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Spatial group independent component analysis (GICA) methods decompose

multiple-subject functional magnetic resonance imaging (fMRI) data into a linear

mixture of spatially independent components (ICs), some of which are subsequently

characterized as brain functional networks. Group information guided independent

component analysis (GIG-ICA) as a variant of GICA has been proposed to improve

the accuracy of the subject-specific ICs estimation by optimizing their independence.

Independent vector analysis (IVA) is another method which optimizes the independence

among each subject’s components and the dependence among corresponding

components of different subjects. Both methods are promising in neuroimaging study

and showed a better performance than the traditional GICA. However, the difference

between IVA and GIG-ICA has not been well studied. A detailed comparison between

them is demanded to provide guidance for functional network analyses. In this work,

we employed multiple simulations to evaluate the performances of the two approaches

in estimating subject-specific components and time courses under conditions of

different data quality and quantity, varied number of sources generated and inaccurate

number of components used in computation, as well as the presence of spatially

subject-unique sources. We also compared the two methods using healthy subjects’

test-retest resting-state fMRI data in terms of spatial functional networks and functional

network connectivity (FNC). Results from simulations support that GIG-ICA showed

better recovery accuracy of both components and time courses than IVA for those

subject-common sources, and IVA outperformed GIG-ICA in component and time

course estimation for the subject-unique sources. Results from real fMRI data suggest

that GIG-ICA resulted in more reliable spatial functional networks and yielded higher and

more robust modularity property of FNC, compared to IVA. Taken together, GIG-ICA is

appropriate for estimating networks which are consistent across subjects, while IVA is

able to estimate networks with great inter-subject variability or subject-unique property.

Keywords: functional magnetic resonance imaging (fMRI), brain functional networks, independent component

analysis (ICA), group information guided ICA (GIG-ICA), independent vector analysis (IVA)
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INTRODUCTION

There is a rapidly increasing interest in using functional magnetic
resonance imaging (fMRI) data to characterize brain functional
networks. Independent component analysis (ICA), a data-driven
method, has been widely used to analyze fMRI data without
requiring the definition of brain regions (or nodes). Spatial
ICA (sICA) (McKeown et al., 1998), a popular method for
analyzing fMRI data, decomposes fMRI data into a linear mixture
of spatially independent components (ICs) some of which are
subsequently identified as brain functional networks. Despite
success of ICA in fMRI data analyses, ICA faces some challenges.
The order of resulting ICs from individual-subject ICA is
arbitrary, increasing the difficult to establish correspondence
among ICs estimated from different subjects. Another issue is
that the estimated ICs include not only meaningful functional
networks, but also various artifact-related ICs resulting from
imaging and non-neural physiological activity. In addition, the
number of sources is unknown, so the number of ICs always
needs to be estimated (Li et al., 2007); however the numbers
estimated using different criteria are varied (Zuo et al., 2010).
These shortcomings of ICA bring difficulties to multiple-subject
fMRI data analyses, especially when shared networks across
subjects are expected for subsequent group analyses. To address
the problems, group independent component analysis (GICA)
and independent vector analysis (IVA) have been proposed.

Several GICA frameworks have been proposed for fMRI data
analyses, including using the spatial concatenation (Svensén
et al., 2002), temporal concatenation (Calhoun et al., 2001, 2009;
Beckmann et al., 2009) and tensor organization (Beckmann and
Smith, 2005) strategies. Relative to ICA on each individual-
subject’s data, one advantage of GICA is that it can build
direct correspondence of ICs across subjects. Among the GICA
approaches, the temporal concatenation based method is most
widely used. This approach first estimates the group-level ICs
by performing ICA on the time points-concatenated fMRI data
of all subjects, and then back-reconstructs the subject-specific
ICs mainly using principal component analysis (PCA) based
(Calhoun et al., 2001; Erhardt et al., 2011) or regression based
(Beckmann et al., 2009; Erhardt et al., 2011) algorithms. More
recently, in order to improve the accuracy of the subject-
specific ICs estimation, group information guided independent
component analysis (GIG-ICA) (Du and Fan, 2013; Du et al.,
2015c, 2016a) as a variant of GICA has been proposed. GIG-
ICA estimates the subject-specific ICs under the guidance of the
group-level ICs by using a multi-objective function optimization
framework, which simultaneously optimizes the independence
among multiple ICs of each subject and the correspondence
between each group-level IC and the associated subject-specific
IC. The optimization of independence of multiple components
for each subject’s data benefits yielding accurate subject-specific
functional networks. The optimization of correspondences
between one group-level IC and the associated subject-specific
ICs guarantees that the obtained individual networks have the
same physiological meanings and then are comparable across
subjects. Therefore, compared to the traditional PCA-based
and regression-based back-reconstruction techniques that ignore

independence of individual ICs to some extent, GIG-ICA can
yield more accurate individual networks and the associated time
courses (Du and Fan, 2013; Du et al., 2016a) while still preserving
correspondence and comparability of shared networks across
different subjects. Notably, GIG-ICA can estimate individual
networks for new data by utilizing a prior spatial network maps
as guidance. Our previous work (Du et al., 2015c) has shown
the promise of GIG-ICA to estimate spatial functional networks
from fMRI data. By applying GIG-ICA to resting-state fMRI
data (Du et al., 2014, 2015c), we found potential biomarkers
in several functional networks for distinguishing schizophrenia,
bipolar disorder and schizoaffective disorder. In addition, GIG-
ICA (Du et al., 2015b, 2017) has the ability to extract functional
connectivity states from time-varying functional connectivity
(Calhoun et al., 2014; Du et al., 2015a, 2016b). Our work
(Du et al., 2015b, 2017) revealed interesting biomarkers of
schizophrenia, bipolar disorder and schizoaffective disorder in
multiple connectivity states. In this paper, we only focus on the
application of GIG-ICA in estimating functional networks from
fMRI data.

