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Bispectral analysis is a signal processing technique that makes it possible to capture

the non-linear and non-Gaussian properties of the EEG signals. It has found various

applications in EEG research and clinical practice, including the assessment of anesthetic

depth, the identification of epileptic seizures, and more recently, the evaluation of

non-linear cross-frequency brain functional connectivity. However, the validity and

reliability of the indices drawn from bispectral analysis of EEG signals are potentially

biased by the use of a non-neutral EEG reference. The present study aims at investigating

the effects of the reference choice on the analysis of the non-linear features of EEG

signals through bicoherence, as well as on the estimation of cross-frequency EEG

connectivity through two different non-linear measures, i.e., the cross-bicoherence

and the antisymmetric cross-bicoherence. To this end, four commonly used reference

schemes were considered: the vertex electrode (Cz), the digitally linked mastoids, the

average reference, and the Reference Electrode Standardization Technique (REST). The

reference effects were assessed both in simulations and in a real EEG experiment.

The simulations allowed to investigated: (i) the effects of the electrode density on the

performance of the above references in the estimation of bispectral measures; and (ii) the

effects of the head model accuracy in the performance of the REST. For real data, the

EEG signals recorded from 10 subjects during eyes open resting state were examined,

and the distortions induced by the reference choice in the patterns of alpha-beta

bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed.

The results showed significant differences in the findings depending on the chosen

reference, with the REST providing superior performance than all the other references

in approximating the ideal neutral reference. In conclusion, this study highlights the

importance of considering the effects of the reference choice in the interpretation and

comparison of the results of bispectral analysis of scalp EEG.

Keywords: EEG reference, EEG functional connectivity, non-linear connectivity, bispectral analysis, bicoherence,

antisymmetric cross-bispectrum
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1. INTRODUCTION

How synchronization affects communication between groups of
neurons represents one of the central issues of neuroscience.
Several studies have been conducted to investigate neuronal
functional communication, postulating a model of the human
brain as a complex integrated system (Fries, 2005, 2015; Friston,
2011). It is now clear that, among the different neuroimaging
techniques, electroencephalography (EEG) can be considered as
an excellent tool for the study of neuronal interactions in both
research and clinical practice (Friston and Frith, 1995; Stam et al.,
2007; Fogelson et al., 2013; Frantzidis et al., 2014). Indeed, thanks
to its high temporal resolution, EEG can provide insights into
coupling of cortical oscillations hypothesized as the mechanism
that underpins local and long-range neuronal communication
(Tallon-Baudry et al., 1996; Womelsdorf and Fries, 2006; Fries,
2015).

In this framework, local and long-range synchronization can
occur either in selected frequency bands (e.g., Palva and Palva,
2007; Hipp et al., 2012; Engel et al., 2013; Marzetti et al., 2013)
or in a more sophisticated fashion which involves the interaction
between different frequencies, i.e., non-linear synchronization.
The latter possibly serves as a carrier mechanism for the
integration of spectrally distributed processing (Varela et al.,
2001; Palva et al., 2005; Jensen and Colgin, 2007; Canolty and
Knight, 2010), providing a plausible physiological mechanism
for linking activity at different temporal rates. Bispectral
analysis has proven to be an effective tool to assess non-linear
synchronization in human EEG (Dumermuth et al., 1971; Sigl
and Chamoun, 1994; Darvas et al., 2009a,b; Chella et al., 2014,
2016b; Özkurt, 2016). Notably, bispectral measures such as
bicoherence (Dumermuth et al., 1971; Sigl and Chamoun, 1994)
were successfully used to detect non-linear long-range coupling
from scalp EEG data in healthy subjects (ShilS et al., 1996; Schack
et al., 2002; Isler et al., 2008; Chella et al., 2014). Moreover,
the information from bispectral analysis of the EEG signals is
highly used in clinical applications, such as in the determination
of consciousness states and anesthetic depth levels (Freye and
Levy, 2005; Pritchett et al., 2010), or in the identification and
prediction of epileptic seizures (Bullock et al., 1997; Mormann
et al., 2005; Chua et al., 2009). Indeed, changes in scalp EEG
bicoherence have been shown to index the effects of the different
drugs used to induce clinical anesthesia (Pritchett et al., 2010), as
well as to indicate anesthesia vs. conscious states (Pritchett et al.,
2010; Hayashi et al., 2014). Moreover, in epileptology the clinical
markers of local hypersynchronous activity of the neuronal pools
can be identified through information on higher order spectra
extracted from EEG data (Chua et al., 2009).

Of note, all the above studies directly rely on bispectral
indices derived from channel level EEG data. Nevertheless, since
EEG measures only electric potential differences, it is implicitly
assumed that signals at a given EEG electrode are referred to
a neutral reference. Previous works have investigated different
options in the attempt to find a neutral reference location.
Several referencing schemes have been suggested like the vertex
(Lehmann et al., 1998; Hesse et al., 2004), unimastoid (Başar et al.,
1998; Thatcher et al., 2001), linked mastoids (Gevins and Smith,

2000; Croft et al., 2002), or nose (Andrew and Pfurtscheller, 1996;
Essl and Rappelsberger, 1998), but no true neutral location has
been found (Nunez and Srinivasan, 2006). Moreover, the average
reference (Offner, 1950; Nunez et al., 2001) and the Reference
Electrode Standardization Technique (REST) (Yao, 2001) have
been shown to be valid solutions. Despite the proven advantages
of the latter strategies, these are not completely free from biases
(Desmedt et al., 1990; Dien, 1998; Zhai and Yao, 2004). Thus,
it has to be kept in mind that a non-neutral reference affects
the spatial and temporal features of EEG recordings, leading
to possible distortions in the results. Recent works, through
simulated and real data, provided a quantitative overview of the
perturbation generated by the reference choice on the estimation
of EEG voltage waveforms or scalp distributions (Joyce and
Rossion, 2005; Yao et al., 2007; Tian and Yao, 2013; Liu et al.,
2015), spectral power (Yao et al., 2005), correlation and coherence
(Andrew and Pfurtscheller, 1996; Essl and Rappelsberger, 1998;
Rummel et al., 2007; Müller et al., 2014), and linear functional
connectivity (Guevara et al., 2005; Marzetti et al., 2007; Qin et al.,
2010; Chella et al., 2016a).

To date, despite the wide use of bispectral analysis in EEG
as above documented, no quantification of the effects of the
use of different referencing schemes on these indices has been
provided. The aim of this paper is to provide such quantification
through simulated and real data, for local synchrony assessment
through bicoherence as well as for long range synchrony
characterization through two different non-linear metrics: (i)
cross-bicoherence, (ii) antisymmetric cross-bicoherence. To this
end, the vertex electrode (Cz), the digitally linked mastoids, the
average reference, and the REST transformation were considered
and different electrode densities were taken into account. In
addition, the effects of the accuracy in the head model used to
build the REST transformation have been assessed.

