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Novel neural network training methods (commonly referred to as deep learning)

have emerged in recent years. Using a combination of unsupervised pre-training

and subsequent fine-tuning, deep neural networks have become one of the most

reliable classification methods. Since deep neural networks are especially powerful for

high-dimensional and non-linear feature vectors, electroencephalography (EEG) and

event-related potentials (ERPs) are one of the promising applications. Furthermore,

to the authors’ best knowledge, there are very few papers that study deep neural

networks for EEG/ERP data. The aim of the experiments subsequently presented

was to verify if deep learning-based models can also perform well for single trial

P300 classification with possible application to P300-based brain-computer interfaces.

The P300 data used were recorded in the EEG/ERP laboratory at the Department

of Computer Science and Engineering, University of West Bohemia, and are publicly

available. Stacked autoencoders (SAEs) were implemented and compared with some

of the currently most reliable state-of-the-art methods, such as LDA and multi-layer

perceptron (MLP). The parameters of stacked autoencoders were optimized empirically.

The layers were inserted one by one and at the end, the last layer was replaced by

a supervised softmax classifier. Subsequently, fine-tuning using backpropagation was

performed. The architecture of the neural network was 209-130-100-50-20-2. The

classifiers were trained on a dataset merged from four subjects and subsequently

tested on different 11 subjects without further training. The trained SAE achieved 69.2%

accuracy that was higher (p < 0.01) than the accuracy of MLP (64.9%) and LDA (65.9%).

The recall of 58.8% was slightly higher when compared with MLP (56.2%) and LDA

(58.4%). Therefore, SAEs could be preferable to other state-of-the-art classifiers for

high-dimensional event-related potential feature vectors.

Keywords: brain-computer interfaces, deep learning, event-related potentials, machine learning, P300, stacked

autoencoders

1. INTRODUCTION

A brain-computer interface (BCI) enables communication without movement based on brain
signals measured with electroencephalography (EEG). One of the most widespread BCI paradigms
relies on the P300 event-related potentials, and is referred to as P300 BCIs. The P300 is an
event-related potential elicited by oddball paradigm (see Figure 1). It exhibits larger amplitudes
in target (rare) stimuli (Fazel-Rezai et al., 2012). Because the P300 component can also be observed
for stimuli that are selected by the user e.g., because of his/her intention, many different BCIs can be
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FIGURE 1 | Comparison of averaged EEG responses to common (non-target) stimuli and rare (target) stimuli. There is a clear P300 component following the target

stimuli.

designed based on this principle. The P300 speller introduced by
Farwell and Donchin (1988) can serve as one of the examples.
Furthermore, P300 BCIs have consistently exhibited several
useful features—they are relatively fast, straightforward, and
require practically no training of the user (Fazel-Rezai et al.,
2012). Unfortunately, the detection of the P300 is challenging
because the P300 component is usually hidden in underlying
EEG signal (Luck, 2005). Therefore, well-trained machine
learning system is one of the most important parts of any P300
BCI system. Its task is to read EEG patterns and discriminate
them into two classification classes (i.e., P300 detected, P300 not
detected).

Typically, the P300 detection requires preprocessing, feature
extraction, and classification (depicted in more detail in
Figure 2). The objective of preprocessing is to increase signal to
noise ratio. Bandpass filtering of raw EEG signals is a common
preprocessing method in P300 detection systems. Since the P300
component is stimulus-locked and the background activity is
randomly distributed, the P300 waveform can be extracted using
averaging (Luck, 2005). Averaging gradually improves signal to
noise ratio. On the other hand, averaging also slows down the bit-
rate of P300 BCI systems and distorts the shape of ERPs (Luck,
2005). Then, features are extracted from EEG signals. Different
methods have been used for this purpose, e.g., discrete
wavelet transform, independent component analysis, or principal
component analysis. The final step is classification. Farwell
and Donchin used step-wise discriminant analysis (SWDA)
followed by peak picking and covariance evaluation (Farwell and
Donchin, 1988). Other methods have also been used for the P300
detection such as support vector machine (SVM) (Thulasidas
et al., 2006), and linear discriminant analysis (LDA) (Guger
et al., 2009). Although different features and classifiers have been
compared (Mirghasemi et al., 2006), comparisons of all different
features extraction and classificationmethods applied to the same
data set have only been published rarely. One study has, however,
examined this issue. In Krusienski et al. (2006) it was shown
that SWDA and Fisher’s linear discriminant (FLD) provided
the best overall performance and implementation characteristics
for practical classification, as compared to Pearson’s correlation
method (PCM), a linear support vector machine (LSVM), and
a Gaussian kernel support vector machine (GSVM) (Fazel-Rezai
et al., 2012). In Manyakov et al. (2011), the authors demonstrated
that LDA and Bayesian linear discriminant analysis (BLDA)
were able to beat other classification algorithms. For comparison
purposes, there is a benchmark P300 speller dataset from the