Independent vector analysis (IVA), an alternative method to
achieve an independent decomposition (Adali et al., 2014), has
been applied to analyzing fMRI data of schizophrenia patients
(Gopal et al., 2016) as well as patients with stroke (Laney
et al., 2015a,b). The approach models both the independence
of individual components and the dependence of similar
components across subjects. Several advancements of IVA have
been made for achieving reliable source separation for linearly
dependent Gaussian and non-Gaussian sources (Anderson et al.,
2010, 2014; Dea et al., 2011; Li et al., 2011; Adali et al.,
2014; Boukouvalas et al., 2015). Among those, IVA-GL (IVA
with multivariate Gaussian source component vectors plus
IVA with Laplace source component vectors), which is a
combination of two IVA algorithms, IVA with multivariate
Gaussian component vectors (IVA-G) (Anderson et al., 2012) and
IVA with multivariate Laplace component vectors (IVA-L) (Lee
et al., 2008), provides an attractive tradeoff in terms of complexity
and performance and has been the algorithm used in previous
applications of IVA to fMRI data (Laney et al., 2015a,b; Gopal
et al., 2016). Previous studies (Dea et al., 2011; Ma et al., 2013;
Michael et al., 2014; Laney et al., 2015a,b) compared IVA and
traditional GICA under different levels of subject variability and
parameters, and showed outperformance of IVA over GICA in
terms of capturing subject-specific variability.

Both IVA and GIG-ICA are able to optimize the independence
among intra-subject components and dependence among inter-
subject components, and showed advantages over traditional
GICA in several comparison studies (Dea et al., 2011; Du and
Fan, 2013; Ma et al., 2013; Michael et al., 2014; Du et al.,
2016a). However, a full comparison between IVA and GIG-
ICA has not been well studied, especially in neuroimaging
application. In this paper, we compare their performance using
both simulations and real fMRI data. We evaluate the two
methods with respect to the estimation accuracy of components
and time courses by using simulated data with different quality
and quantity, data with varied number of sources generated,
inaccurate number of components for computation, as well as
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data with subject-unique sources. In addition, test-retest resting-
state fMRI datasets are also utilized to compare the two methods
in terms of estimated functional networks and interaction among
networks. We assess if IVA and GIG-ICA can yield reliable
network maps and functional network connectivity (FNC) using
the test-retest data. With these detailed comparisons, we expect
to gain more knowledge of both methods in analzying fMRI
data under different scenarios and thus provide guidance for
researchers in the field.

MATERIALS AND METHODS

IVA and GIG-ICA
As for IVA, IVA-GL algorithm was adopted to estimate
components for comparisons in this work. It can be accessed
in Group ICA for fMRI toolbox (GIFT) (http://mialab.mrn.
org/software/gift/index.html). There are mainly two steps: (1)
performing subject-level PCA on each subject’s data; (2) applying
IVA-GL to estimate the subject-specific components and time
courses (TCs). The estimated components are then Z-scored.
A free parameter is the number of components used for the
subject-level PCAs, denoted as I1.

GIG-ICA (Du and Fan, 2013; Du et al., 2016a), also included
in GIFT, involves the following steps: (1) performing subject-
level PCA reduction on each subject’s data and group-level
PCA on the temporal concatenation of subject-level PCAs
reduced data; (2) applying group-level ICA to the reduced
data using Infomax algorithm (Bell and Sejnowski, 1995); (3)
identifying and removing artifact-related group-level ICs; (4)
computing each subject-specific IC via a multi-objective function
optimization based on the individual-subject data and each
remaining non-artifact group-level IC (Du and Fan, 2013) using
a deflation manner; and finally (5) estimating the subject-
specific TCs. In step (4), GIG-ICA simultaneously optimizes
the independence of each subject-specific IC, measured by
negentropy, as well as the correspondence between each subject-
specific IC and each group-level IC,measured by their correlation
(Du and Fan, 2013), automatically resulting in Z-scored subject-
specific ICs. Relevant parameters include the number of principal
components (PCs) used for the subject-level PCAs, denoted
as G1, and the number of PCs/ICs used for the group-level
PCA/ICA, denoted as G2.

It is worth noting that in order to decrease computation
load, GIG-ICA can remove artifact-related group-level ICs
before estimating individual components (Du et al., 2016a),
only yielding subject-specific meaningful networks. However,
IVA has to compute all components and remove artifact-
related components in a subsequent postprocessing stage.
To facilitate comparison between GIG-ICA and IVA, we
computed all components in GIG-ICA without performing
artifact removal after the group-level ICA step. In experiments
using real fMRI data, we matched components between
the two methods after obtaining the individual results and
then removed the corresponding artifact-related components
for both methods. For comparison, we also set G1 =

G2 = I1, resulting in equivalent numbers of components
for the two methods. In this work, Infomax algorithm

employed in the first step (i.e., the group-level ICA) of
GIG-ICA and IVA-GL algorithm are comparable, since both
methods use fixed nonlinearity matched to super-Gaussian
sources.

Experiments Using Simulations
Due to that there is no ground truth in practical applications,
simulation-based tests are necessary for evaluating different
methods. In order to comprehensively compare IVA and
GIG-ICA, we performed several experiments to assess the
accuracy of the estimated individual components and TCs
under different conditions, including various data quality
and quantity (Experiment 1), varied number of sources and
inaccurate number of components for computation (Experiment
2), and spatially subject-unique sources (Experiment 3). In each
experiment, we simulated fMRI-like data of multiple subjects
using the SimTB toolbox (Allen et al., 2012; Erhardt et al.,
2012). The number of subjects M was simulated to be 10.
For each subject, C source images (148 × 148 pixels) and
their corresponding TCs (150 or less time points in length)
were simulated and then used to generate data by a linear
mixture model. In our experiments, we set C to be 7 or
8. Rician noise was then added to data with a specified
contrast-to-noise ratio (CNR). Repetition time (TR) was 2
s/sample. Among C sources, some sources were similar across
all subjects with slight variance (i.e., subject-common), while
the other sources were unique and only present on specific
subject (i.e., subject-unique). These subject-unique sources
were generated to simulate significant source variability across
subjects. The parameters of our experiments are summarized in
Table 1.