2. MATERIALS AND METHODS

2.1. Theoretical Background
2.1.1. Bispectral Analysis
This subsection recalls the basic principles and properties of
bispectral analysis of EEG signals used in this study. Let, vi be
the time series of the signal recorded by the ith EEG channel. The
auto-bispectrum of vi can be estimated as (Nikias and Petropulu,
1993):

Bi(f1, f2) =
〈

υ̂i(f1) υ̂i(f2) υ̂
∗
i (f1 + f2)

〉

(1)

where υ̂i(f1), υ̂i(f2), and υ̂i(f1 + f2) are the Fourier coefficients
of the signal components at frequencies f1, f2, and f1 + f2, and
the symbols ∗ and 〈·〉 denote the complex conjugation and the
expectation value, respectively. In practice, the expectation value
is replaced by the average over a sufficiently large number of
signal realizations, or data segments. The auto-bispectrum of a
signal is a measure of the non-linear cross-frequency coupling
between signal components at three different frequencies, i.e.,
f1, f2, and f3 = f1 + f2. In particular, the third frequency is
set to the sum of the other two because all the other choices
lead to vanishing bispectra for stationary processes, or also
for non-stationary processes if the experimental design is not

Frontiers in Neuroscience | www.frontiersin.org 2 May 2017 | Volume 11 | Article 262

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chella et al. EEG Reference Effect on Bispectra

appropriate (Chella et al., 2016b). The non-linear coupling
essentially means the synchronization of the phases of the above
frequency components, i.e., ϕi(f1), ϕi(f2), and ϕi(f1+ f2), in such a
way that the generalized phase difference 1ϕi = ϕi(f1)+ϕi(f2)−
ϕi(f1+ f2) stays close to a constant value. This kind of interaction
is usually termed quadratic phase coupling (Kim and Powers,
1978; Nikias and Petropulu, 1993).

The auto-bicoherence, simply referred to as bicoherence in
this study, is the normalized version of the auto-bispectrum in
Equation (1), i.e.,

bi(f1, f2) =
Bi(f1, f2)

Ni(f1, f2)
(2)

with Ni(f1, f2) being a normalization factor. There are a number
of expressions for bicoherence (Brillinger, 1965; Kim and Powers,
1979; Hinich and Wolinsky, 2005; Helbig et al., 2006), which
essentially differ only by the normalization factor used. In the
present study, the normalization factor suggested by Shahbazi
et al. (2014) is used, i.e.,

Ni(f1, f2) = Qi(f1)Qi(f2)Qi(f1 + f2) (3)

with

Qi(f ) =

(

1

L

∑

l

∣

∣υ̂i(f , l)
∣

∣

3

)1/3

(4)

being [apart a multiplicative factor (1/L)1/3] the three-norm
of a L-length vector υ̂i(f , l), whose elements are the Fourier
coefficients of the signal in channel i at frequency f estimated
from the segment l. Of note, this normalization factor guarantees
that the magnitude of the bicoherence is bounded between 0 (i.e.,
no interaction) and 1 (i.e., maximum interaction).

Following the definition of bicoherence, the cross-bicoherence
is used to determine the non-linear phase synchronization
between the frequency components of signals measured at three
different channels, i.e., vi, vj, and vk, and it reads:

cbijk(f1, f2) =
Bijk(f1, f2)

Nijk(f1, f2)
=

〈

υ̂i(f1) υ̂j(f2) υ̂∗
k
(f1 + f2)

〉

Qi(f1)Qj(f2)Qk(f1 + f2)
. (5)

For this reason, the cross-bicoherence is used as a measure of
non-linear functional relationships between EEG channels, i.e.,
a measure of EEG non-linear functional connectivity (ShilS et al.,
1996; Schack et al., 2002; Isler et al., 2008).

The estimation of functional connectivity from EEG signals
has to face the problem of the artifacts due to volume conduction
(Nunez et al., 1997; Nolte et al., 2004; Srinivasan et al., 2007).
These are essentially due to the widespread representation of
brain source activity over the scalp and are especially relevant
for nearby channels (Winter et al., 2007; Schoffelen and Gross,
2009). For instance, two EEG channels can record, with some
weights, from the same neural population, opening the possibility
for spurious interactions between channels even in the absence
of actual brain interactions. Almost all the measures of linear
and non-linear connectivity, including the cross-bispectra and

the cross-bicoherence, are sensitive to these artifacts (Schoffelen
and Gross, 2009). In order to address this problem in relation to
bispectral analysis of EEG signals, in Chella et al. (2016b) it has
been suggested to use the antisymmetric cross-bicoherence, i.e.,

acbijk(f1, f2) =
Bijk(f1, f2)− Bkji(f1, f2)

Nijk(f1, f2)+Nkji(f1, f2)
(6)

namely the normalized difference between two cross-bispectra
where two of the channel indices have been switched. Indeed, this
quantity cannot be generated by a superposition of independent
sources and, thus, necessarily reflects genuine brain interactions
as opposite to the artifacts due to volume conduction (Chella
et al., 2014).

Finally, it can be noted that the bicoherence, the cross-
bicoherence, and the antisymmetric cross-bicoherence are
complex-valued quantities. In this paper, however, in order
to be interpreted as indices of non-linear properties and
functional relationships of the EEG signals, these quantities will
be considered in magnitude.

2.1.2. EEG Reference Schemes
In this subsection, notations and formulas for the re-referencing
transformations used in this paper are introduced. Let Vm be a
N×Mmatrix, withN being the number of channels andM being
the number of time samples, containing the EEG recordings
measured by using a given reference scheme. The re-referencing
to a different EEG reference scheme, here generically labeled as
X, can be performed by using the following transformation:

VX = Vm − VrefX = TXVm (7)

where VX is the matrix containing the re-referenced EEG
recordings, VrefX is the matrix containing N copies of the
reference signal, and TX is a N × N transformation matrix.

Along this line, the reference to the physical electrode Cz
is obtained by subtracting from each channel and for each
time sample the potential measured at Cz. The corresponding
transformation matrix is:

TCz = I − RCz (8)

with I being the N × N identity matrix, and RCz being a N × N
matrix with all the elements equal to 0 except for those of the
column corresponding to the Cz channel, which are equal to 1.