BCI Competition 2003 (Blankertz et al., 2004) and some papers
report results achieved on this dataset. Several approaches were
able to reach 100% accuracy using only 4–8 averaged trials
on the BCI Competition 2003 data (Cashero, 2012). In single
trial P300 detection (i.e., detection without averaging the trials),
the performance reported in the literature is lower—typically
between 65 and 70% (Jansen et al., 2004; Haghighatpanah et al.,
2013).

Recent development in the field of deep learning neural
networks has opened new research possibilities regarding
P300 BCI systems. Using a combination of unsupervised pre-
training and subsequent fine-tuning, deep neural networks
have become one of the most reliable classification methods,
in some pattern recognition cases even outperforming other
state-of-the-art methods (Pound et al., 2016). P300 feature
vectors reflect the nature of EEG signal. They are high-
dimensional, not linearly separable, consisting of both
time samples and spatial information (by concatenating
multiple EEG channels). Therefore, deep learning models
seem appealing since they are especially powerful for high-
dimensional and complex feature vectors. Furthermore, to
the authors’ best knowledge, there are very few papers that
study deep neural networks for EEG/ERP data (Deng and Yu,
2013).

The objective of this paper is to verify if one of the
deep learning models suitable for real-valued inputs—stacked
autoencoders—is suitable for the detection of the P300
component, and to compare it with traditional classification
approaches. The datasets used were previously freely provided
to public. The paper is organized as follows: Section 2
introduces deep learningmodels including stacked autoencoders.
Then the proposed experiment is described: in Section 2.3,
details about the obtained data and experimental conditions
are described. Section 2.4.1 explains feature extraction and
Section 2.4.2 describes the procedure used to train stacked
autoencoders and classification models that were used for
comparison. Results are presented in Section 3 and discussed in
Section 4.

2. MATERIALS AND METHODS

2.1. Deep Learning
Themain goal of this paper is to evaluate the benefits of using new
deep learning models for P300 BCIs. Therefore, in this section,
deep learning models are introduced.
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Vařeka and Mautner Stacked Autoencoders for the P300 Component Detection

FIGURE 2 | Diagram of the P300 BCI system. The EEG signal is captured, amplified and digitized using equidistant time intervals. Then, the parts of the signal

time-locked to stimuli (i.e., epochs or ERP trials) must be extracted. Preprocessing and feature extraction methods are applied to the resulting ERP trials in order to

extract relevant features. Classification uses learned parameters (e.g., distribution of different classes in the training set) to translate the feature vectors into commands

for different device types.

Deep learning models have emerged as a new area of machine
learning since 2006 (Deng and Yu, 2013). For complex and
non-linear problems, deep learning models have proven to
outperform traditional classification approaches (e.g., SVM)
that are affected by the curse of dimensionality (Arnold et al.,
2011). These problems cannot be efficiently solved by using
neural networks with many layers (commonly referred to
as deep neural networks) trained using backpropagation.
The more layers the neural network contains, the lesser
the impact of the backpropagation on the first layers.
The gradient descent then tends to get stuck in local
minima or plateaus which is why no more than two layer
were used in most practical applications (Deng and Yu,
2013).