Experiment 1: Comparing IVA and GIG-ICA Using

Data with Different Quality and Quantity
As shown in Figure 1A, 8 sources and their associated TCs
were simulated for each subject. Similar to previous work, each
of the 8 sources was generated from a common map with
added spatial variability across subjects by random translations
[mean = 0 pixel; standard deviation (SD) = 5 pixels], rotations
(mean of 0 degree; SD = 3◦), and spatial extents (i.e., spreads)
of the common spatial map (mean = 3 magnification; SD =

0.03 magnification). Thereby, sources were spatially consistent
across subjects but showing moderate subject-specific variability,
as shown in Figure 1B. Additionally, temporal variation was
applied in simulation of TCs. In order to evaluate the effect
of data quality, for each subject, we simulated 16 datasets with
different CNRs (ranging from 0.5 to 2 with the step of 0.1) and
a fixed number of time points (i.e., 150). Subsequently, regarding
each specific CNR (e.g., the CNR = 1), we performed IVA and
GIG-ICA on the associated data of all subjects, respectively.
To investigate the effect of data quantity, for each subject, we
simulated 5 datasets by varying the time points from 40 to 120
in steps of 20 while the CNR was fixed at 2. Afterwards, in
terms of each given number (e.g., the number of time points =
100), each method (IVA or GIG-ICA) was applied to the relevant
data of all subjects. For these experiments, we set the number of
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TABLE 1 | Parameters of simulations and methods in the following simulation-based experiments.

Experiment 1 Experiment 2 Experiment 3

Different

data quality

Different data

quantity

Varied number of sources

generated

Inaccurate number

of components used

in computation

Spatially

subject-unique source

Number of subjects 10 10 10 10 10

Number of sources in each

subject’s data

8 8 8 (i = 1, · · · , 5),

7 (i = 6, · · · , 10),

i denotes the subject index

8 8

CNR in each subject’s data 0.5–2 with the

step of 0.1

2 2 2 2

Number of time points in

each subject’s data

150 40–120 with the

step of 20

150 150 150

Source type similar across

subjects

similar across

subjects

similar across subjects similar across subjects one subject-unique source

Number of components

used in computation

8 8 7 and 8 6, 8, and 10 8

FIGURE 1 | (A) The simulated sources and their associated time courses (TCs) of two subjects in Experiment 1. (B) The spatial variability of sources across subjects.

Each color denotes the source contours of a different subject.

components (i.e., G1, G2, I1) used in the analyses to be the same
as the number of true sources (i.e., 8).

Experiment 2: Comparing IVA and GIG-ICA under

Conditions of Varied Number of Sources and

Inaccurate Number of Components
In this section, we first assessed the performance of the two
methods using data with varied number of sources across
different subjects (see Table 1 for the detailed parameters). Five
subjects’ datasets were simulated with 8 sources, while the other
five subjects’ datasets were simulated with 7 sources. Among

the sources, each of 7 sources had a similar spatial pattern
across all subjects with slight inter-subject variability, while the
other source was only present in five subjects with small spatial
variation. Considering the difference in the simulated number of
sources across different subjects, we performed two comparisons
by setting the same number of components in IVA and GIG-ICA
to 7 and 8 separately.

It is known that prior to ICA, the number of components
is a free parameter, typically either selected by the user
or estimated by some information-based criteria (Li et al.,
2007; Fu et al., 2014). This parameter may influence the
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source decomposition since the measure of total component
independence may change and thus converge to different
solution. In order to evaluate the effect of an inaccurate
component number in both methods, based on the data
generated with 8 sources (i.e., the data from Experiment 1
with the CNR = 2) we examined each method by setting
the number of estimated components to 6, 8, and 10,
respectively.

Experiment 3: Comparing IVA and GIG-ICA Using

Data with Spatially Subject-Unique Sources
In this experiment, we aimed to evaluate the ability of the two
methods in recovering both subject-common and subject-unique
sources. Each subject’s data was simulated by using 7 sources
each of which was similar across subjects and one additional
source unique for each individual subject. The 7 sources had
similar patterns with the first 7 sources generated in Experiment
1. Figure 2 shows the simulated subject-unique sources (i.e.,
the 8th sources) and related TCs of all subjects. The number
of components used in computation was specified as the real
number of sources (i.e., 8).

Evaluation Metrics in Simulation-Based Experiments
To compare the performance of IVA and GIG-ICA on
simulations, we evaluated accuracy of the estimated subject-
specific components and TCs using correlation between
estimation and ground truth, consistent to many prior studies
(Schmithorst and Holland, 2004; Allen et al., 2012; Du and
Fan, 2013; Michael et al., 2014; Du et al., 2016a). We
firstly matched the estimated subject-specific components with
the simulated subject-specific ground-truth (GT) sources as
follows. Regarding each source in Experiment 1 and 2, the
corresponding GT sources of all subjects were averaged, and