The reference signal for the digitally linked mastoid (DLM)
reference is the average between the signals recorded at the
electrodes located over (or in proximity of) the left and
right mastoids. Then, the re-referencing transformation can be
written as:

TDLM = I − RDLM (9)

with RDLM having all the elements equal to 0 except for those of
the columns corresponding to left and right mastoid channels,
which are equal to 0.5.
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The average reference (AVE) is performed by subtracting, for
each time sample, the average of all the electrodes from each
channel. The corresponding transformation matrix is:

TAVE = I − RAVE (10)

with RAVE having all the elements equal to 1/N.
The REST (Yao, 2001) aims at constructing a virtual reference

to a point located at infinity. The REST exploits the fact that
the EEG potentials measured with any original reference and
those referenced to a point at infinity are generated by the same
neuronal sources, i.e.,

Vm = GmS (11)

VREST = GRESTS (12)

with S being the matrix of the source activities, and Gm and
GREST being the transfer matrices from these sources to EEG
sensors, i.e, the lead field matrices. Since the inverse problem
solution is not affected by the choice of the EEG reference, at least
for noiseless potentials (Pascual-Marqui and Lehamann, 1993;
Geselowitz, 1998), an estimate of S can be obtained by inverting
Equation (11), i.e.,

S = G+
mVm (13)

with (·)+ denoting theMoore-Penrose generalized inverse. Then,
by combining Equations (12, 13), the transformation matrix for
REST can be derived as follows:

TREST = GRESTG
+
m (14)

A key feature of REST is that, since only the transfer matrices
GREST and Gm are needed to built the transformation matrix,
the actual sources S do not need to be found explicitly. Indeed,
based on the equivalent source technique (Yao, 1996, 2000,
2003), it is sufficient to assume an equivalent source distribution
(ESD) and calculate GREST and Gm for this ESD rather than
for the actual sources. In this study, the ESD was assumed
consisting in a discrete layer of current dipoles forming a closed
surface, in analogy with previous studies (Yao, 2001; Yao et al.,
2005; Marzetti et al., 2007; Chella et al., 2016a). This also has
the advantage that the transformation matrix does not depend
on the actual data, thus allowing, for instance, to re-reference
different sessions of the same EEG acquisition by using the same
transformation matrix. However, the transformation matrix still
depends on the accuracy of the EEG forward solution in the
calculation of the transfer matrices, which in turn depends on a
number of choices including, e.g., the volume conductor model,
the EEG forward solver, the EEG electrode density or locations.
Some of these aspects will be investigated in this paper.

2.2. Simulations
The effects of the reference choice on the estimation of non-
linear features of scalp EEG data were first assessed by using
simulations. Indeed, differently from real world experiments,
in simulations it is possible to measure the potential difference
between any point over the scalp and a reference point located

infinitely far from the head, where the electric field generated
by brain sources vanishes, thus allowing to simulate an “ideal”
neutral reference and, thus, unbiased EEG recordings. The
simulations performed in this work followed an approach similar
to the one used in our previous study (Chella et al., 2016a)
to assess the changes induced by the EEG reference in linear
connectivity patterns of EEG imaginary coherency (Nolte et al.,
2004; Marzetti et al., 2008). In brief, in the present work,
the analyses of bicoherence and non-linear connectivity based
on either cross-bicoherence or antisymmetric cross-bicoherence
were performed on various simulated datasets referenced to a
point at infinity, as well as on the re-referenced datasets derived
from the former by applying each of the reference schemes
presented in Section 2.1.2. The effects of the reference choice
were then assessed through the comparison between the results
obtained prior and after re-referencing, considering as gold
standard the results for the datasets referenced to a point at
infinity.

2.2.1. Generation of Simulated EEG Data
Ten realistic head models, with different head shapes to account
for inter-subject anatomical variability, were built based on
the segmentation of high resolution whole-head anatomical
magnetic resonance images (MRIs) acquired from the 10 subjects
participating to the real data experiment described in this paper
(see Section 2.3.1). The MRI segmentation was performed by
using the Curry 6.0 software package (Neuroscan Compumedics
USA, Charlotte, NC, USA), and resulted in the generation of
triangulated meshes for the boundaries between gray matter and
CSF (cortex), CSF and skull (inner skull), skull and skin (outer
skull), and for the outer surface of the head (skin). For each head
model, a three-shell volume conductor model, i.e., including the
brain, the skull and the scalp, was built using the shapes of the
inner skull, outer skull, and skin meshes. Conductivities were
set equal to 0.33 S/m for the brain and scalp, and 0.0066 S/m
for the skull. The source space consisted in a regular grid with
5 mm step inside the volume bounded by the cortical mesh. A
128-channel EEG sensor net was registered to the head models,
with the electrodes located at the standard positions of the 10-5
system (Oostenveld and Praamstra, 2001).

Given a set of current dipole sources, 5 min simulated EEG
recordings referenced to a point at infinity, sampled at 500 Hz,
were generated from source time courses by solving the EEG
forward problem. The set of sources included two non-linear
coupled sources and four uncorrelated sources of noise, the
latter aiming to mimic background brain activity. All of these
sources were randomly located and oriented over the source
space. The time courses for the two non-linear coupled sources
were generated by using a time-delayed interaction model, i.e.,

s2(t) = s1(t − τ ) (15)

with s1 and s2 being two non-linear sources with quadratic non-
linearity, and τ being equal to 10 ms. This model was previously
used in Chella et al. (2014, 2016b) for testing the properties of
antisymmetric bispectral measures. In the present study, s1 was
generated by summing the time courses of three quadratically
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phase coupled oscillators centered at 6, 10, and 16Hz. The former
two oscillators were obtained by band-pass filtering two i.i.d.
white Gaussian processes around 6 and 10Hz, respectively. The
latter oscillator was generated by a multiplicative interaction (i.e.,
a time-point by time-point multiplication) between the other two
oscillators, followed by filtering around 16 Hz. A Butterworth
filter with 1Hz bandwidth was used for the filtering at the above
three frequencies, performing filtering in both the forward and
the reverse directions to ensure zero phase distortion. The time
courses for the four uncorrelated sources of noise were simulated
as broadband white Gaussian processes filtered between 0.5 and
100Hz.

By using the information about the realistically shaped head
model and the EEG electrode locations, the lead field matrix for
the simulated sources with the reference to a point at infinity
was computed according to Nolte and Dassios (2005). The EEG
recordings were then generated by multiplying the time courses
of the simulated sources with the lead field matrix. The signal-
to-noise ratio (SNR) was set equal to 1, with the SNR being
defined as the ratio between the mean variance across channels
of the signals generated by the interacting sources and the mean
variance of the signals generated by the sources of noise. A
low level of uncorrelated white Gaussian noise was also added
to sensor signals to mimic instrumental noise. One-hundred
different dataset were generated for each of the 10 realistic
head models by randomizing source locations and orientations,
resulting in a total amount of 1,000 different dataset on which the
various reference schemes were tested.

2.2.2. Re-referencing of Simulated EEG Recordings
From the datasets referenced to a point at infinity, the datasets re-
referenced to Cz, DLM, and AVE were obtained by applying the
transformations in Equations (8–10). The datasets re-referenced
using REST were obtained by applying the transformation in
Equation (14) to data previously re-referenced to the physical
reference Cz.

