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In this paper, we deal with the Mental Workload (MWL) classification problem based on

the measured physiological data. First we discussed the optimal depth (i.e., the number

of hidden layers) and parameter optimization algorithms for the Convolutional Neural

Networks (CNN). The base CNNs designed were tested according to five classification

performance indices, namely Accuracy, Precision, F-measure, G-mean, and required

training time. Then we developed an Ensemble Convolutional Neural Network (ECNN)

to enhance the accuracy and robustness of the individual CNN model. For the ECNN

design, three model aggregation approaches (weighted averaging, majority voting

and stacking) were examined and a resampling strategy was used to enhance the

diversity of individual CNN models. The results of MWL classification performance

comparison indicated that the proposed ECNN framework can effectively improve MWL

classification performance and is featured by entirely automatic feature extraction and

MWL classification, when compared with traditional machine learning methods.

Keywords: mental workload, pattern classification, convolutional neural network, ensemble learning, deep

learning, electrophysiology

INTRODUCTION

With the rapid development of automation technology, automatic control systems have been
extensively applied to almost every engineering field. HMS and HMI are necessitated because the
design of technologies often does not account for and leverage how humans behave and think. For
example, automation has been studied and applied extensively, non-etheless a major observation
is that automation systems do not remove humans from the workplace, but instead changes the
nature of their tasking and create new coordination demands on human operators (Parasuraman
et al., 2000). Some tasks, e.g., air traffic control, still need to be completed by the collaboration
or integration between human and automation system. This broad class of systems that include
human factors is referred to as Human-Machine System (HMS; Hollender et al., 2010). In a HMS,
excessively high MWL levels mean that the tasks required to handle exceed the operators’ capacity.
The operators cannot respond to the unexpected events even if they can maintain the system well.
On the contrary, too low MWLmakes it difficult for operators to concentrate on the current tasks.
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To prevent such accidents, some researchers argued that
it is important to maintain the optimal Operator Functional
State (OFS) in human-machine collaborative tasks (Mahfouf
et al., 2007). The accurate and computationally efficient OFS
assessment and prediction method can be used to adjust the
level of automation (or autonomy) in a HM shared control
system. A crucial problem is how to estimate the OFS in real
time and accurately. Previous studies showed that the MWL is a
critical dimension of the OFS construct. The MWL of the human
operator would constantly increase once the workload exceeds
certain threshold and wrong decision-making or accidents would
occur.

There are three major techniques for the MWL assessment:
(1) subjective assessment—The assessment results depend on
the participants’ self-perception of the task and thus are often
affected by the interpretations of questionnaire, answering
style and memory capacity (Kivikangas et al., 2011). The
subjective ratings were performed following each task-load
condition in our experiments, they are difficult to apply in real-
time applications; (2) task performance based evaluation—This
technique overcomes certain shortcomings of the first method.
The operator is regarded to be in a better functional state if
he exhibits better task performance. The method still has some
drawbacks as some well-trained operators may persevere in
execution of the tasks with seemingly good performance even
if they are overloaded mentally; and (3) psychophysiological
data based assessment—Based on an effective fusion of
the Electroencephalogram (EEG), Electromyogram (EMG),
Electrooculogram (EOG), and Functional Magnetic Resonance
Imaging (FMRI) data, this method can characterize the OFS
accurately (Hollender et al., 2010). The physiological responses
of the operator provide an objective and instant (or real-
time) assessment of operator functional state (OFS) in general
and the MWL in particular. Nevertheless, the method suffers
from two major shortcomings. One disadvantage is concerned
with data acquisition and interpretation, that is, the measured
psychophysiological signal is usually weak in amplitude and
contaminated by various external noises, disturbances or
artifacts. Thus, it is important to choose suitable filters to filter
out those unwanted components. For example, the EOG signal
recording is often affected by blinking. In addition, the measured
data are usually large-scale and thus demand sophisticated big
data analysis techniques/algorithms. Another disadvantage is
the requirement of special-purpose equipment, which is usually
expensive and requires high maintenance cost.

In recent years many researchers have focused on the
challenging problem of MWL assessment. For example,
Parasuraman (Parasuraman and Wilson, 2008) used
physiological signals to evaluate the MWL of the operator
in unmanned aerial vehicle (UAV) control tasks. Yin and Zhang
(2014) measured the MWL variations using such features
as the power of different frequency bands of multi-channel
EEG signals, heartbeat interval, Heart Rate (HR), and Heart
Rate Variability (HRV). Bindewald (Bindewald et al., 2014)
developed an Adaptive Automation (AA) system that is able
to adaptively allocate tasks between operator and automated
system. Yildiz et al. (2009) used the Shannon entropy of the
spectral power in different frequency bands of the EEG signals

as the physiological indicators of operators’ alertness level. Noel
et al. (2005) adopted artificial neural networks to classify MWL.
Ke et al. (2014) developed cross-task performance-based feature
selection and regression model for the MWL. Lin and Zhang
(Lin et al., 2013) combined kernel fisher discriminant analysis
and kernel principal component analysis for mental workload
recognition. In this paper, we proposed a new framework for
MWL classification.