then the mean GT sources were used as source templates.
Next, for GIG-ICA method, we matched the group-level
ICs with the source templates using a greedy rule (see
the Supplementary Material for details). Similarly, for IVA
method, we averaged the corresponding components from
all subjects to represent the group-level components, which
were then matched with the sources templates. For each
method, based on the matched results between the group-level
components and the source templates, the estimated subject-
specific components/TCs were then accordingly matched to
the subject-specific GT sources/TCs. For Experiment 3 which
involved a subject-unique source in data, we first averaged
each of 7 subject-common GT sources across subjects to
get its source template, and then matched the 8 group-level
component maps obtained from each method with the 7 source
templates, consequently constructing correspondence between
7 components and 7 GT sources for those subject-common
sources of each subject. Thus, one additional subject-unique
component can be matched to the subject-unique GT source
for each subject. After matching, we computed the absolute
value of Pearson correlation coefficient between each estimated
component/TC and its matched GT source/TC to measure the
component/TC accuracy. In Experiment 1 and 2, we further
calculated the mean of all components/TCs accuracy measures
of each subject to reflect its overall component/TC accuracy.
In Experiments 1 and 2, for each setting, a two-tailed paired
t-test was performed to compare the overall component (or
TC) accuracy metrics of all subjects from IVA with that
from GIG-ICA. In Experiment 3, for each component, we
compared the spatial (or temporal) accuracy of all subjects
between IVA and GIG-ICA using one two-tailed paired t-test.
The results were corrected using p < 0.05 with Bonferroni
correction.

FIGURE 2 | The simulated subject-unique sources (the 8th sources) and related TCs of all subjects in Experiment 3.
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Experiments Using Test-Retest
Resting-State fMRI Data
Seventy five resting-state fMRI datasets (Zuo et al., 2010)
comprising 25 healthy participants with three scans were adopted
in the experiment. Each dataset consisted of 197 contiguous EPI
functional volumes (TR = 2,000 ms; TE = 25ms; flip angle =

90◦, 39 slices, matrix = 64 × 64; FOV = 192mm; acquisition
voxel size = 3 × 3 × 3 mm). The first scan (scan 1) is in a scan
session. Five to Sixteen months (mean 11 ± 4) after scan 1, scan
2 and scan 3 were conducted with short interval (about 45min).
The fMRI images were preprocessed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm). The first 10 images were discarded, and the
remaining 187 images were slice-time corrected and realigned to
the first volume for head-motion correction. Subsequently, the
images were spatially normalized to the Montreal Neurological
Institute (MNI) EPI template and spatially smoothed with a 6
mm FWHMGaussian kernel.

IVA and GIG-ICA were applied to all 75 preprocessed
datasets, respectively, to estimate brain functional networks
and their associated TCs of each dataset. For a comprehensive
evaluation of these two methods, we used both low and high
numbers of components for analyses. When a low number
is used, it makes more sense to think of each meaningful
component itself as a brain functional network. Many studies
(Meda et al., 2014; Du et al., 2015c) have conducted analyses
on spatial maps of networks revealed by ICA with low model
order, aiming to explore disease biomarkers. In contrast, if a high
number is used, the meaningful networks were then usually used
as nodes for computing consequent FNC (Allen et al., 2011).
Each FNC matrix, which is computed based on the individual-
subject’s TCs of networks, reflects interaction among different
networks. To be consistent with previous studies (Allen et al.,
2011; Du and Fan, 2013; Du et al., 2015c, 2016a), we specified
20, 25, and 30 as low model order settings, and 75 and 100 as
high model order settings. For simplification, we assessed the
results from both low and high model orders using the same
manner by considering properties of both networks’ spatial maps
and interaction among networks (i.e., FNC). Regarding results
from each model order setting, we first matched the obtained
components from the two methods based on their group-level
component maps using a greedy rule (see the Supplementary
Materials). Then, based on the matched components with high
similarity (correlation > 0.5) between the two methods, we only
selected the meaningful networks by manually inspecting spatial
and temporal information of the matched components (Allen
et al., 2014; Du et al., 2016a) for further investigation. Next, the
following evaluations in terms of network maps and FNC were
performed on the selected networks for each method. Finally, the
performances of the two methods under different model orders
were compared.

For each selected network, we evaluated its reliability based
on the estimated individual networks from 75 datasets as follows,
which is consistent to previous studies (Zuo et al., 2010; Du et al.,
2016a). First, voxel-wise right-tailed one-sample t-tests (p < 0.01
with false discovery rate (FDR) correction) were performed on
the corresponding networks of all 75 datasets. Next, since the data

from scan 2 and scan 3 were collected with short intervals, voxel-
wise intra class coefficients (ICCs) (Zuo et al., 2010) between the
corresponding 25 networks from scan 2 and the corresponding
25 networks from scan 3 were calculated to assess the short-term
reliability of the network, resulting one 3D ICC map reflecting
short-term reliability of the network. In our work, ICC of each
voxel was computed using a model (Zuo et al., 2010; Guo et al.,
2012) based on one-way analysis of variance (ANOVA), due
to that those subjects were scanned using the same scanner.

The used equation was: ICC =
σ
2
p

σ
2
p + σ

2
e
, where σ

2
p denotes the

variance of inter-subject effect and σ
2
e denotes the variance of

measurement error. As mentioned above, the data of scan 2 and
scan 3 were collected after several months of scan 1. So, we
computed ICCs between the corresponding 25 networks from
scan 1 and the averaged 25 networks from scan 2 and scan 3
to assess the long-term reliability of the network, resulting in
one 3D ICC map reflecting long-term reliability. Based on each
ICC map reflecting short-term or long-term reliability of the
network, the ICC values were then averaged across voxels within
a specific mask which included statistically significant voxels for
both methods based on the one-sample t-tests results after FDR
correction, to summarize the short-term or long-term reliability
of the network.