To investigate the effectiveness of REST in dependence on the
headmodeling accuracy, the REST transformation was calculated
for three different volume conductor models with increasing
complexity levels: (i) a three-concentric-shell spherical model
(Yao, 2001; Yao et al., 2005; Marzetti et al., 2007; Zappasodi
et al., 2014, 2015; Liu et al., 2015; Chella et al., 2016a),
whose dimensions were based on the dimensions of a standard
head provided by the MNI-152 template (Fonov et al., 2009,
2011); (ii) a three-shell realistic standard model (Chella et al.,
2014, 2016a) obtained from the segmentation of the MNI-
152 template (Fonov et al., 2009, 2011); and (iii) a three-shell
realistic individual model (Zhai and Yao, 2004; Liu et al., 2015;
Chella et al., 2016a) obtained from the segmentation of subject
individual MRI. Notably, the latter model was similar but not
exactly the same model used for the generation of simulated
EEG recordings. Specifically, in order to fulfill independence
between the two models, the one used for the REST re-
referencing was derived from the one used to generate the
EEG datasets after re-sampling of the boundary meshes of head
compartments. Tissue conductivities were set to 0.33 S/m for
the innermost (brain) and outermost (scalp) compartments,

and to 0.0066 S/m for the intermediate compartment (skull).
The equivalent source distribution consisted in 4,000 current
dipoles uniformly distributed and normally oriented over a
closed surface. Specifically, for the spherical model (i.e., case i),
the closed surface was formed by a spherical cap closed on the
bottom by a transverse plane (Marzetti et al., 2007; Chella et al.,
2016a). For the realistic models (i.e., cases ii and iii), the closed
surface was constructed by contracting the brain mesh to 95% of
its size (Zhai and Yao, 2004). The REST transformations using the
spherical, realistic standard and realistic individual models were
labeled as RESTsph, RESTstd, and RESTind, respectively.

2.2.3. Bicoherence and Cross-Bicoherence Analysis
The simulated datasets were divided into 1 s non-overlapping
segments. Within each segment, data were Hanning windowed,
and the Fourier coefficients were evaluated using conventional
FFT algorithms. Bicoherence and cross-bicoherence analyses
were then restricted to the three frequencies of interest
considered for the generation of simulated recordings, i.e.,
f1 = 6Hz, f2 = 10Hz, and f3 = f1 + f2 = 16 Hz. The
bicoherence bi(f1, f2) was estimated for each channel i according
to Equation (2). Cross-bicoherence cbijk(f1, f2) and antisymmetric
cross-bicoherence acbijk(f1, f2) were estimated for each possible
triplet of channels denoted by indices i, j and k according to
Equations (5, 6), respectively.

2.2.4. Performance Measures
To assess the performances of the various reference schemes, the
estimates of bicoherence, cross-bicoherence, and antisymmetric
cross-bicoherence obtained from the original datasets referenced
to a point at infinity were compared to those obtained after re-
referencing in terms of relative error (RE) (Yao, 2001; Zhai and
Yao, 2004; Marzetti et al., 2007; Liu et al., 2015; Chella et al.,
2016a), i.e.,

REXb =

√

∑

i

∣

∣bXi − bINFi

∣

∣

2

√

∑

i

∣

∣bINFi

∣

∣

2
(16)

REXcb =

√

∑

i,j,k

∣

∣

∣
cbX

ijk
− cbINF

ijk

∣

∣

∣

2

√

∑

i,j,k

∣

∣

∣cbINFijk

∣

∣

∣

2
(17)

REXacb =

√

∑

i,j,k

∣

∣

∣acbXijk − acbINF
ijk

∣

∣

∣

2

√

∑

i,j,k

∣

∣

∣
acbINF

ijk

∣

∣

∣

2
(18)

where the superscript INF denotes the reference to a point at
infinity, the superscript X is an alternative among Cz, DLM, AVE,
RESTsph, RESTstd, or RESTind, and the subscripts i, j, and k run
over 1, . . . ,N, withN being the number of channels. The contrast
between the different EEG reference schemes was performed
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by looking at the distributions of the RE from all simulation
repetitions.

In order to investigate the effects of EEG electrode density,
the above analyses were repeated for three subsets of the 128
simulated recordings, corresponding to the following EEG sensor
layouts: (i) a 21-channel system, including to the 19 electrodes of
the 10–20 International system (Jasper, 1958) with the addition
of TP9 and TP10 electrodes; (ii) a 34-channel system, including
a selection of the electrodes of the 10–10 system (Chatrian et al.,
1985); and (iii) a 74-channel system, i.e., the full 10–10 system
(Chatrian et al., 1985).

2.3. Real EEG Data
A real EEG experiment was carried out to provide an example
of the effects of the EEG reference choice in actual experimental
situations. In particular, our experiment aimed at evaluating the
changes in the patterns of resting state EEG bicoherence and
bispectrum-based non-linear connectivity induced by the chosen
reference scheme.

2.3.1. Data Acquisition and Preprocessing
Ten healthy adults subjects (age 20–29 years; gender 2 F, 8 M)
were recruited for the experiment. The study was approved by
the Ethics Committee for Biomedical Research of the Provinces
of Chieti and Pescara and of the G. d’Annunzio University of
Chieti-Pescara. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. Experiments were
performed in a quiet room with soft natural light. Subjects
were requested to sit in a comfortable chair, relax and fix a
cross in front of them. Measurement consisted of 10min of
continuous eyes-open resting state activity. The EEG signals
were recorded using a 128-channel HydroCel GSN net (Electrical
Geodesics, Inc., Eugene, OR, USA) referenced to Cz. The
electrode impedance was kept below 100 k�. Data were sampled
at 1 kHz. The locations of EEG electrodes on the scalp and
of three anatomical landmarks (nasion, left, and right pre-
auricolar points) were measured using a 3D digitizer (Polhemus,
Colchester, VT, USA).

For each subject, high resolution whole-head anatomical
MRIs were also acquired in order to construct a realistic
individual head model for the re-referencing using REST. MRIs
were acquired by using a 3 T Philips Achieva scanner (Philips
Medical Systems, Best, The Netherlands) via a 3D fast field echo
T1-weighted sequence (MP-RAGE; voxel size 1mm isotropic;
repetition time 8.1ms; echo time 3.7ms; flip angle 8◦; SENSE
factor 2). The coregistration of EEG electrode locations with
the MRI volume was performed based on the match between
anatomical landmark locations identified in the two imaging
modalities.