The physiological signal is weak in amplitude, highly non-
linear and statistically non-stationary and noisy, thus it is
difficult to recognize different awareness status from non-
stationary physiological signals. Feature extraction is the key.
Some commonly-used feature extraction methods include Power
Spectrum (Pfurtscheller et al., 2016), Fast Fourier Transform
(FFT; Varsta et al., 2000), Auto-Regressive (AR) model (Burke
et al., 2005), Independent Component Analysis (ICA; Zhou and
Gotman, 2009), Bispectrum estimation (Zhang et al., 2000), and
neural networks (Anderson et al., 1995). When estimating the
power spectral density of a short EEG time-series signal, the
statistical characterization is insufficient. FFT has limitation in
analyzing the spectrum of time-varying signals. AR model can
describe the time-varying characteristics of the signal, but it is
more suitable for analyzing stationary signals. In this paper, we
used Short-Time Fourier Transform (STFT; Tsai et al., 2015) to
extract the time-frequency features at each time instant from the
measured time-series signals.

The rest of this paper is organized in the following way.
In Section Data Acquisition Experiments, we described the
experimental design paradigm and procedure for physiological
data acquisition. Furthermore, STFT is employed to extract
the physiological features (markers/measures) of the MWL.
In Section Methods, we compared five different CNN model
structures and four different parameter optimization methods.
Subsequently we compared three different CNN ensemble
(fusion/aggregation) approaches and discussed the model
selection issue in selective ensemble learning in Section MWL
Classification Results. Finally, Section Discussion draws some
meaningful conclusions from the comprehensive comparative
results presented previously.

FIGURE 1 | Data acquisition experimental setup.
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DATA ACQUISITION EXPERIMENTS

Participants
Six volunteers participated in the experiment. All participants
(coded by A - F; 22–24 y/o, all male) were graduate students
recruited from East China University of Science and Technology,
Shanghai, China. Each participant was informed by the
experimenter of the purpose and procedure of the experiments
before the formal experimental sessions. Then he was trained on
the execution of the aCAMS manual control tasks for about 12
h to make him get familiar to the aCAMS task environment and
manual control tasks. The training session was scheduled not too
long to reduce the possible performance distortion caused by the
so-called Learning Effect (LE). The participants were informed to
ensure 8 h of sleeping and to prohibit smoking, drinking, or any
other caffeine-contained beverages before the experiment. The
experimental setup is shown in Figure 1.

Experimental Environment
In order to reliably examine the change of operator MWL
levels under different levels of task-load, the laboratory where
the experiments are carried out must be sound-proof. The
experimental data acquisition need to meet the following
three fundamental criteria: (1) The simulation platform should
be complex enough to simulate the real-world operational
environment with certain level of task fidelity in the lab
setting, with an aim to analyze/assess quantitatively the
operator performance; (2) the experiment must be able to
achieve real-time monitoring the operator MWL state; and
(3) the experiment must involve different levels of task
difficulty.

In view of the above criteria, we used the simulation software,
Automation-enhanced Cabin Air Management System (aCAMS)
that was redeveloped by the FGAIO group, Technical University
of Berlin, Germany. The operator was required to regulate the
air quality near its optimal level, which is measured by a set
of output variables of several subsystems. Two parameters, i.e.,
the number of subsystems (NOS) manually controlled by the
operator and the binary (standard vs. high) level of actuator
sensitivity (AS), were used to label the target (or true) MWL

level of each data point in high-dimensional feature space at each
time step. The target MWL levels will be used to evaluate the
classification performance subsequently.WhenAS level is HIGH,
it is more difficult for the operator to simultaneously regulate
the output of several subsystems to the respective target zones.
The different combinations of NOS and AS parameters were
designed to generate different levels of MWL in the experimental
paradigm.

It is noted that the basic goal of this work is to classify
the operator MWL levels using physiological data. Thus,
experiments were conducted by using the Nihon Kohden R© signal
measurement system to collect physiological signals (EEG, EOG,
and ECG) of the operator executing process control tasks in
collaboration with the aCAMS.

Experimental Tasks
The aCAMS consists of four subsystems, namely Oxygen
(O2) concentration, Pressure (P), Carbon dioxide (CO2)
concentration, and Temperature (T). The four subsystems
work together to sustain air quality in the closed cabin of a
manned spacecraft or deep-sea submarine for example. Each
subsystem has two control modes, i.e., manual operational
mode by operator and automatic mode by the computer-
based aCAMS, respectively. The operator’s task is to control

TABLE 1 | Task-load conditions in an experimental session.

Task-load condition Mode of control NOS AS

1 Auto – –

2 Manual/Auto 2 (O2/P) LOW

3 Manual/Auto 2 (O2/ P) HIGH

4 Auto – –

5 Manual/Auto 3 (O2/P/CO2) LOW

6 Manual/Auto 3 (O2/P/CO2) HIGH

7 Auto – –

8 Manual 4 (O2/P /CO2/T) LOW

9 Manual 4 (O2/P/ CO2/T) HIGH

10 Auto – –

FIGURE 2 | The 10 task-load conditions in a session of experiment.
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FIGURE 3 | The determination of the target classes in an experimental session: (A) Case 1: 4 target classes; (B) Case 2: 7 target classes.

the outputs of several or all (4) subsystems in their preset
target zones (O2: 19.6–20.0%; P: 990–1025 mbar; CO2: 0.2–0.6%;
T: 19.5–22.0◦C).

