
regulator of a number of tight junction complex components,
including occludin (Takenaga et al., 2009), claudin-5 (Bai et al.,
2014), and zona occludens-1 (Morin-Brureau et al., 2011), as well
as a modulator of NMDAR activity in neurons (Lu et al., 1999;
Yu and Salter, 1999; Rong et al., 2001; Heidinger et al., 2002;
Hossain et al., 2012; Tang et al., 2012; Krogh et al., 2014), and
a downstream effector of the VEGFR2 signaling pathway (He
et al., 1999; Morin-Brureau et al., 2011; Sun et al., 2012; Cao
et al., 2015), in addition to its role in cell cycle regulation and
proliferation (Boggon and Eck, 2004; Parsons and Parsons, 2004;
Hu et al., 2008; Sen and Johnson, 2011; Reinecke and Caplan,
2014).

Structurally, c-Src is comprised of several domains, including
a myristoylated membrane-targeting SH4 domain at the N-
terminus, followed by a unique domain, a SH3 domain, a SH2
domain, a kinase-linker region, a SH1 kinase domain bearing
the activating tyrosine site (Y416), and a C-terminus bearing
the inhibiting tyrosine site (Y529) (Boggon and Eck, 2004;
Parsons and Parsons, 2004; Reinecke and Caplan, 2014). It
has been previously reported that protein binding of the SH3
domain orchestrates the physical shift necessary to induce the
active conformation of c-Src (Alexandropoulos and Baltimore,
1996). Interestingly, it has previously been shown that HIV-
1 Tat binds SH3 domains (Rom et al., 2011), and additional
results have demonstrated that Tat exposure activates c-Src in
primary rat neurons (Krogh et al., 2014), in a fetal bovine aortic
endothelial cell line (Urbinati et al., 2005), and in human renal
endothelial cells in the presence of growth factors (Das et al.,
2016), supporting the hypothesis that HIV-1 Tat may delay BBB
repair through the activation of c-Src in human BMECs.

In addition, characterization of the ubiquitously-expressed c-
Src promotor revealed several consensus Sp1 transcription start
sites (Bonham and Fujita, 1993) and further analysis confirmed
that transcriptional regulation of c-Src is dependent on Sp1
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FIGURE 1 | Hypothetical model of the mechanisms underlying delayed blood-brain barrier repair in HIV-1 infection. Differential expression of VEGFR2 has

been proposed and demonstrated on the lumen- and CNS-exposed surfaces of primary rat BMECs, in vitro (Hudson et al., 2014), lending to the possibility that this

receptor may be activated by HIV-1 proteins flowing in the peripheral circulation, as well as those generated in the CNS; here, we illustrate expression of VEGFR2 on

the lumen-exposed surface (orange bubble). Polarized expression of NMDAR on BMECs has not been addressed in the literature; however, in consideration that the

ligands which would activate this receptor are readily found in the CNS and secreted by astrocytes (a component of the BBB in adjacent proximity with BMECs), we

presume and illustrate here expression of NMDAR on the CNS-exposed surface (purple bubble). (1) HIV-1 proteins (Tat, gp120, Vpr, or Nef) bind and activate the

VEGFR2 and/or NMDAR, stimulating the receptor(s) and resulting in activation of c-Src (which is associated with these receptors via adaptor proteins*), leading to a

signaling cascade which is linked to downregulated expression of tight junction complex components (i.e., claudin-5, occludin, and zona occludens-1) and increased

BBB permeability. (2) HIV-1 Tat protein enters BMECs and traffics to the nucleus (by its encoded nuclear localization signal) and upregulates expression of c-Src at the

transcriptional level via direct modulation of Sp1 activity at the c-Src promotor. (3) HIV-1 Tat protein that enters BMECs may also be retained in the cytosol and directly

bind the SH3 domain of c-Src, thus orchestrating the physical shift necessary to induce the active conformation of c-Src (i.e., phosphorylation at Y416 and

de-phosphorylation at Y529) and leading to inhibition of BBB repair. (4) In addition, there may be super-activation of the NMDAR via a feedback loop between the

ligand-binding face of NMDAR and cytosolic receptor-associated c-Src. Adaptor proteins: VRAP, VEGF receptor associated protein; TSAd, T-cell specific adaptor

molecule; ND2, NADH dehydrogenase subunit 2.

activity at the promotor (Ritchie et al., 2000). The relationship
of Tat with Sp1 in the transcriptional regulation of the HIV-1
LTR, in addition to the regulation of several host genes, has been
extensively explored in the literature (Harrich et al., 1989; Jeang
et al., 1993; Majello et al., 1994; Lim and Garzino-Demo, 2000;

Burnett et al., 2009; Miller-Jensen et al., 2013; Kukkonen et al.,
2014). In addition, it has been reported that Tat promotes Sp1
phosphorylation and activity and that this is orchestrated by Tat
in a DNA-PK (double-stranded DNA-dependent protein kinase)-
dependent manner (Chun et al., 1998). These reports altogether
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suggest that Tat may also influence expression of c-Src at the
transcriptional level by direct modulation of Sp1 activity at the
c-Src promotor.