To investigate network interaction, we calculated FNC for
each of the 75 datasets, and then evaluated graph-theory based
measures using the brain connectivity toolbox (https://sites.
google.com/site/bctnet/) as well as reliability in both connectivity
and modularity. First, for each dataset, we obtained one FNC
matrix by computing Pearson correlation coefficients between
the associated TCs of any paired networks. Next, we averaged
the FNC matrix across all 75 datasets. Based on the mean FNC
matrix, we detected its modules (i.e., network communities)
using the most applied eigenvector-based method (Newman M.
E., 2006; Newman M. E. J., 2006), where the modularity Q-value
reflects the accuracy or quality of a community structure. Greater
Q-value represents stronger modular structure. Subsequently,
modularity analysis was also performed on each individual
FNC matrix, resulting in a module segmentation and related
Q-value for each dataset. Since different datasets may have
greatly varied modular brain networks, we measured modularity
similarity between any pair of datasets using the adjusted mutual
information (AMI), consistent to a recent study (Liao et al.,
2017). The mean of AMI values computed between datasets in
scan 2 and datasets in scan 3 was used to measure the short-
term modularity reliability. The mean of AMI values obtained
between datasets in scan 1 and datasets in scan 2 or 3 was
used to reflect the long-term modularity reliability. Additionally,
each connectivity’s short-term and long-term reliability in FNC
was examined using ICC. Specifically, for each connectivity (i.e.,
one element in FNC matrix), ICC between the corresponding
25 connectivity strengths from scan 2 and the corresponding
25 connectivity strengths from scan 3 was calculated to assess
the short-term reliability of the connectivity; ICC between the
corresponding 25 connectivity strengths from scan 1 and the
corresponding 25 connectivity strengths averaged between scan
2 and 3 was calculated to assess the long-term reliability of the
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connectivity. Finally, we calculated the averaged node strength,
clustering coefficient, global efficiency, and local efficiency
(Rubinov and Sporns, 2010) based on each individual FNC
matrix, the elements of which were first changed to their absolute
values and thresholded to preserve half elements with higher
values (sparsity= 0.5) (Du et al., 2016b).

RESULTS

Results from Simulation-Based
Experiments
Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 1
Figure 3 shows the components/TCs of one subject estimated by
IVA and GIG-ICA from the simulated data with the CNR = 1.
For this case, we can see that both methods can generally
recover all of spatial components and TCs. For some components
(e.g., component 3, 6, and 7), GIG-ICA had slightly higher
component/TC accuracy than IVA. Figure 4A summarizes the
comparison results across 10 subjects under the condition of
different CNRs. It can be observed that the recovery accuracy
of components by both methods was improved along with the
increasing of CNR while TCs recovery was relatively insensitive
to different CNRs. Measured by the mean accuracy, GIG-ICA
outperformed IVA across most of CNR settings in terms of
component/TC accuracy. Figure 4B demonstrates results from
evaluating the influence of different numbers of time points. Both
methods showed increasing recovery accuracy of components
with more time points used. Paired t-test results (Table 2) show
that for most of the CNR and time point settings tested, GIG-ICA
showed significantly increased accuracy (especially the spatial
accuracy) than IVA. Our results indicate the advantage of GIG-
ICA in recovering subject-common sources than IVA, and GIG-
ICA can yield components with higher accuracy even under the
case of low quality and quantity of data.

Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 2
Figure 5A shows the accuracy results obtained from data with
varied numbers of sources across different subjects. We can
see that under all model orders (i.e., different numbers of
components), GIG-ICA showed significantly better performance
(seeTable 3) than IVA, indicating that GIG-ICA is able to tolerate
source number variation and is also not very sensitive to the
number of components used.

The results demonstrated in Figure 5B were obtained using
data generated with 8 sources and different numbers of
components for computation (i.e., 6, 8, and 10). It can be
observed that GIG-ICA significantly outperformed IVA under
all model orders in terms of the spatial accuracy (see Table 3).
Regarding the temporal accuracy, GIG-ICA had significantly
greater accuracy using the model order 6, but slightly decreased
accuracy using the model order 10, compared to IVA. For the
model order 8, the TC results of the two methods are statically
close. When the used number of components was the same as
the real source number (i.e., 8), both methods achieved the best
estimation. When the number of components was 10, there was a

slight decrease in recovering components/TCs for both methods,
compared to the results of the model order as 8. However, when
the number of sources was underestimated (i.e., 6), there was a
significant drop of accuracy for the IVA but a slight decrease for
GIG-ICA. Because the accurate number of components is very
difficult to estimate correctly in practice, the relative insensitivity
of GIG-ICA to the model order may provide an important
benefit.

Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 3
In this experiment, we tested the two methods using datasets
where each subject had a spatially unique source. Accuracy of
each estimated individual component/TC is shown in Figure 6.
It is seen that for the estimated spatial components, measured
by the mean accuracy across subjects, GIG-ICA had a better
performance for the subject-common sources (i.e., the first 7
sources), but showed a worse estimation for the subject-unique
source (i.e., the 8th source) than IVA. Regarding the estimated
eight TCs, measured by the mean accuracy across subjects, GIG-
ICA had higher TC accuracy in four TCs and decreased TC
accuracy in terms of the subject-unique source compared to IVA.
Using paired t-tests (see Table 4), among the 7 subject-common
sources, four components and three TCs were significantly more
accurate using GIG-ICA than using IVA. IVA outperformed
GIG-ICA in estimating the subject-unique sources (passing p
< 0.05 with correction). Our results suggest that for the data
generated with subject-unique sources, in general GIG-ICA still
performed well for the similar sources but did not work well
for the unique source. In contrast, IVA can estimate the subject-
unique source and its associated TC with high accuracy.