Experimental Procedure
The major experimental tools included aCAMS simulation
software and physiological signal measurement system. The
experimenter monitored the real-time signal acquisition process
to detect if there are unexpected events (e.g., bad contact of
the electrodes with the scalp) or abnormalities in the recorded
signals.

The task-load conditions in a session are shown in Figure 2

and Table 1. Each experimental session was conducted between
2 and 5 p.m. For each participant, two experimental sessions
with the same design and procedure were performed. The 12
sessions (=6 participants × 2 sessions per participant) were

coded simply by A1, A2; B1, B2;...; F1, F2, respectively. As shown
in Figure 3, each session comprises 10 task-load conditions, each
of which lasted for 5min. The condition #1, 4, 7, and 10 are
baseline conditions (corresponding to unloaded resting state of
the operator), during which all the subsystemswere automatically
controlled by the aCAMS software (i.e., NOS = 0). In condition
#2 and 3, the participant was asked to manually control two
subsystems that maymalfunction with automatic controllers (i.e.,
NOS = 2). In condition #5 and 6, the participant was asked to
manually control three possibly faulty subsystems (i.e., NOS= 3).
In condition #8 and 9, the participant was required to manually
control all four subsystems (i.e., NOS = 4). It is noted that the
AS parameter is also different in different conditions, i.e., the AS
was low in condition #2, 5, and 8, but high in condition #3, 6, and
9. During each session of experiment, the data sampling rate is
500Hz.
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FIGURE 4 | Processing of a 2-s. segment of physiological data: (A) Raw multi-channel EEG signals; (B) 3D power spectrum; (C) The STFT-extracted features;

(D) The average feature in each frequency band.

Data Preprocessing
The measured raw data were firstly filtered by using a low-pass
(0–40 Hz) filter to reduce the higher-frequency noise. The next
important step is to extract theMWL features. The FFT is suitable
for statistically stationary signals, unfortunately the physiological
signals are usually non-stationary in nature. Hence STFT will be
adopted to extract the time-frequency features. An example of the
STFT analysis results is shown in Figure 4.

Six EEG rhythm power features are most widely used, viz.
delta (1–4Hz), theta (5–8Hz), alpha (9–13Hz), lower beta
(14–16Hz), higher beta (17–30Hz), and gamma (31–40Hz)
(Mirowski et al., 2009). The six frequency bands have a significant
correlation with mental workload.

The STFT of a signal x(t) is given by:

STFT(m,ω) =
∑

m

x[m]g[m− τ ]e−jmw (1)

Where g (·) is a window function used to segment the signal. The
Fourier transform of the signal at different times can be obtained
by constantly sliding the window. Given, g (·), eiw function and
frequency limit, the STFT of the signal can be computed by
Equation (1).

After applying the STFT, the average energy of each frequency
band is used as the EEG feature. In each task-load condition,
the first and last 5-s. data segments were removed from the final
dataset in order to guarantee high quality of the data, as a result,
the EEG signal in each channel consists of 1450 data points with
a sampling interval of 2 s.

Task performance data, Time In Range (TIR), can be used to
determine the target labels of MWL at each time instant as well
as to evaluate the overall performance of the HM system. TIR is
defined as the time ratio of the aCAMS system in target zones in

TABLE 2 | Task performance (TIR) data.

Session NOS = 2 NOS = 3 NOS = 4

Cond. 2 Cond. 3 Cond. 5 Cond. 6 Cond. 8 Cond. 9

A1 0.93 0.79 0.90 0.74 0.80 0.60

A2 0.96 0.72 0.96 0.68 0.77 0.42

B1 0.95 0.76 0.90 0.66 0.81 0.45

B2 0.93 0.79 0.91 0.71 0.80 0.40

C1 0.97 0.76 0.93 0.69 0.84 0.55

C2 0.96 0.79 0.97 0.73 0.89 0.52

D1 0.94 0.75 0.90 0.66 0.82 0.52

D2 0.97 0.74 0.90 0.70 0.83 0.57

E1 0.98 0.87 1.00 0.84 0.96 0.72

E2 0.97 0.86 1.00 0.84 0.94 0.73

F1 0.98 0.86 0.99 0.78 0.94 0.70

F2 0.96 0.86 0.99 0.76 0.97 0.68

Average 0.959 0.795 0.945 0.732 0.863 0.571

a certain period of time:

TIR =
rO2 (k)+ rP(k)+ rCO2(k)+ rT(k)

4
(2)

Where rO2 (k), rP(k), rCO2 (k), and rT(k) and are the Boolean
variable for the respective subsystem. if the subsystem is in target
zone at time instant k, otherwise it takes the value of zero.

The average TIR value in the unit interval [0, 1] for each
loaded condition is presented in Table 2. The TIR data measured
from participant A are shown in Figure 5. The smaller the TIR
is, the lower performance the operator has. Table 2 shows the
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FIGURE 5 | The task performance (TIR) data (participant A; session 1).