As a preprocessing step, the signals from the electrodes
located over the face and neck were excluded from the analysis
because highly contaminated by muscular activity. The number
of available recording channels was thus reduced to 110. Raw data
were band-pass filtered at 0.5–100 Hz and a visual inspection was
carried out to remove the segments of signals containing spikes,
eye blinks or horizontal movements. An independent component
analysis (ICA) was then performed to remove biological and

instrumental artifacts. Specifically, ICA was performed by using
the FastICA algorithm with deflationary orthogonalization and
tanh non-linearity (Hyvärinen and Oja, 2000). The extracted
independent components were visually inspected and classified
as artifactual components or as components of brain origin
on the basis of their topographies, power spectral density
and time courses. The independent components classified as
artifactual were rejected. Particular attention was paid to the
removal of hearth related activity. In order to allow for across-
subject averaging or comparison between subjects, a few missing
channels (i.e., one channel in 3 out of 10 subjects and two
channels in 2 out of 10 subjects), excluded from the set of 110
channels prior to ICA because extremely noisy or damaged,
were interpolated from clean signals by using the spherical
interpolation method (Perrin et al., 1989) implemented in the
FieldTrip software package (Oostenveld et al., 2011).

2.3.2. EEG Data Re-referencing
The EEG signals were acquired with Cz as a physical reference.
The other reference schemes (i.e., DLM, AVE, RESTsph, RESTstd,
or RESTind) were applied to preprocessed signals using the
transformations in Equations (9, 10, 14). Analogously to the
re-referencing of simulated EEG data discussed in Section
2.2.2, the REST transformations were calculated by assuming
an equivalent source distribution consisting of 4,000 current
dipoles uniformly distributed and normally oriented over a
closed surface encompassing the brain volume. Conductivities
for the brain, the skull and the scalp were set equal to 0.33,
0.0066, and 0.33 S/m, respectively. Forward solutions based on
a spherical, realistic standard or realistic individual three-shell
volume conductor model were computed according to Nolte and
Dassios (2005).

2.3.3. EEG Data Analysis
The analysis was first focused on the estimation of EEG
bicoherence. Signals were divided into 1 s non-overlapping
segments. Within each segment, data were Hanning windowed
and Fourier transformed, and the bicoherence bi(f1, f2) was
estimated for each channel i = 1, ...,N according to Equation
(2). The resulting frequency resolution was 1 Hz on both the
f1 and the f2 axis. This analysis was performed for all the
combinations of frequencies (f1, f2) up to f1 + f2 = 40 Hz, but
it was then restricted to a single frequency pair corresponding
to the individual peak of bicoherence. In particular, a peak
of bicoherence was observed at around (f1, f2) = (10, 10 Hz)
in all the subjects (shown in Figure S1 of the Supplementary
Material), which reflects a non-linear coupling between EEG
signal components in the alpha (f1 = f2 = 10 Hz) and beta
(f3 = f1 + f2 = 20 Hz) bands. Scalp distributions of bicoherence
at the individual frequency pair and from the different reference
schemes were used to assess the effects of the reference choice.
Moreover, in order to assess whether the latter affects a global
measure of bicoherence, the maximum value of bicoherence over
channels was considered for each subject, i.e.,

bmax = max
i = 1,...,N

bi (19)
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This index essentially aims at measuring the maximum level of
bicoherence regardless of the location over the scalp, and it has
been used in some clinical practice, e.g., to investigate the changes
related to anesthetic concentration in bicoherence measurements
(Hagihira et al., 2002, 2004; Morimoto et al., 2006; Pritchett et al.,
2010).

In order to perform connectivity analysis, we chose two
seed channels [60 and 85 in the EGI’s sensor net, equivalent
to P1 and P2 in the 10-10 system (Luu and Ferree, 2005)]
overlying the left and right medial-parietal areas, i.e., two
regions where the observed bicoherence was rather prominent
regardless of the reference scheme used. We then considered the
cross-bicoherence and the antisymmetric cross-bicoherence with
respect to each of the two seed channels as metrics of interest to
evaluate functional connectivity. In particular, the connectivity
of a generic channel i to the seed channel was assessed by using a
bivariate version of Equations (5, 6), i.e., obtained by setting the
second channel index equal to the first, as follows:

cbP1-i(f1, f2) , cbP1 P1 i(f1, f2) (20)

acbP1-i(f1, f2) , acbP1 P1 i(f1, f2) (21)

for P1, and similarly for P2.

2.3.4. Group Analysis and Statistics
Topographical maps of bicoherence, cross-bicoherence, and
antisymmetric cross-bicoherence were evaluated for each subject
and for each re-referenced dataset separately. Group-level
results were obtained by across-subject averaging. A paired
sample t-test was used to assess the differences between the
investigated reference schemes. The statistical significance of t-
values was assessed through the non-parametric permutation
test implemented in the FieldTrip software package (Oostenveld
et al., 2011). This approach aims at evaluating the p-values
associated to the observed t-values by comparison with an
empirical reference distribution constructed from data which
do not violate the null hypothesis (Maris and Oostenveld,
2007). To this purpose, for each observed t-value from
pairwise comparisons between the different reference schemes,
say reference 1 vs. reference 2, we generated 10,000 random
partitions of the data by randomly shuffling the two references in
each subject. The paired sample t-test was then applied to each
of the 10,000 random partitions. As the random partitions do
not violate the null hypothesis by construction, the respective
t-values provide the distribution for the test statistic under the
null hypothesis. The p-value associated to the observed t-value
was finally evaluated as the proportion of random partitions that
resulted in t-values larger than the observed one in absolute value.

3. RESULTS

3.1. Simulation Results
The effects of the different reference schemes, i.e., Cz, DLM,
AVE, RESTsph, RESTstd, and RESTind, on the estimation
of bicoherence, cross-bicoherence, and antisymmetric cross-
bicoherence were assessed in terms of relative error (RE) between
the estimates obtained from the datasets referenced to a point at

infinity and those obtained from the re-referenced datasets, as
defined in Equations (16–18). As the point at infinity behaves as
an ideal neutral reference, the best reference scheme is the one
that yields the smallest RE.