Previous reports have demonstrated that cytosolic c-Src
localizes primarily with membrane-bound structures (Sen and
Johnson, 2011; Reinecke and Caplan, 2014), and is documented
to associate via adaptor proteins at the plasma membrane with
both VEGFR2 (Holmes et al., 2007; Sun et al., 2012) and NMDAR
(Yu and Salter, 1999; Rong et al., 2001; Hossain et al., 2012).
VEGFR2 is a transmembrane receptor tyrosine kinase expressed
primarily on vascular endothelial cells, including BMECs of the
BBB, and is activated by several identified ligands collectively
termed VEGFs (Holmes et al., 2007; Zhang et al., 2013; Fearnley
et al., 2016). In general, activation of VEGFR2 has been shown
to induce leakiness of the BBB, both in vivo and in vitro (Davis
et al., 2010; Hudson et al., 2014). HIV-1 Tat-induced activation
of VEGFR2 and related endothelial compromise has also been
demonstrated (Albini et al., 1996; Ganju et al., 1998; Mitola et al.,
2000; Arese et al., 2001; Andras et al., 2005). Of note, both in vivo
and in vitro, VEGFR2 activation has been linked with activation
of c-Src in numerous endothelial cell types (He et al., 1999;
Morin-Brureau et al., 2011; Sun et al., 2012; Cao et al., 2015),
and Tat exposure has been shown to mediate VEGFR2-initiated
activation of c-Src in endothelial cells (Urbinati et al., 2005; Das
et al., 2016). Taken together, these reports have strongly suggested
a causal link between Tat exposure, VEGFR2 activation, and c-Src
activation in endothelial cells of the BBB, which may potentially
inhibit BBB repair in patients, which has not yet been reported.

NMDAR is a transmembrane ionotropic glutamate receptor
highly expressed in the CNS and characterized primarily in
neurons (Kopke et al., 1993; Lee et al., 2014). Recently,
expression of functional NMDAR on BMECs has been identified
and a demonstration of NMDAR activation resulting in BBB
compromise has been made in vitro (Sharp et al., 2003,
2005; Andras et al., 2007; Reijerkerk et al., 2010; Chen et al.,
2016). Notably, NMDAR activation is itself regulated by c-Src
phosphorylation of the NR2 subunits of the NMDAR (Yu and
Salter, 1999; Rong et al., 2001; Hossain et al., 2012; Tang et al.,
2012), and exogenous Tat-induced activation of NMDAR in
rat neurons, in vitro, has been reported (Haughey et al., 2001;
Song et al., 2003; Krogh et al., 2014). This includes a report
that showed Tat-mediated activation of NMDAR in neurons is
through Tat activation of c-Src (Krogh et al., 2014). In addition
to this, a reciprocal activation between NMDAR and c-Src has
been demonstrated in primary rat neuronal cultures. This works
through activation of NMDAR which causes a Ca2+ influx that
activates nitric oxide synthase (NOS) and thus generates nitric
oxide (NO). This leads to an induction of the S-nitrosylation of
c-Src, which then promotes the auto-phosphorylation of c-Src
at the activating tyrosine (Y416), which further phosphorylates
the NR2A subunit of NMDAR (Tang et al., 2012). All of this
is additionally complicated by a report which demonstrated
HIV-1 Tat subtype-specific toxicity of primary rat neurons and
NMDAR-expressing HEK cells, wherein markedly decreased
cell survival was observed in cultures exposed to recombinant
subtype B Tat as compared to subtype C Tat (Li et al., 2008). These
observations were attributed to the cysteine to serine variation

at position 31 of Tat that has been previously documented
between these subtypes, and it was determined that this amino
acid difference influenced the ability of Tat to interact with and
activate the NMDAR (Li et al., 2008). Taken together, these
reports imply an important relationship between HIV-1 Tat
exposure, Tat genetics, c-Src activation, and NMDAR activation
in endothelial cells of the BBB, which may hinder BBB repair
mechanisms, which has not previously been reported.

In summary, as a dynamic biological structure tasked with
mediating communication between the CNS and the peripheral
circulation, proper regulation of the BBB is critical to the
maintenance of homeostasis in the CNS, and perturbations of the
mechanisms in place which maintain this dynamic regulation are
implicated in the incidence of a number of neurological diseases
in humans, including HAND. The literature provides evidence
that demonstrates that BBB damage does indeed occur in HIV-
1 CNS disease, and that this damage correlates to the spectrum
of HAND outcomes reported in patients, however, whether these
issues are compounded by a mechanistic inhibition of BBB repair
in these patients, has not yet been documented. In addition, it is
unclear as to whether the nature of the damage, the initiator of the
damage, and whether the precise location or compartment where
the damage has occurred are of distinct importance in the context
of inhibition of the BBB repair mechanism proposed herein.
Given these observations, understanding how extracellular HIV-
1 proteins, HIV-1-infected cells, and/or how support cells of the
BBB (i.e., astrocytes, pericytes) alter the repair of the BBB and
whether the regulation of c-Src is at the center of this question
is an open area of significant research to understanding the
mechanisms that underlie HIV-1 neuropathogenesis and HAND
(Figure 1).
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