FIGURE 6 | The average Silhouette index vs. the number of clusters (K) assumed in K-means clustering algorithm.

TIR for each participant with three levels of NOS (2, 3, and 4).
NOS can take the value of 2 (condition #2 and #3), 3 (condition
#5 and #6), or 4 (condition #7 and #8). It can be seen that the
average TIR is much higher in condition #1 (NOS = 2) than
condition #2 (NOS = 3) and #3 (NOS = 4). The change of TIR
is caused by the fluctuation of MWL levels. We used one-way
ANOVA technique to compare the operator performance across
the three task-load conditions and the results show that the TIR is
significantly different under different conditions [F(2,69) = 9.25, p
< 0.05]. The condition #4 is unloaded as there is no manual task
imposed on the operator. In this way, the MWL can be classified
into four classes (Unloaded, Low, Normal, and High) based on
the discrete NOS variable in Case 1.

It is noted that another binary (or Boolean) variable AS
takes the value of LOW or HIGH, hence there are six (=2∗3)
possible combinations of AS and NOS. The two-way ANOVA
technique was used to examine whether there is significance
difference in the six possible combinations. The results show
that the mean TIR is significantly different across the six

combinations [F(2, 66) = 5.6, p < 0.05]. The condition #7 is
unloaded. Therefore, theMWL can be classified into seven classes
(Unloaded, Very Low, Low, Medium, High, Very High, and
Overloaded) in Case 2 if taking into account both NOS and AS.

On the other hand, clustering method can be employed to
analyze the performance data of the participants. A Performance
Indicator (PI) is defined by:

PI = c1TIR+ c2NOS (3)

Where NOS represents the level of task difficulty and c1 = 0.7,
c2 = 0.3 are two weights empirically selected.

Then k-means clustering technique is applied on the PI data.
The label of the cluster obtained is regarded as the target label
of each physiological data. The number of target classes is
determined by the following Silhouette index:

S (i) =
b (i) − a (i)

max{a (i) , b (i)}
(4)
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TABLE 3 | Description of MWL datasets.

Case Size No. F No. C Target class label Size of each class

1 2900 17 4 Unloaded/Low/Normal/High 1160/580/580/580

2 2900 17 7 Unloaded/Very Low/Low /Medium/High/Very High/Overloaded 1160/290/290/290/290/290/290

TABLE 4 | CNN structural parameters.

Model No. of layers Cov.layer Pool.layer Cov.layer Pool.layer Cov.layer FC

CNN1 2 Cov3 × 3–15 Pool 4 × 2 256

CNN2 4 Cov3 × 3–15 Pool 4 × 2 Cov4 × 1–25 Pool 2 × 2 Cov4 × 1–40 256

CNN3 7 Cov3 × 3–15

Cov1 × 1–15

Pool 4 × 2 Cov4 × 1–25

Cov1 × 1–25

Pool 2 × 2 Cov2 × 2–40

Cov1 × 1–40

256

CNN4 7 Cov3 × 3–15

Cov3 × 3–15

Pool 2 × 2 Cov4 × 1–25

Cov5 × 1–25

Pool 2 × 1 Cov2 × 2–40

Cov2 × 2–40

256

CNN5 10 Cov3 × 3–15

Cov3 × 3–15

Cov3 × 3–15

Pool 4 × 2 Cov4 × 1–25

Cov4 × 1–25

Cov4 × 1–25

Pool 3 × 1 Cov2 × 1–40

Cov2 × 1–40

Cov2 × 1–40

256

FIGURE 7 | Structure of single CNN used for MWL classification.

Where a(i) represents the average Euclidean distance between the
i-th data point and the rest of the data points in the same cluster
and b(i) represents the minimum Euclidean distance between the
i-th data point and all data points in the rest of the clusters (other
clusters).

The index S(i) defined in Equation (4) measures the degree of
clustering validity, that is, the larger S(i), the higher the clustering
quality.

The clustering result is shown in Figure 6. It can be seen that
it is appropriate to categorize the performance data into 3, 4, or
7 classes. In order to examine more subtle changes of the MWL,
4 and 7 target classes are considered here. The labels of the four
target classes are Unloaded, Low, Normal, and High. For seven
target classes, the labels are Unloaded, Very low, Low, Medium,
High, Very High, and Overloaded.

Consequently, we may conclude that the labels generated by
the classifier can represent the prediction of the true MWL levels,
instead of confounded instantiations of MWL, experience and
the variation in the objective task-load (the level of task difficulty
or complexity).

The number of targetMWL classes is determined to be either 4
or 7 based on the levels of task difficulty. The target class labels are
given in Table 3. In Case 1 (4-class classification), 4 target levels
of MWL can be identified based on the parameter NOS alone,
i.e., unloaded level (task-load condition #1, 4, 7, and 10 with the
parameter NOS = 0), under-loaded (or low) level (condition #2
and 3 with the parameter NOS = 2), normal level (condition #5
and 6 with the parameter NOS = 3), and overloaded (or high)
level (the last two conditions #8 and 9 with the parameter NOS
= 4). Furthermore, we consider both parameter NOS and AS to
formulate a 7-class classification problem in Case 2, in which the
condition #1, 4, 7, and 10 were in Unloaded level (Class 1), #2
in level Very Low (NOS = 2 and AS = LOW), #3 in level Low
(NOS = 2 and AS = HIGH), #5 in level Medium (NOS = 3 and
AS = LOW), #6 in level High (NOS = 3 and AS = HIGH), #8
in level Very High (NOS= 4 and AS= LOW), and condition #9
in level Overloaded (NOS = 4 and AS = HIGH). The datasets
are described in terms of Name, Size, Feature Dimensionality
(#D), Numbers of target classes (#C) and the size of each class
in Table 3.
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FIGURE 8 | The proposed MWL classification framework.