The box plots in Figure 1 show the dependence of the RE for
bicoherence on the reference scheme and on the EEG electrode
density. In particular, each box plot displays the distribution of
the RE-values obtained from the 1,000 simulation repetitions:
the rectangular box denotes the range from the 25th to the
75th percentile; the whiskers extend 1.5 times this range, such
that they roughly cover the 99.3% of the data in case of
normal distribution; the black dot denotes the median value;
the two horizontal lines denote the notches for assessing the
significance of difference of medians, i.e., two medians are
significantly different at the 5% level if their notch intervals
do not overlap. It can be noted that, among the investigated
reference schemes, the reference to Cz is the one that shows
the largest RE, as demonstrated by the median values being
larger than 70%. Lower values of RE can be achieved by using
the DLM reference (i.e., median RE of about 34%), although
these values are still larger than those obtained for the REST,
or for the AVE reference (except for the case of 128 channels,
when the median RE obtained from DLM and AVE do not
show significant differences). Notably, the RE-values for Cz and
DLM references are not noticeably affected by the EEG electrode
density. The AVE reference performs better than the Cz andDLM
references, as demonstrated by the RE being effectively reduced.
Interestingly, the RE for AVE reference slightly increases with
increasing electrode number (i.e., median RE of about 18% for
21 channels, 20% for 34 channels, 23% for 74 channels, and 34%
for 128 channels). The REST performs better than all the other
reference schemes, with the lowest RE being achieved when using
a realistic individual head model and high density EEG (i.e.,
median RE of about 7% for 21 channels, and 5% for 34-, 74- and
128-channels). In general, the more realistic the head model is,
the better the REST performance is. Indeed, even if a realistic
standard model is used in place of a realistic individual model,
the median RE is lower than 10%, regardless of the number of
channels, while significantly larger errors occur if a spherical head
model is used, especially for increasing electrode density. It must
be noted, however, that even in the case of a spherical headmodel,
the REST performance is better than the ones of AVE, DLM,
or Cz.

A similar scenario can be found when assessing the
performances of the different reference schemes in the estimation
of scalp EEG connectivity based on either cross-bicoherence
(Figure 2) or antisymmetric cross-bicoherence (Figure 3).
Indeed, although a significant and systematic increase of median
RE can be observed for both of the connectivity measures as
compared to bicoherence (Figure 1), such an increase does
not affect the contrast between the different EEG reference
performances. In particular, the REST still remains the best
choice of EEG reference scheme, especially when using a high
density EEG system and a realistic individual head model (i.e.,
for cross-bicoherence: median RE of about 10% for 21 channels,
and 7% for 34-, 74- and 128-channels; for antisymmetric
cross-bicoherence: median RE of about 14% for 21 channels, and
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FIGURE 1 | Box plots for the relative error for bicoherence (REX
b
) evaluated with different EEG reference schemes and with different EEG electrode

densities. The ordinate axis is logarithmically scaled. Each box plot displays the RE-values from 1,000 simulation repetitions.

FIGURE 2 | Box plots for the relative error for cross-bicoherence (REX
cb

) evaluated with different EEG reference schemes and with different EEG

electrode densities. The ordinate axis is logarithmically scaled. Each box plot displays the RE-values from 1,000 simulation repetitions.

11% for 34-, 74- and 128-channels). If the latter is not available,
REST still performs better than the other reference schemes,
but the dependence of RE on the EEG density is negligible (i.e.,
for RESTstd) or even the opposite (i.e., for RESTsph). The AVE
reference performs worse than REST (i.e., median RE > 30%),
while the largest RE is obtained when using DLM (i.e., median
RE > 50%) or Cz (i.e., median RE > 100%). Finally, in the
comparison between the two connectivity measures, it can be
noted that the median RE for antisymmetric cross-bicoherence is
generally larger than the respective values for cross-bicoherence.

3.2. Real Data Results
3.2.1. Bicoherence
The bicoherence was estimated for each channel and for each
combination of frequencies (f1, f2) up to f1 + f2 = 40 Hz. For all
subjects, a prominent peak of bicoherence was found at around
(f1, f2) = (10, 10 Hz) (shown in Figure S1 of the Supplementary
Material), which essentially means that the EEG signals in the
alpha band (i.e., at f1 = f2 = 10 Hz) have a strong non-linear

coupling with their first harmonically related components in the
beta band (i.e., at f3 = f1 + f2 = 20 Hz). The analysis was then
restricted to bicoherence at the individual frequency pair where
such a peak occurred.

Figure 4 shows the patterns of bicoherence obtained for the
different EEG reference schemes. In particular, the maps on
the main diagonal show the average bicoherence across subjects
obtained for each of the EEG reference. The off-diagonal maps
show the t-values resulting from pairwise contrasts between
bicoherencemaps using a paired-sample t-test; here, the channels
showing significant differences at the p < 0.05 level were marked
with a cross. First, all the bicoherence maps reveal a strong level
of bicoherence in a wide area roughly extending from the centro-
parietal to the occipito-parietal channels. However, both the
values and spatial distribution of bicoherence in this area change
according to the chosen reference scheme. Second, there are a
number of other significant differences in these maps, which can
be better appreciated by looking at the t-value maps in the same
figure. Indeed, the reference to Cz induces a systematic increase
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FIGURE 3 | Box plots for the relative error for antisymmetric cross-bicoherence (REX
acb

) evaluated with different EEG reference schemes and with

different EEG electrode densities. The ordinate axis is logarithmically scaled. Each box plot displays the RE-values from 1,000 simulation repetitions.

FIGURE 4 | Effects of the EEG reference choice on alpha-beta

bicoherence patterns estimated from resting state EEG data. Main

diagonal: maps of the average bicoherence across subjects obtained for the

different EEG reference schemes. Off-diagonal: maps of t-values for pairwise

contrasts between bicoherence maps from different EEG reference schemes

using a paired-sample t-test; the black crosses mark the channels showing

significant differences at the p < 0.05 level (two-tailed) based on a permutation

test (10,000 randomizations).

of bicoherence in the fronto-central channels as compared to
all the other references. At the same time, Cz suppresses the
values of bicoherence in proximity of the reference electrode
and, if compared to AVE and REST reference, over the parietal
regions. The DLM reference scheme is characterized by an overall
increase of bicoherence in the central channels, and by a decrease
of bicoherence in the parietal channels and in proximity of the
left and right mastoids used for the reference signal. Although

the bicoherence maps obtained with the AVE and the REST
reference look similar based on a qualitative evaluation, our
analysis highlighted systematic and significant differences in
these patterns. In particular, the AVE reference causes an increase
of bicoherence in the frontal channels as compared to REST,
along with a decrease of bicoherence in the occipital and in
some of the parietal and central channels. Finally, the bicoherence
maps obtained with REST significantly change according to the
head model used for the data standardization as revealed by the
t-values, although the differences can be poorly appreciated from
a visual contrast between these map.

In order to asses whether the choice of the EEG reference
affects a global measure of bicoherence, the maximum value of
bicoherence over channels, i.e., bmax, was considered for each
subjects. The results are summarized in Figure 5, where the bar
plot shows the average bmax across subjects and its standard error,
in dependence of the reference scheme. Notably, this analysis
revealed that the Cz and DLM references yield a significantly
lower bmax than the AVE and REST references, with the statistical
significance being determined by permutation testing.

3.2.2. Non-linear Connectivity Analysis
Connectivity with respect to two seed channels located over the
left and right medial-parietal areas, i.e., P1 and P2, was estimated
using both the cross-bicoherence and the antisymmetric cross-
bicoherence. The obtained results are summarized below.