Results from Test-Retest Resting-State
fMRI Data
Using the test-retest resting-state fMRI datasets, we assessed the
individual-level spatial networks in terms of their short-term
and long-term reliability. Figure 7 shows the one-sample t-tests
results of the 12matched networks for the twomethods under the
condition of the model order as 30. We found that compared to
IVA, GIG-ICA in general showed higher t-values for all networks.
For the case of the model order as 30, the short-term and long-
term reliability measures of each network are demonstrated in
Figures 8A,B, respectively. Results indicate that for most of the
networks, greater reliability measures were obtained using GIG-
ICA compared to IVA, although there were also four networks
(including Network 1, Network 5, Network 7, and Network 11)
showing slightly higher short-term or long-term reliability in
IVA than GIG-ICA. Furthermore, some networks including the
sensorimotor and cerebellum-related networks from IVA had
very low reliability. To summarize, we show the short-term and
long-term reliability of all networks estimated with different
model orders in Figures 8C,D. It can be seen that measured by
the mean values of reliability measures across all networks, the
higher network reliability was achieved by GIG-ICA than IVA for
all model order settings.

We also compared the twomethods in constructing functional
interaction among networks. Under a model order of 100,
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FIGURE 3 | The estimated components/TCs of one subject obtained from IVA and GIG-ICA when the CNR = 1. The value in parenthesis close to each

estimated component/TC is the relevant correlation coefficient between the component/TC and the simulated ground truth (GT) source/TC. The GT sources/TCs are

also shown for comparisons.

22 networks were highly matched between the two methods.
For each dataset, one FNC matrix was generated based
on the associated TCs of the 22 networks. Figures 9A,B

show the mean FNC matrix across all 75 datasets for IVA
and GIG-ICA, respectively. It is observed that the two
FNC matrices generally showed a similar pattern. However,
the contrast in FNC appeared higher in GIG-ICA than
IVA. According to the modularity segmentation of networks,
we reorganized the mean FNC matrix’s structure for IVA
(Figure 9C) and GIG-ICA (Figure 9D). The identified modules
for the two methods were demonstrated in Figures 9E,F,
respectively. Three modules mainly relating to the default
mode network (module 1), the cognitive control, sensorimotor
and auditory functions (module 2), and the vision function
(module 3) were found using GIG-ICA. Module 1 and 2
showed anti-correlations in their connectivities. Regarding

IVA, two modules were detected, while the vision-associated
networks were separated into two modules. Furthermore,
the modularity quality was greater in GIG-ICA (Q = 1.33)
compared to IVA (Q = 0.51) when the number of components
was 100.

Furthermore, GIG-ICA showed an equivalent or higher
modularity Q-value of the mean FNC than IVA for the model
order settings tested (see Figure 10A). Regarding individual
FNC’s modularity, Figure 10B demonstrates that excepting
the low model order 20, GIG-ICA with a greater mean Q-
value outperformed IVA for most of the cases. Moreover,
measured by the AMI, both the short-term and the long-
term modularity reliability metrics were greater in GIG-ICA
than IVA for all tests, as shown in Figures 10C,D. Both the
short-term and long-term ICC measures (Figures 10E,F)
support that the connectivity strengths in FNC were
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FIGURE 4 | (A) Spatial and temporal accuracy measure obtained from IVA and GIG-ICA under different CNRs ranging from 0.5 to 2. (B) Spatial and temporal

accuracy measure obtained from IVA and GIG-ICA under different numbers of time points. The x-axis in each boxplot denotes CNR in (A) or number of time points in

(B). The y-axis denotes the mean of spatial/temporal correlation coefficients between one subject’s estimated components/TCs and the corresponding ground truth

sources/TCs, which was used to measure the overall spatial/temporal accuracy of one subject’s result. Each point in a given boxplot corresponds to the overall

spatial/temporal accuracy of one subject. For each boxplot, the central line is the median, and the edges of the box are the 25 and 75th percentiles. The whiskers

extend to 1 inter-quartile range, and each outlier is displayed with a “*” sign. The mean value is indicated by a square. Subsequent boxplots are formatted similarly.

TABLE 2 | Results of the estimation accuracy using paired t-tests for Experiment 1.

Data with different quality CNR = 0.5 CNR = 0.6 CNR = 0.7 CNR = 0.8 CNR = 0.9 CNR = 1.0 CNR = 2

p-value in spatial accuracy 5.43e-05 1.16e-06 3.05e-06 7.96e-03 1.42e-07 2.79e-06 1.77e-07

t-value in spatial accuracy −7.14 −11.44 −10.19 −3.39 −14.61 −10.30 −14.24

p-value in temporal accuracy 0.61 0.002 4.34e-05 0.98 3.12e-05 6.20e-06 7.14e-06

t-value in temporal accuracy 0.52 −4.12 −7.35 0.014 −7.66 −9.36 −9.20

Data with different quantity Number of time

points = 40

Number of time

points = 60

Number of time

points = 80

Number of time

points = 100

Number of time

points = 120

p-value in spatial accuracy 2.21e-05 2.01e-06 9.17e-07 4.71e-07 2.98e-07

t-value in spatial accuracy −8.00 −10.71 −11.76 −12.71 −13.41

p-value in temporal accuracy 3.74e-03 2.0e-3 1.58e-3 8.52e-05 5.64e-05

t-value in temporal accuracy −3.88 −6.01 −6.21 −6.73 −7.10

generally more robust using GIG-ICA method, compared
to IVA.

As mentioned in the method section, we also examined other
graph-theory based metrics for individual FNC. The summarized

results for the averaged node strength, clustering coefficient,
global efficiency, and local efficiency are shown in (Figures 11),
suggesting that GIG-ICA resulted in higher mean values in all
these graph metrics than IVA under all model order settings.
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FIGURE 5 | (A) Spatial and temporal accuracy obtained from IVA and GIG-ICA under different model orders for datasets with varied numbers of sources across

subjects. (B) Spatial and temporal accuracy obtained from IVA and GIG-ICA under the model order as 6, 8, and 10 for datasets generated with 8 sources. The x-axis

in each boxplot denotes the number of components used in computation. The y-axis denotes the mean of spatial/temporal correlation coefficients between one

subject’s estimated components/TCs and the corresponding ground truth sources/TCs, which was used to measure the overall spatial/temporal accuracy of one

subject’s components/TCs.