TABLE 5 | The MWL classification confusion matrix of NM-CNN3 (participant A).

Case 1

Estimated class Target class

Unloaded Low Normal High

Unloaded 585 10 7 2

Low 7 264 12 1

Normal 8 7 260 13

High 1 3 6 264

ACCclass 97.3 93.0 91.2 94.3

Case 2

Estimated

class

Target class

Unloaded Very

Low

Low Medium High Very

High

Overloaded

Unloaded 588 1 4 4 1 1 1

Very Low 4 115 3 2 0 2 2

Low 3 9 132 2 3 1 0

Medium 7 4 8 116 5 1 4

High 1 0 1 6 138 3 0

Very High 0 0 6 2 5 128 1

Overloaded 1 1 0 4 0 0 130

ACCclass 97.4 88.5 85.7 85.3 90.8 94.1 94.2

METHODS

CNN Structure
The bio-inspired CNN is a type of feedforward neural
network which can be used to realize both feature extraction

and classification. A basic CNN is composed of alternating
convolutional and pooling layers followed by a single or multiple
fully-connected layers plus a classifier layer. The CNN structure
was originally applied to the problems of object recognition
(LeCun et al., 2004) and handwritten character recognition
(Simard et al., 2003). Hinton’s group won the first prize in
ImageNet competition by using Deep Convolutional Neural
Network (DCNN) in 2012 (Krizhevsky et al., 2012). In 2014,
Google designed an extremely DCNN, called GoogLeNet, which
improved the utilization of the computing resources in the
network. Szegedy et al. (2015) showed distinct advantage of the
DCNN for speech recognition problem.

In order to find out the optimal structure of CNN for MWL
classification problem, we compared five candidate structures.
The concrete parameters of individual CNNs are provided in
Table 4. The parameters in convolutional layer are denoted by
“Cov (size of receptive field)-(feature dimensionality).” The input
matrix of the CNN has the dimension of 102 × 10. The five
structures have different depth with an aim to find the best
depth for the specific MWL classification problem under study.
We used small (e.g., 1 × 1 or 3 × 3) convolutional filters
to capture the features, e.g., CNN3 used 1 × 1 convolutional
filters which can be considered as a linear transformation of the
input data. The structure of CNN3 is depicted in Figure 7. The
convolutional stride is 1 in all CNNs. After the first convolutional
layer, we added the second convolutional layer, followed by an
average-pooling layer. This is useful in enhancing the capacity
of feature extraction. The alternating convolutional and pooling
layers are followed by the Fully-Connected (FC) layers. The final
layer is a soft-max layer. The FC layers and soft-max layer are
set to be identical in all five structures. All convolutional layers
used Rectified Linear Units (ReLu), rather than sigmoidal ones,
to obtain improved performance.
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TABLE 6 | Comparison of average accuracy (%), Precision (%), F-measure (%), G-mean (%), and required training time (sec.) of 5 CNN models optimized by 4

optimization algorithms in Case 1.

Model Opt. algorithm methods Accuracy Precision F-measure G-mean Time (s) Time(sec) Rank