Figure 6 shows the group average maps of the cross-
bicoherence with seed channels P1 (Figure 6A) and P2
(Figure 6B) for each of the EEG reference schemes. The t-value
maps are also shown for the contrast between the different
reference conditions. The cross-bicoherence maps reveal a main
pattern of interaction where the seed channel is primarily
coupled to its neighbor channels. Beside this finding, the pairwise
contrasts between these maps reveal a number of significant
differences which, as similarly discussed above for bicoherence
mapping, are only due to the choice of the particular EEG
reference scheme. In particular, the Cz reference shows lower
connectivity with the central channels as compared to DLM,
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FIGURE 5 | Maximum bicoherence (bmax) obtained for the different

EEG reference schemes. The bar plot shows the average bmax across

subjects and its standard error. Statistical comparison between the different

reference schemes was performed by using a paired sampled t-test

(*p < 0.05; **p < 0.01; ***p < 0.001; two-tailed; fdr-corrected; permutation

test).

and with the central and frontal channels as compared to AVE
and REST. The DLM reference shows lower connectivity with
the frontal channels, but higher connectivity with the central
channels as compared to AVE or REST. At the same time, the
DLM reference suppresses the connectivity with the channels
located over the left and right mastoids as compared to all the
other references. In the comparison between AVE and REST, the
AVE reference shows lower connectivity with central channels,
and higher connectivity with the fronto-central channels or with
the temporal channels controlateral to the seed. Finally, for
the REST, the head model accuracy has a significant impact
on the estimation of the connectivity patterns. Specifically, if
a spherical model is used (i.e., RESTsph) instead of a realistic
one (i.e., RESTstd or RESTind), the connectivity with the central
channels and with the channels located in proximity of the
seed is lower, whilst the connectivity with the fronto-temporal
and temporal channels controlateral to the seed is higher. A
few significant differences also arise in RESTstd as compared
to RESTind, consisting in a lower connectivity with the frontal
channels and, only for the connectivity with P1, in higher
connectivity with the centro-parietal channels.

A different pattern of interaction arises when the connectivity
is estimated by using the antisymmetric cross-bicoherence.
Figure 7 shows the maps of the antisymmetric cross-bicoherence
with P1 (panel A) and P2 (panel B) obtained for the different
EEG reference schemes and their respective contrasts. Notably,

FIGURE 6 | Effects of the EEG reference choice on the estimation of

alpha-beta connectivity using cross-bicoherence. Panel (A): maps of

connectivity with seed channel P1. Panel (B): maps of connectivity with seed

channel P2. The seed channels have been marked by a black circle. Main

diagonals: maps of the average cross-bicoherence across subjects obtained

for the different EEG reference schemes. Off-diagonals: maps of t-values for

pairwise contrasts between cross-bicoherence maps from different EEG

reference schemes using a paired-sample t-test; the black crosses mark the

channels showing significant differences at the p < 0.05 level (two-tailed)

based on a permutation test (10,000 randomizations).

contrarily to the cross-bicoherence, the antisymmetric cross-
bicoherence reveals a pattern of long range interaction between
channels, which clearly results from this measure being not
biased by the artifacts of EEG volume conduction. Moreover,
large differences can be observed in the comparison between
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FIGURE 7 | Effects of the EEG reference choice on the estimation of

alpha-beta connectivity using the antisymmetric cross-bicoherence.

Panel (A): maps of connectivity with seed channel P1. Panel (B): maps of

connectivity with seed channel P2. The seed channels have been marked by a

black circle. Main diagonals: maps of the average antisymmetric

cross-bicoherence across subjects obtained for the different EEG reference

schemes. Off-diagonals: maps of t-values for pairwise contrasts between

antisymmetric cross-bicoherence maps from different EEG reference schemes

using a paired-sample t-test; the black crosses mark the channels showing

significant differences at the p < 0.05 level (two-tailed) based on a permutation

test (10,000 randomizations).

the different reference schemes, especially when contrasting Cz
and DLM to AVE and REST. Indeed, for the Cz reference, the
interaction is mainly with the occipital channels. For the DLM
reference, the interaction is mainly with the frontal and central

channels in the hemisphere ipsilateral to the seed. On the other
hand, the AVE and REST references reveal a clear pattern of
interaction of the seed channels, which we recall to be located
in the medial-parietal left and right areas, with the channels in
the fronto-central area ipsilateral to the seed and with channels
in the left and right occipital areas. As discussed above for
bicoherence and cross-bicoherence mapping, the t-value maps in
Figure 7 reveal significant differences in the antisymmetric cross-
bicoherence depending on the reference scheme, with specific
spatial topographies. In particular, the Cz reference mainly shows
a lower interaction with the frontal and fronto-central channels
as compared to DLM, and with the fronto-central and occipital
channels as compared to AVE and REST. The DLM shows larger
connectivity with the frontal channels, and lower connectivity
with the parietal and occipital channels as compared to AVE and
REST. As compared to REST, the AVE reference shows lower
connectivity with the frontal channels, and higher connectivity
with the parietal and occipital channels. A similar distortion can
be observed when contrasting RESTsph and RESTstd or RESTind.
Finally, the differences between RESTstd and RESTind are mainly
located in the parietal and occipital channels, with the RESTstd

showing lower connectivity than RESTind.

4. DISCUSSION

In the present study, the effects of four commonly used EEG
reference schemes, i.e., Cz, DLM, AVE, and REST, on bispectral
measures derived from EEG signals were investigated. To this
purpose, the following bispectral measures were considered:
(i) the bicoherence, which is a measure of the local degree
of non-linear coupling within each of the EEG channels,
reflecting the non-linear and non-Gaussian features of the
underlying brain processes (Sigl and Chamoun, 1994; Bullock
et al., 1997; Schack et al., 2002); and (ii) the cross-bicoherence
and the antisymmetric cross-bicoherence, which are both
measures of non-linear cross-frequency connectivity between
different EEG channels, possibly reflecting long-range non-linear
synchronization between neuronal populations (ShilS et al., 1996;
Schack et al., 2002; Isler et al., 2008; Jirsa and Müller, 2013;
Chella et al., 2016b). Particularly relevant for the estimation of
connectivity from scalp EEG data is the antisymmetric cross-
bicoherence, which, as opposed to the cross-bicoherence, is not
biased by the artifacts due to volume conduction (Chella et al.,
2014, 2016b).