TABLE 3 | Results of the estimation accuracy using paired t-tests for Experiment 2.

Data with varied source number Inaccurate number of component

IC number = 7 IC number = 8 IC number = 6 IC number = 8 IC number = 10

p-value in spatial accuracy 1.32e-09 2.47e-09 2.24e-05 1.76e-07 1.33e-07

t-value in spatial accuracy −24.86 −23.18 −7.99 −14.25 −14.72

p-value in temporal accuracy 8.10e-06 7.25e-05 4.10e-04 0.10 0.77

t-value in temporal accuracy −9.06 −6.88 −5.44 −1.85 0.30

TABLE 4 | Results of the estimation accuracy using paired t-tests for Experiment 3.

Component

1

Component

2

Component

3

Component4 Component

5

Component

6

Component

7

Component

8

p-value in spatial accuracy 0.70 0.02 4.34e-08 1.04e-04 2.01e-07 1.01e-03 0.21 8.95e-04

t-value in spatial accuracy 0.39 −2.66 −16.74 −6.56 −14.04 −4.78 −1.33 4.86

p-value in temporal accuracy 0.03 0.03 3.81e-04 0.20 0.78 5.53e-03 3.29e-05 1.96e-04

t-value in temporal accuracy 2.53 2.43 −5.50 1.38 −0.29 −3.62 −7.61 6.03

DISCUSSION

In this work, we compared two promising approaches (i.e.,
IVA and GIG-ICA) for analyzing multi-subject fMRI data.

Both methods can estimate subject-specific brain functional
networks with correspondence across different subjects. IVA
considers both the independence of individual components and
the dependence of similar components across subjects. GIG-ICA
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FIGURE 6 | Spatial and temporal accuracy of each estimated component and TC obtained from IVA and GIG-ICA for datasets with subject-unique

sources. The 8th component is subject-unique. The y-axis denotes the spatial/temporal correlation between one subject-specific component/TC and the

corresponding ground truth source/TC. The accuracy metrics of each component/TC from all subjects are shown using one boxplot. Each point in one boxplot

corresponds to the spatial/temporal accuracy of one component/TC for one subject.

first estimates the group-level ICs from all data and then
computes the subject-specific ICs with the group-level ICs as
guidance. Using simulations, we investigated if the two methods
can yield accurate individual-level components and time courses
under different conditions, including different data quality (i.e.,
CNR) and data quantity (i.e., number of time points), varied
number of sources and inaccurate number of components, as
well as presence of spatially subject-unique sources. Furthermore,
we assessed their performance using test-retest resting-state
fMRI data with respect to spatial networks’ reliability and
graph-theory based metrics of FNC under different model
orders.

In Experiment 1 using simulations, we evaluated the two
methods using data with various quality and quantity. Our
results suggest that both IVA and GIG-ICA showed improved
performance along with the increased CNR and time points of
data. For the sources with slight inter-subject spatial variability,
GIG-ICA obtained components with higher accuracy than IVA,
and performed very well under the case of low CNR and less
time points. It is known that both IVA and GIG-ICA require
a fixed number of components for computation, generating the
same number of components for all subjects. When datasets
of different subjects are simulated using different numbers
of sources, the resulting components of some subjects have
different numbers with the real number of sources. So, in
Experiment 2, we simulated varied number of sources between
different groups and also investigated the influence of inaccurate
number of components. Our results suggest that GIG-ICA
showed a relatively better performance and was stable to the
various numbers of sources under this case. We also tested
the two methods in terms of the effect of the number of
components, indicating that IVA gave rise to a significant
reduced accuracy when the model order was underestimated
while GIG-ICA was not very sensitive to the inaccurate model
order.

All the above mentioned experiments were applied to the
datasets generated using sources that were similar across subjects.
In Experiment 3, using datasets where all subjects had a subject-
unique source with large inter-subject spatial variability, we
found that IVA significantly showed a better performance in the
component/TC accuracy of the unique source than GIG-ICA,
although GIG-ICA in general still performed better for other
subject-common sources compared to IVA. This is likely due to
that the two methods are different in algorithm level. GIG-ICA
first extracts the group-level components, and then estimates the
corresponding individual-level components for each individual-
subject’s data. In contrast, IVA simultaneously estimates the
individual-subject’s components and optimizes the dependence
of components across different subjects. Therefore, we suggest
using GIG-ICA to estimate networks that are consistent across
subjects, while IVA is more appropriate for networks with
significant inter-subject variability. IVA’s superiority in estimating
subject-unique sources possibly enables it to be more suitable
to data from patients with particular brain structure damage,
such as patients suffering from brain tumor that could result in
greatly different functional networks. Our previous work (Du
et al., 2014, 2015c, 2017) showed that GIG-ICA performed well
for fMRI data from healthy controls and patients with mental
disorders, which are supposed to have similar network patterns
but subtle differences. In fact, all GICA approaches (Calhoun
et al., 2001, 2009; Beckmann et al., 2009; Erhardt et al., 2011)
have the same limitation with GIG-ICA, since all of them back-
reconstruct individual-subject’s ICs based on the group-level ICs.
However, as our previous work (Du et al., 2016a) suggested, GIG-
ICA is a powerful approach for main fMRI researches, due to
the fact that the subject-common networks can be estimated and
denoised without having to accurately estimate the artifacts. In
future, a general framework that leverages the strengths of IVA
and GIG-ICA is expected for achieving high accuracy of both
subject-common and subject-unique networks.
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FIGURE 7 | One-sample t-test t-value maps (p < 0.01 with FDR correction) of the 12 matched networks, obtained by (A) IVA and (B) GIG-ICA under the

case of the model order as 30. The 12 matched networks shown are sorted according to the similarity (i.e., correlation) between networks from the two methods.