CNN1 NM 78.8 ± 7.90 69.2 ± 6.01 78.5 ± 6.75 79.7 ± 08.1 201 15

ADADELTA 77.2 ± 9.00 67.8 ± 8.67 77.1 ± 7.12 78.0 ± 9.37 243 16

ADGRAD 66.7 ± 8.00 57.3 ± 6.90 68.7 ± 5.82 67.0 ± 8.70 232 20

ADAM 73.0 ± 8.60 63.8 ± 5.90 72.9 ± 8.55 73.7 ± 7.12 241 18

CNN2 NM 87.9 ± 5.10 81.0 ± 7.22 86.8 ± 5.12 88.6 ± 4.91 342 6

ADADELTA 89.1 ± 4.00 82.1 ± 5.62 88.1 ± 4.07 89.8 ± 3.93 351 3

ADGRAD 79.0 ± 8.70 69.8 ± 9.51 78.7 ± 7.60 79.9 ± 8.82 345 14

ADAM 86.3 ± 8.10 79.3 ± 9.92 85.3 ± 7.92 87.0 ± 7.13 354 9

CNN3 NM 89.8 ± 4.11 88.6 ± 6.01 90.3 ± 4.22 83.4 ± 4.01 721 1

ADADELTA 88.7 ± 6.32 87.6 ± 7.73 89.3 ± 6.44 82.4 ± 6.14 743 4

ADGRAD 81.0 ± 1.12 80.5 ± 1.12 81.7 ± 9.65 73.0 ± 1.14 723 13

ADAM 87.8 ± 6.81 86.6 ± 2.81 88.4 ± 7.00 81.4 ± 6.62 710 7

CNN4 NM 90.1 ± 3.94 84.0 ± 5.41 88.9 ± 4.21 90.6 ± 3.81 2052 5

ADADELTA 85.6 ± 8.22 84.3 ± 3.00 84.5 ± 7.93 86.2 ± 8.01 2045 10

ADGRAD 90.3 ± 4.00 84.3 ± 5.02 89.1 ± 4.32 90.8 ± 3.92 2082 2

ADAM 86.9 ± 5.55 80.1 ± 6.91 85.6 ± 5.71 87.5 ± 5.42 2021 8

CNN5 NM 83.4 ± 8.00 75.1 ± 9.63 82.7 ± 7.42 84.3 ± 7.82 2172 12

ADADELTA 84.3 ± 0.72 76.6 ± 8.81 83.1 ± 0.72 85.0 ± 0.07 2192 11

ADGRAD 74.8 ± 1.07 65.9 ± 1.12 74.5 ± 0.98 75.7 ± 0.11 2151 17

ADAM 67.2 ± 1.89 61.6 ± 1.53 72.0 ± 1.07 53.9 ± 3.84 2140 19

Parameter Optimization Algorithms
As far as the training of a deep CNN is concerned, we
compared four training algorithms for the above-mentioned five
CNN structures, including Nesterov Momentum (NM),
Adagrad (Bengio et al., 2013), Adadelta (Khan et al.,
2016) and Adaptive Moment Estimation (Adam; Kingma
and Ba, 2015). We define cross entropy error as the loss
function. The cross entropy represents the dissimilarity
between the output and the known actual (or target)
labels.

NM improves traditional momentum algorithm by using
a momentum term to update the parameters. There are two
adjustable parameters: one is learning rate and another is
moment. We set them to be 0.0001 and 0.9, respectively.
Adagrad makes a 2nd-order correction to the predictor
using the previous loss functions. It can assign different
learning rates for each parameter. We initialized learning
rate to be 0.0001. Adadelta is an extension of Adagrad based
on 1st-order information. Compared with the Stochastic
Gradient Descent (SGD) or other optimization algorithms,
its computational overhead is trivial. It is a robust learning
method that has been applied in many situations (Kingma
and Ba, 2015). Adam is designed to optimize stochastic loss
function and adaptively update weights based on lower-
order moments. There are three adjustable parameters:
learning rate and two decay rates. We set the learning
rate as 0.0001 and the two decay rates as 0.9 and 0.999,
respectively.

Ensemble CNNs
ECNN aggregates multiple CNNs to achieve better results than
using any of the base models alone (Ozcift and Gulten, 2011).
In general the performance of the models to be aggregated (or
combined) needs to be adequately diverse. The ensemble learning
method can overcome the over-fitting issue of a single base
learner. The ECNN framework is depicted in Figure 8.

Researchers have developed many ensemble learning
algorithms in recent years, such as Bagging, Boosting, and
Random Forest. Generally, there are two important problems
in constructing an ensemble model: one is the design of base
classifiers and the other is the selection of a proper aggregation
approach.

The base classifiers should be sufficiently diverse. Different
base classifiers can be created by using different training sets,
input features, parameters, and/or learning algorithms (Padilha
et al., 2016). Here we use different training sets and parameters to
design base (or member) CNNs.

For the MWL classification problem of our interest, three
ensemble methods, namely voting, weighted averaging and
stacking, are compared for the ensemble of multiple base
learners. To obtain the final classification result, the outputs of
the individual models are combined by means of weighting or
voting.

Voting
The output class label is determined through majority voting
among base classifiers.
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TABLE 7 | Comparison of average accuracy (%), Precision (%), F-measure (%), G-mean (%), and required training time (sec.) of 5 CNN models optimized by 4

optimization algorithms in Case 2.

Model Opt. algorithm methods Accuracy Precision F-measure G-mean Time (s) Time(sec) Rank