The reference effects were first assessed by using simulations,
where the above mentioned reference schemes were compared
to the ideal case of the reference to a true neutral location,
i.e., a point located at infinity (Kayser and Tenke, 2010; Nunez,
2010). In particular, the simulations examined the accuracy in
estimating the bispectral measures in relation to EEG electrode
density and, since the REST requires the solution of the EEG
forward problem, to the head model accuracy. Notably, previous
studies investigated the effects of the electrode density on the
analysis of EEG potentials or power by using different reference
schemes (Nunez and Srinivasan, 2006). Yao (2001), Zhai and Yao
(2004), and Liu et al. (2015) also highlighted the importance of
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using an accurate head model as a key factor to improve the
performance of REST. Marzetti et al. (2007), Qin et al. (2010),
and Chella et al. (2016a) performed a comparative assessment
of different EEG reference schemes in the estimation of linear
scalp EEG connectivity based on coherency or imaginary part
of coherency, demonstrating the validity of REST in data re-
referencing. Along this line, this simulation study expands upon
these previous findings by characterizing the effects of the
reference choice on bispectrum-based non-linear EEG measures,
an issue which is particularly relevant for several of applications,
especially clinical, relying on bispectral analysis of the EEG (Freye
and Levy, 2005; Mormann et al., 2005; Chua et al., 2009; Pritchett
et al., 2010; Hayashi et al., 2014).

Our simulations showed that, as compared to all the other
reference schemes, the reference to the physical electrode Cz
induces the largest distortion in the estimates of bicoherence,
cross-bicoherence, and antisymmetric cross-bicoherence. This is
conceivably due to the reference electrode being in a location, i.e.,
the vertex, which is highly contaminated by the electrical activity
of brain sources. Even though the mastoids are often regarded
to as electrically inactive locations, the distortion induced by
the DLM reference is also substantially large. Notably, the
performances of the Cz and DLM references are not affected
by the EEG electrode density, proving that indeed the observed
distortion is only due to the electrical contamination of the
reference signal. These results are consistent with previous
findings (Dien, 1998; Hagemann et al., 2001; Nunez and
Srinivasan, 2006; Chella et al., 2016a) and are particularly relevant
for those studies using linked mastoids or a single cephalic
electrode as a reference scheme for bicoherence and cross-
bicoherence estimation (e.g., Hagihira et al., 2002; Schack et al.,
2002; Hagihira et al., 2002; Schack et al., 2005).

Overall, the AVE reference provides better results as compared
to Cz and DLM, although it is not completely free of biases. Most
notably, the distortion induced by the AVE reference increases for
increasing electrode density. This effect was already observed by
Chella et al. (2016a) in the estimates of EEG imaginary coherency,
thus confirming that an increased electrode density may be not
a key factor to improve the performance of the AVE reference.
Indeed, it is well-known that the actual accuracy of the AVE
reference in approximating a theoretical zero-potential reference
depends not only on the electrode density, but also on the
electrode scalp coverage, i.e., which is limited to the upper part
of the head (Tomberg et al., 1990; Dien, 1998; Nunez, 2010) or, as
recently shown by Yao (2017), even on the head geometry.

The REST reference significantly reduces the above reference-
induced distortion, with median values for relative errors being
around 5% for the bicoherence, 7% for the cross-bicoherence,
and 11% for the antisymmetric cross-bicoherence if a realistic
individual head model and more than 34 EEG channels are
used. In line with previous findings (Zhai and Yao, 2004; Liu
et al., 2015; Chella et al., 2016a), this study shows that an
accurate knowledge of the head model is crucial to improve
the performance of REST standardization. Indeed, the distortion
substantially increases if the head model is not sufficiently
accurate, i.e., when using a realistic standard or spherical head
model. However, it must be noted that, for a given sensor density,
the REST still remains better choice than all the other reference

schemes. In addition, these results demonstrate that the REST
benefits from high density EEG only if used in combination with
a realistic individual head model, whilst, if used in combination
with a realistic standard or spherical head model, the effects of an
increased electrode density are negligible or even the opposite.

The analysis of real EEG data provided further evidence of
the reference effects on bispectral measures derived from EEG
signals. This analysis was primarily focused on the contrast
between the patterns of alpha-beta bicoherence as well as
of bispectrum-based alpha-beta connectivities obtained from
resting state EEG data with the different reference schemes. The
results show that, indeed, there are systematic and significant
differences in these patterns, which only depend on the use of
the chosen reference scheme. In particular, the differences are
larger for the Cz reference as compared to all the other reference
schemes. This is conceivably due to the fact that the alpha and
beta rhythms in the resting state EEG have a dominant activity
in the occipito-parietal and central areas, which are in close
proximity to the reference electrode. Substantial differences were
also observed for DLM as compared to AVE and REST, while
it should be noted that the differences between the AVE and
REST are considerably small, although statistically significant. As
for the analysis of connectivity patterns, this study shows that
the antisymmetric bicoherence in combination with REST can
provide patterns of long-range connectivity which can be directly
interpreted in terms of functional interactions between the
underlying brain sources. In particular, our findings (Figure 7)
show an alpha-beta interaction between the left and right medial-
parietal cortices with the ipsilateral frontal cortices, as well
as with bilateral occipital cortices. Indeed, there is abundant
evidence of this frequency specific signature of occipito-parietal
and frontal areas in the resting state (Palva et al., 2005; Nikulin
and Brismar, 2006; Sauseng and Klimesch, 2008; Marzetti et al.,
2013; Hillebrand et al., 2016; Siebenhühner et al., 2016). It is
thus conceivable that a circuit comprising occipito-parietal and
frontal areas is recruited through an alpha-beta cross-frequency
synchronization mechanism. The above findings could not be
argued from the analysis of cross-bicoherence (Figure 6) which,
in fact, seems to be mainly biased by volume conduction effects.

Besides the methods concerned in this paper, when dealing
with the issue of the EEG reference, the possibility of getting
rid of the reference effects by performing the analysis at the
source level should also be considered. Indeed, it has been
shown that the choice of the EEG reference does not affect the
reconstruction of neural active sources, at least for noiseless
potentials (Pascual-Marqui and Lehamann, 1993; Geselowitz,
1998). Thus, once a solution to the EEG inverse problem has
been provided, bispectral analysis can be performed directly on
reconstructed source time courses. However, in practice this
approach still depends on a number of factors including, e.g.,
the accuracy in the knowledge of the head model, the EEG
sensor density, or the choice of the inverse solver, which may
affect the accuracy of source reconstruction. The advantages
and disadvantages of source-level analysis over sensor-level
analysis will not be addressed here, as they go beyond the
scope of this work. The aim of our study was to show how
the choice of the EEG reference affects bispectral analysis of
sensor-level EEG data, which is a standard practice for many
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research or clinical applications (e.g., Chua et al., 2009; Pritchett
et al., 2010; Hayashi et al., 2014; Chella et al., 2016b; Özkurt,
2016).

In conclusion, the present study provides evidence that,
also in the analysis of non-linear features of EEG signals and
interactions, the choice of the reference may significantly affect
the study results and the derived conclusions. To minimize this
effect, we recommend the use of the REST reference, which
guarantees less biased results and a straightforward comparison
across different laboratories or databases, with a clear impact for
research and clinical practice.
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