In deep learning, each layer is treated separately and
successively trained in a greedy way: once the previous
layers have been trained, a new layer is trained from the
encoding of the input data by the previous layers. Then,
a supervised fine-tuning stage of the whole network can
be performed (Arnold et al., 2011). Deep networks models
generally fall into the following categories (Arnold et al.,
2011):

• Deep belief networks (stacked restricted Boltzmann machine)
• Stacked autoencoders
• Deep Kernel Machines
• Deep Convolutional Networks

The main goal of this paper is to explore stacked autoencoders
for this task. Deep belief networks from deep learning category
have already been successfully applied to P300 classification
(Sobhani, 2014). However, to the authors best knowledge, stacked
autoencoders have so far not been used for the P300 detection.
Furthermore, they use real inputs which is suitable for this
application.

2.2. Stacked Autoencoders
A single autoencoder (AA) is a two-layer neural network
(see Figure 3). The encoding layer encodes the inputs of the
network and the decoding layer decodes (reconstructs) the
inputs. Consequently, the number of neurons in the decoding
layer is equal to the input dimensionality. The goal of an AA
is to compute a code h of an input instance x from which
x can be recovered with high accuracy. This models a two-
stage approximation to the identity function (Arnold et al.,
2011):

fdec(fenc(x)) = fdec(h) = x̂ ≈ x (1)

with fenc being the function computed by the encoding layer and
fdec being the function computed by the decoding layer.

The number of neurons in the encoding layer is lower
than the input dimensionality. Therefore, in this layer, the
network is forced to remove redundancy from the input
by reducing dimensionality. The single autoencoder (being a
shallow neural network) can easily be trained using standard
backpropagation algorithm with random weight initialization
(Ng et al., 2010).

Stacking of autoencoders in order to boost performance of
deep networks was originally proposed in Bengio et al. (2007).

A key function of stacked autoencoders is unsupervised pre-
training, layer by layer, as input is fed through. Once the first

layer is pre-trained (neurons h
(1)
1 , h

(1)
2 , .., h

(1)
4 in Figure 3), it can

be used as an input of the next autoencoder. The final layer can
deal with traditional supervised classification and the pretrained
neural network can be fine-tuned using backpropagation.
Stacked autoencoder is depicted in Figure 4 (Ng et al.,
2010).
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FIGURE 3 | Autoencoder. The input layer (x1, x2, .. , x6) has the same

dimensionality as the output (decoding layer). The encoding layer (h
(1)
1 , .., h

(1)
4 )

has a lower dimensionality and performs the encoding (Ng et al., 2010).

FIGURE 4 | Stacked autoencoder (Ng et al., 2010).

2.3. Experimental Design
2.3.1. Introduction
To compare stacked autoencoders with traditional classification
models, an ERP experiment was designed and conducted in

FIGURE 5 | Stimulation device with flashing diodes.

our laboratory to obtain P300 data for training and testing of
the classifiers used. The data with corresponding metadata and
detailed description are available in Vareka et al. (2014a).

2.3.2. Stimulation Device
The stimulation device (Dudacek et al., 2011) was designed at
our department. The main part of the stimulation device is a
box containing three high-power Light-Emitting Diodes (LEDs)
differing in their color: red, green, and yellow.

The core of the stimulator is an 8bit micro-controller that
generates the required stimuli. The control panel consists of
a LCD display and a set of push-buttons that are used to
set the parameters of the stimulation protocol. The stimulator
also generates additional synchronization signals for the EEG
recorder.

The stimulator has typically been used for modified odd-ball
paradigm experiments (three stimulus paradigm Dudacek et al.,
2011). Apart from traditional target and non-target stimuli, the
device can also randomly insert distractor stimuli. The distractor
stimuli are usually used to elicit the subcomponent of the P3
waveform (called P3a) (Polich, 2007). Figure 5 shows the LED
module with the yellow diode flashing.

2.3.3. Stimulation Protocol
The stimulation protocol uses the device described above. For
our experiments, the following setting of the stimulation device
was used: each diode flashes once a second and each flash takes
500 ms. The probabilities of the red, green and yellow diodes
flashing were 83, 13.5, and 3.5%, respectively. Consequently, the
green diode was the target stimulus and the red diode the non-
target stimulus. The yellow diode was the distractor stimulus,
and was ignored in the subsequent processing. The participants
were sitting 1 m from the stimulation device for 20 min.
The experimental protocol was divided into three phases, each
containing 30 target stimuli and each about 5 min long. There
was a short break between each two phases. The participants
were asked to sit comfortably, not to move and to limit their eye
blinking. They were instructed to pay attention to the stimulation
device and not to perform another task-relevant cognitive or
behavioral activity.