Our experiments using healthy participants’ test-retest
resting-state fMRI data revealed that regardless of low model
order and high model order, GIG-ICA in general obtained
functional networks with relatively greater short-term and long-
term reliability compared to IVA, although a few networks
showed slightly higher reliability in IVA than GIG-ICA. In terms
of the interaction among networks represented by FNC, we found

that the mean FNC matrix from the two methods showed a
similar pattern to some extent. However, both the mean FNC
and the individual-level FNC showed stronger modularity (i.e.,
Q-value) using GIG-ICA compared to IVA for most of the model
order settings examined. Measured by the AMI, the modular
structure was more reliable during short-term and long-term
rescanning using GIG-ICA for all tests, compared to using IVA.
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FIGURE 8 | (A,B) Reliability measures of the 12 selected networks for IVA and GIG-ICA under the case of the model order as 30. The x-axis denotes the network ID

which corresponds to that in Figure 7. (A) Mean ICC value in each network reflecting the short-term reliability of the network. The value was obtained by first

computing ICCs between the corresponding networks of scan 2 and that of scan 3, and then averaging ICCs in the significant voxels. (B) Mean ICC value in each

network reflecting the long-term reliability of the network. The value was obtained by first computing ICCs between the corresponding networks from scan 1 and the

mean networks of scan 2 and 3, and then averaging ICCs in the significant voxels. (C,D) The summarized network reliability measures for IVA and GIG-ICA under

different model orders (i.e., different numbers of components). (C) Short-term reliability of networks. (D) Long-term reliability of networks. Each boxplot shows the

reliability measures of different networks using IVA or GIG-ICA with one given model order. For the model order 20, 25, 30, 75, and 100, the number of matched

networks between the two methods were 9, 10, 12, 19, and 22, respectively.

Despite short-term and long-term, ICC measures demonstrate
that connectivity strengths were generally more robust using
GIG-ICA method, compared to IVA. Moreover, FNC obtained
from GIG-ICA showed relatively higher values in the averaged
node strength, clustering coefficient, global efficiency, and local
efficiency, indicating stronger interaction among brain functional
networks.

There are some limitations in our work. (1) The simulations
are quite simple. Only eight sources and ten subjects were
simulated, while the proportion in fMRI data is certainly
greater. In practical applications, there exist more complex
situations that could involve many subject-unique sources, high
diversity in source number, and great bias in model order
estimation. Therefore, it’s possible that conclusions we draw
from simulations are over-simplified and of limited applicability.
However, we also evaluated the two methods using data with

more subject-common and subject-unique sources. The results
are included in the Supplementary Materials (Figures S2, S4).
Our results suggest that the performances of both methods were
affected by greater spatial overlapping among sources, and the
presence of more subject-unique sources may slightly influence
the estimations of the subject-common sources in GIG-ICA to
some extent. (2) The number of sources in real data is difficult
to estimate accurately. Therefore, we don’t know the appropriate
model orders at which to compare these two methods in real
data. We compared the two methods using different numbers
of components and found similar results, but these methods
may yield different performances with other model orders.
(3) Since IVA involves a more complicated optimization task,
performance might improve if a best run selection mechanism
as in previous work (Ma et al., 2011) is used to select the most
reliable run across multiple runs. However, we did not perform
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FIGURE 9 | The mean FNC matrix and its modularity result with the model order as 100. (A,B) The mean FNC matrix across subjects derived from IVA and

GIG-ICA. There were 22 matched networks between the two methods. (C,D) Modular organization of the mean FNC matrix from IVA and GIG-ICA. (E,F) The

connectogram representation of the modularity of the mean FNC obtained from IVA and GIG-ICA. In (E,F), the intrinsic networks (INs) belonging to the same modular

are shown using the same color, and only top 20% of the connectivities with higher absolute connectivity strengths among networks are shown using lines.
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FIGURE 10 | The summarized modularity and reliability measures of FNC for IVA and GIG-ICA under different model orders (i.e., different numbers of

components). (A) The modularity Q-value of the mean FNC. (B) Individual FNC’s modularity Q-value. The Q-values of FNC matrices from all datasets are shown

using one boxplot, each point of which corresponds to a Q-value of one individual FNC matrix. (C) The short-term modularity reliability. (D) The long-term modularity

reliability. (E) The short-term reliability of connectivity strengths in FNC. (F) The long-term reliability of connectivity strengths in FNC. In (E,F), each boxplot includes ICC

values of all connectivities.

estimation of multiple runs due to the computation load that
would significantly increase the computation time. Similarly use
of a more powerful IVA algorithm such as the one proposed

in Boukouvalas et al. (2015) might improve the estimation
performance at the expense of computation cost. (4) Using
healthy participants’ test-retest resting-state fMRI data, GIG-ICA
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FIGURE 11 | Comparison of graph theory based metrics of FNC under different model orders. In the left-top subfigure, the averaged node strength values

computed based on all 75 datasets’ FNC matrices from IVA/GIG-ICA with one specific model order are shown in one boxplot. Other boxplots are formatted similarly.

obtained higher network reliability as well as stronger and more
reliable modularity than IVA. Network reliability is regarded as
a desirable property since the fMRI data in our experiments
were from healthy subjects’ test-retest scans (Shehzad et al., 2009;
Zuo and Xing, 2014). Previous researches (Wang et al., 2010;
Bullmore and Bassett, 2011) have supported that healthy brain’s
intrinsic activity is organized as a small-world, highly efficient
network with highly connected brain regions. Nevertheless, the
truths regarding both network reliability and integration are
unknown for real data. In the future, we will employ fMRI data
from both healthy controls and patients with mental disorders to
examine the ability of the two methods in identifying potential
biomarkers.
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