CNN1 NM 74.6 ± 7.62 63.8 ± 6.86 75.8 ± 5.81 75.3 ± 6.23 201 17

ADADELTA 71.6 ± 5.00 60.6 ± 4.41 73.2 ± 3.93 72.3 ± 5.51 241 18

ADGRAD 59.4 ± 4.91 50.8 ± 3.22 65.7 ± 3.01 57.1 ± 6.72 235 19

ADAM 64.2 ± 4.42 54.2 ± 3.21 68.2 ± 3.31 63.8 ± 5.01 242 20

CNN2 NM 87.4 ± 3.91 79.4 ± 5.32 86.3 ± 3.82 88.2 ± 3.72 322 6

ADADELTA 85.9 ± 8.00 77.6 ± 9.31 85.3 ± 7.28 86.7 ± 8.01 321 8

ADGRAD 79.8 ± 7.45 69.6 ± 7.87 79.5 ± 6.70 80.8 ± 7.43 323 12

ADAM 87.7 ± 3.83 79.7 ± 5.32 86.7 ± 3.82 88.5 ± 3.61 330 5

CNN3 NM 89.6 ± 3.71 82.1 ± 5.37 88.6 ± 3.71 90.3 ± 3.51 661 1

ADADELTA 89.0 ± 3.72 81.4 ± 5.00 88.0 ± 3.85 89.7 ± 3.64 674 3

ADGRAD 80.1 ± 7.40 70.6 ± 6.21 79.8 ± 6.41 81.1 ± 7.44 682 11

ADAM 88.3 ± 4.54 80.8 ± 6.42 87.3 ± 4.71 89.1 ± 4.35 661 4

CNN4 NM 89.5 ± 4.92 82.5 ± 6.65 88.5 ± 5.11 90.2 ± 4.73 1871 2

ADADELTA 85.6 ± 7.20 74.2 ± 8.72 84.7 ± 7.17 86.4 ± 7.04 1881 9

ADGRAD 82.9 ± 8.22 74.1 ± 9.33 82.1 ± 7.82 83.7 ± 8.10 1934 10

ADAM 75.5 ± 1.68 68.1 ± 1.47 77.9 ± 1.10 69.3 ± 3.20 1872 16

CNN5 NM 85.7 ± 6.11 77.3 ± 7.44 84.9 ± 5.83 86.6 ± 6.02 2071 7

ADADELTA 78.6 ± 9.63 69.1 ± 9.72 78.3 ± 8.64 79.5 ± 7.00 2045 14

ADGRAD 75.7 ± 9.33 66.1 ± 9.21 75.5 ± 8.52 76.7 ± 9.44 2010 15

ADAM 78.7 ± 9.45 68.9 ± 9.00 78.5 ± 8.10 79.6 ± 9.62 2003 13

Weighted Averaging
Let yj (i), j = 1, 2,.., K represent the i-th output of j-th base
model in the ensemble, the output of the ensemble classifier
can be computed by weighted averaging (i.e., assign different
weights to different base models and the base model with higher
classification accuracy would be more weighted):

S′ (i) =

K
∑

j= 1

αjyj (i) (5)

Where the weights αj can be chosen based on the ranking of
accuracy of the individual models:

αj =
R(Aj)

K
∑

i= 1
R(Ak)

(6)

In Equation (6), R (·) denotes the ranking index of the model
accuracy, e.g., R (·) = K if the model has the highest accuracy
while R (·) = 1 if the model has the lowest accuracy.

Stacking
A typical stacking structure involves two layers. The 1st layer
contains a number of base classifiers. The outputs of these
base classifiers are combined by a meta-classifier to obtain

the final classification result in the 2nd layer. The training
procedure of the stacking can be divided into the following
two steps:

Step 1: Train each base classifier in the first layer by 5-
fold cross-validation. The outputs of base classifiers are used
as the training data in the 2nd layer. For the training set
{(x1, y1), ..., (xn, yn)} and K base classifiers, the training set are
divided into five parts. Each part is used as the testing set and
the rest as the training set. For each sample xi, we get K different
outputs

(

y1i , ..., y
K
i

)

from the K base classifier models.

Step 2: The samples
{

<

(

y1i ...y
k
i

)

, yi >

}

are used to train

the classifier in the 2nd layer. After training, the output of the
meta-classifier is the predicted class label.

All the data analysis programs were written by using python
2.7 and MATLAB 2014a and run on a PC with a single Intel core
i5 CPU, 4-GB memory, and Window seven operating system.

MWL CLASSIFICATION RESULTS

In this section, we will compare the performance of five
CNN models in the two classification cases, Case 1 and 2.
For the purpose of classification performance evaluation and
comparison, we first concatenate (combine) the data from the
first and second session per participant. Then we randomly
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FIGURE 9 | Comparison of the training convergence rate of five CNN models, each of which was trained by using four different parameter optimization algorithms.

Case 1 (A) and Case 2 (B).

extract 50% of the dataset as the training data and the rest as the
testing data.

Performance Metrics
Accuracy defined as the percentage of the correctly classified data
in the test set:

Accuracy =
tr

N
(7)

Precision defined by:

Precision =
1

C

c
∑

i= 1

tri

tpi
(8)

F-measure defined by:

F =
2

7

c
∑

i= 1

Precisioni ∗ Recalli

Precisioni + Recalli
(9)

G-mean defined by:

Gmean =

(

c
∏

i= 1

tri

ni

)
1
c

(10)

Where c represents the number of target classes, N is the number
of data points, ni is the number of data in the i-th class, tri is
the number of the correctly classified data, is the number of data
correctly classified as the i-th class, and is the tpi total number of
data classified as the i-th class.
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FIGURE 10 | The box-whisker plot of the combinations of five CNN models and four parameter optimization algorithms. Case 1 (A) and Case 2 (B).

Optimal Network Structure and Parameter
Optimization Algorithm
In this section, we will examine the best depth of a CNN and
the most appropriate parameter optimization algorithm for the
MWL classification problem. Furthermore, we will compare the
proposed method with existing mainstream methods.