2.3.4. Procedure
The following experimental procedure was applied: Each
participant was acquainted with the course of the experiment

Frontiers in Neuroscience | www.frontiersin.org 4 May 2017 | Volume 11 | Article 302

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
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and answered questions concerning his/her health. Then he
or she was given the standard EEG cap made by the Electro-
Cap International. The international 10–20 system of electrode
placement was used. The participant was subsequently taken to
the soundproof and electrically shielded cabin. The reference
electrode was located at the root of his/her nose. The participant
was told to watch the stimulator.

2.3.5. Recording of the Data
The BrainVision amplifier and related software for recording
were used in the subsequent experiments. The data were obtained
with the following parameters: the sampling rate was set to 1 kHz,
the number of channels was set to 19, the resolution was set to
0.1 µV and the recording low-pass filter was set with the cut-off
frequency of 250 Hz. The impedance threshold was set to 10 k�.

2.3.6. Measured Subjects
A group of 25 healthy individuals (university students, aged 20–
26) participated in our experiments. However, only the data
from 15 subjects were used in subsequent experiments. Five
subjects were rejected even before storing the data, so they are
unavailable in our data publication (Vareka et al., 2014b). Those
subjects were blinking excessively, inattentive and in some cases,
the experiment was ended early. High impedance was also one
of the reason for rejection, because it was typically associated
with a complete data loss on one or more electrode. Other five
subjects were rejected based on their lack of the P300 response.
All subjects signed an agreement with the conditions of the
experiment and with the sharing of their EEG/ERP data.

2.3.7. Availability of the Measured Data
The experimental protocol and datasets supporting the results of
this article are described in more detail in Vareka et al. (2014a).
The datasets are available for download in the EEG/ERP Portal
under the following “http://eegdatabase.kiv.zcu.cz/ (Moucek and
Jezek, 2009). Supporting material for this paper can also be found
in the GigaScience database, GigaDB (Vareka et al., 2014b).

2.4. Pattern Recognition
2.4.1. Preprocessing and Feature Extraction
For feature extraction, the Windowed means paradigm
(Blankertz et al., 2011) was used. It is a modern method that
includes features frommultiple channels and the most significant
time intervals. Its use for P300 BCIs was encouraged in Blankertz
et al. (2011). The method is based on selecting epoch time
windows that contain the components of interest (e.g., the P300
component). The following steps were taken:

1. Each dataset was split into epochs (trials) using stimuli
markers of target events—the green diodes flashing (S 2) and
non-target events—the red diodes flashing (S 4). Each trial
started 500 ms before the stimulus, and ended 1,000 ms after
the stimulus.

2. Baseline correction was performed by subtracting the average
of 500 ms before the stimulus onset from each trial.

3. For averaging, 50 ms long time windows between 150 ms and
700 ms after the stimuli onset were selected. The intervals
used were based on expected locations of the P300 and other

cognitive ERP components (Luck, 2005) and further adjusted
experimentally. Subsequently, 11 averages were extracted
from all available 19 EEG channels.

4. Averages from all 19 channels were concatenated. As a result,
each feature vector had dimensionality of 209.

5. Finally, each individual feature vector was normalized using
its length.

The procedure for finding suitable parameters for the P300
detection based on the Windowed means paradigm is described
in detail in Vareka and Mautner (2015). For example, it was
investigated how to choose time intervals for averaging to
maximize classification performance.

2.4.2. Classification
For classification, the state-of-the-art methods for P300 BCIs
mentioned e.g., in Lotte et al. (2007): linear discriminant analysis
(LDA) and multi-layer perceptron (MLP) were compared with
stacked autoencoders (SAEs).

The features vectors were extracted as described in Section
2.4.1. The training set was concatenated using the data from
four subjects (experimental IDs 99, 100, 104, and 105, none
of them included in the testing dataset). The datasets used
for training were selected manually to contain an observable
P300 component with different amplitudes and latencies. From
each subject, all target trials were used. The corresponding
number of non-targets was randomly selected from each subject.
Consequently, the training dataset contained 366 target and
366 non-target trials. Finally, all training trials were randomly
shuffled. Only the training set was used for both unsupervised
pre-training and supervised fine-tuning. There were no further
weight updates in the testing mode. Therefore, it could be
observed if once trained classifiers can generalize for other
subjects.

To optimize parameters for classification models, 20%
randomly selected subset of the training dataset was used for
validation. Then, manually selected parameters were inserted
and the process of training and evaluating the results was
repeated ten times to average the performance for each
configuration. After the parameters were found, the models
were trained on the whole training dataset and subsequently
tested.

Matlab Neural Network Toolbox was used for the
implementation of stacked autoencoders (MATLAB, 2015).
The parameters of the stacked autoencoder (number of layers,
number of neurons in each layer, and number of iterations for
the hidden layers) were empirically optimized using the results
on the validation set. The experimentation started with two
layers, then either new neurons were added into the layer, or
a new layer was added until the performance of the classifier
stopped increasing.

Finally, the following procedure was used to train the network.
The maximum number of training epochs was limited to 200.

1. The first autoencoder with 130 hidden neurons was trained.
2. The second autoencoder with 100 hidden neurons was

connected with the first autoencoder to form a 209-130-100-
209 neural network, and trained.
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3. The third autoencoder with 50 hidden neurons was connected
with the second autoencoder to form a 209-130-100-50-209
neural network, and trained.

4. The fourth autoencoder with 20 hidden neurons was
connected with third autoencoder to form a 209-130-100-50-
20-209 neural network, and trained.

Furthermore, the following parameters were set for the network
globally to reduce overfitting and adjust the weight update:
L2WeightRegularization was set to 0.004, SparsityRegularization
was set to 4, and SparsityProportion was set to 0.2. These values
were set according to common recommendations (MATLAB,
2015) and then slightly adjusted when tuning up the training.

After the training of each autoencoder, the input feature
vectors were encoded using that autoencoder to form input
vectors of the next autoencoder. Using the output of the last
autoencoder, softmax supervised classifier was trained with 200
training iterations. Finally, the whole pre-trained 209-130-100-
50-20-2 network was fine-tuned using backpropagation. The
structure of the stacked autoencoder is depicted in Figure 6.

The same numbers of neurons for each layer were used
for MLP. However, the phase of unsupervised pre-training
was not included. Instead, the randomly initialized network
was trained using backpropagation. The number of training
iterations was empirically set to 1,000. For the training of
LDA, the shrinkage regularization was used as recommended
by Blankertz et al. (2011) to reduce the impact of the curse of
dimensionality.

3. RESULTS

To evaluate the results of classification, accuracy, precision and
recall were calculated. Suppose that we have tp - number of true
positive detections, tn - number of true negative detections, fp -
number of false positive detections, and fn - number of false
negative detections. The following values were calculated:

ACCURACY =
tp + tn

tp + tn + fp + fn
(2)

PRECISION =
tp

tp + fp
(3)

RECALL =
tp

tp + fn
(4)

In the testing phase, the data from each experiment were
evaluated. Similarly to the training dataset, all target trials were
included but only the corresponding number of first non-target
trials were used. The number of trials varied slightly for each
subject. However, for each subject, ∼90 target and 90 non-
target trials were extracted. The results achieved are shown in
Table 1. For each classifier, average accuracy, precision, and recall
are listed. Figures 7–9 depict achieved classification accuracy,
precision, and recall for each testing dataset, respectively.

SAE, when configured as described, outperformed both LDA
and MLP on the testing dataset (McNemar statistical tests;
p < 0.01).

4. DISCUSSION

The aim of the experiments was to evaluate if stacked
autoencoders perform better for the P300 detection than two
other classifiers. Unlike common P300-based BCI systems,
the classifiers were trained on a dataset merged from four
subjects and subsequently tested on different 11 subjects without
any further training. Therefore, it can be observed how the
P300 detection system can perform when dealing with the
data from previously unknown subjects. Most parameters for
classification were manually adjusted during the time-consuming
mainly empirically-driven process of trying different settings and
observing results on the validation set.

As the results indicate, stacked autoencoders were consistently
able to outperform multi-layer perceptrons. The improvement
can be seen in both Figure 7 and Table 1. This difference can
probably be explained by improved training in SAE that also
includes unsupervised pre-training. The improvement is more
pronounced in precision than in recall. Furthermore, SAEs
were also able to outperform LDA. Tests revealed that both
differences were statistically significant for the testing dataset
used (p < 0.01). As Figure 7 illustrates, SAEs yielded higher
accuracy than other classifiers in 9 out of total 11 subjects.
Consequently, it appears that stacked autoencoders were able
to match or outperform current state-of-the-art classifiers for
the P300 detection in accuracy. These results are consistent

TABLE 1 | Average classification performance for different classifiers.

Classifier Accuracy (%) Precision (%) Recall (%)

LDA 65.9 68.1 58.4

SAE 69.2 73.6 58.8

MLP 64.9 67.8 56.2

FIGURE 6 | The structure of the SAE neural network.
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FIGURE 7 | For each dataset from the testing set, the achieved accuracy for LDA, MLP, and SAE classifiers is depicted.

FIGURE 8 | For each dataset from the testing set, the achieved precision for LDA, MLP, and SAE classifiers is depicted.

FIGURE 9 | For each dataset from the testing set, the achieved recall for LDA, MLP, and SAE classifiers is depicted.
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with promising results reported by Sobhani (2014). For deep
belief networks, the authors reported 60–90% for other methods
compared with 69 and 97% for deep learning. The achieved
results encourage using deep learning models for the P300
component detection with applications to P300-based BCIs.

Furthermore, during the process of manually adjusting
parameters, it was observed that the comparative benefits of
SAE increased with the increase in the dimensionality of feature
vectors. This may be because linear classifiers such as LDA suffer
from the curse of dimensionality (Ji and Ye, 2008). In contrast,
SAE by itself also performs dimensionality reduction (Zamparo
and Zhang, 2015).

Although classification accuracy is very important for the
reliability of P300 BCI systems, only BCIs with reasonably fast
bit-rate are comfortable to use for disabled users. Since real-
world BCI systems should be able to evaluate ERP trials on-
line, computational time for the processing and classification of
feature vectors should not be higher than inter-stimulus intervals.
According to our experience, to be comfortable to use, inter-
stimulus intervals should be at least 200 ms. In the literature,
only slightly lower inter-stimulus intervals are used for the P300
speller (for example, 175 ms in Sellers et al., 2006). Fortunately,
once the BCI system is trained, classifying a single feature
vector is usually not very time consuming. This is also relevant
for feed-forward neural networks. Therefore, according to our
experience, SAE, MLP and LDA can all be used in on-line BCI
systems.

For the future work, more issues remain to be addressed.
Although stacked autoencoders are less prone to overtraining
than MLPs, during the fine-tuning phase, accuracy peaked after
approximately 100 iterations and then leveled off slowly.
Therefore, more regularization techniques for avoiding
overfitting may be used. Despite being better than LDA
and MLP, still, only four participants reached an accuracy above
70% which is often seen as a minimum to use a P300-based
BCI (Lakey et al., 2011). It can therefore be evaluated how
an individualized BCI system (i.e., the system trained on the
data from the particular user) would perform and if better

performance of SAEs outweighs their increased training times.
In Sobhani (2014), pre-training possibilities for deep belief
networks are discussed. The authors proposed that the weights
of a new neural network could be initialized using the results
of pre-training based on another subject. The same principle
could be applied to stacked autoencoders. This could lead to
possibly increased classification performance. Another possible
strategy for increasing accuracy and bitrate would be to shorten
the inter-stimulus interval. Although shorter intervals could lead
to lower P300 amplitudes, SAE can classify high-dimensional
feature vectors and could detect only slight differences in the
feature vectors. Furthermore, it could also be interesting to
explore stacked denoising autoencoders, deep belief networks or
other deep learning training models. Finally, we plan to apply the
presented methods to on-line BCI for both healthy and paralyzed
subjects.
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