The dataset is evenly divided into a training set and a testing
set of equal size (50% of the original dataset) at random. The same

data analysis experiment was repeated for five runs. The numbers
of convolution filters in the 1st, 2nd, and 3rd layer are set to be 24,
12, and 10, respectively. The stride is 1 in each layer. We used a

small number of convolution layers due to the small size of the

training dataset. According to Roth et al. (2015), this parameter

setting can enhance the performance of each CNNmodel.
Table 5 gives the classification confusion matrix in Case 1

and 2 for Participant A. It can be seen that the unloaded class
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FIGURE 11 | The testing accuracy for each class for the combinations of five CNN models and four parameter optimization algorithms (participant A). Case 1 (A) and

Case 2 (B).

and high class have much higher classification accuracy than low
and normal class. From the last row of Table 5, in Case 1 it
achieved a testing classification accuracy of 91.2% for unloaded
class, which is 4.3, 6.1, and 3.0% higher than Low, Normal, and
High class, respectively. The Low and Normal classes have the
most misclassified data probably because they are more similar.
In general, the average classification results in Case 2 are worse
than in Case 1. The number of misclassified data in unloaded,
Very High and Overloaded class is less than other classes. The
Low and Medium class have the most misclassified data. There is
a similar result in Case 1.

Twenty base classifiers are formed by combining four
optimization methods and five CNN models. The data analysis
results are shown in Tables 6, 7. The best models are selected
by considering four indices: accuracy, precision, F-measure,
G-mean and require training time. From column 3–6 in Table 6,
we can find that NM-CNN3 leads to the best Precision and
F-measure index, but Adagrad-CNN4 has the best Accuracy and

G-mean index. In terms of computational efficiency, NM-CNN3
takes much less training time, almost one-third of Adagrad-
CNN4. Therefore, NM-CNN3 was selected as the best model
in Case 1. The ranking of the 20 models are shown in the last
column of Table 6. Similarly, from Table 7 we can find that NM-
CNN3 has three best indices: accuracy of 89.6%, precision of 88.6
and F-measure of 90.3%. Moreover, the training time required
is 661 s (about 10 min), which is acceptable. It can be found that
NM-CNN3 achieved the best performance in both cases. i.e.,
88.6% in Case 1 (82.1% in Case 2) in terms of average precision,
and that Adagrad-CNN1 resulted in the worst performance
in both cases, 18.39–44.21% (22.71–40.59%) lower than
NM-CNN3.

In general the CNN performance improves with the increase
of its depth. The CNN1 achieved poor results because the too-
shallow architecture prevents the network from learning highly
non-linear features. The CNN5 performed poorly as it demands
more data to train and is susceptible to over-fitting phenomenon
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TABLE 8 | The subject-average classification performance of different models in

Case 1.

Model Accuracy Precision F-measure G-means Time(s)

NM-CNN3 89.8 88.6 90.3 83.4 721

Stacking 86.4 77.2 85.6 87.3 1530

Weighted1 92 86.5 91.0 92.5 1821

Voting1 90.2 82.9 89.4 91.0 1803

Weighted2 90.9 84.0 90.1 91.6 6341

Voting2 90.4 83.4 89.6 91.2 6453

Weighted3 93.8 89.4 92.9 94.2 7504

Voting3 93.7 88.9 92.8 94.1 7530

Weighted4 93.5 88.7 92.6 94.0 12320

Voting4 92.8 87.4 92.0 93.4 12332

TABLE 9 | The subject-average classification performance of different models in

Case 2.

Model Accuracy Precision F-measure G-means Time(s)

NM-CNN3 89.6 82.1 88.6 90.3 661

Stacking 86.4 77.3 85.6 87.3 1450

Weighted1 92.1 86.0 91.2 92.7 1721

Voting1 90.4 82.6 89.6 91.2 1723

Weighted2 92.3 86.1 91.5 93.0 7841

Voting2 90.9 83.4 90.1 91.7 7953

Weighted3 93.2 87.4 92.4 93.8 8514

Voting3 92.7 86.5 91.9 93.4 8540

Weighted4 93.0 87.0 92.2 93.6 19619

Voting4 91.9 85.0 91.2 92.7 19431

TABLE 10 | Performance comparison of 4 types of classifiers: (a) Case 1; (b)

Case 2.

Method Accuracy Precision F-measure G-mean

Case 1

Proposed 93.8 89.4 92.9 94.2

LDA 63.1 52.7 62.3 64.2

NB 59.0 49.2 59.0 59.5

SDA 84.5 76.6 82.8 85.2

Case 2

Proposed 93.2 87.4 92.4 93.8

LDA 53.9 45.2 55.0 54.7

NB 52.8 44.6 53.6 54.2

SDA 75.1 63.7 74.8 76.5

due to its complex structure. By a comparison of the four different
parameter optimization algorithms, properly parameterized NM
achieved better performance, whereas ADAM contains only one
free parameter (i.e., learning rate).

Figure 9 showed the training convergence curves of five
different CNN models. We can find that the Adam algorithm
exhibits rapid convergence at the beginning of the training
process, but unstable and slow training process later on. As

shown in Table 6, the NM algorithm with properly selected
parameters achieved the best performance.

The box-whisker plot of the five models and four optimization
algorithms is depicted in Figure 10, showing the results for six
participants in both cases. We can find that the accuracy for each
combination of themodel and optimization algorithm fluctuated,
but there are still some outliers, e.g., the NM-CNN1, Adadelta-
CNN1, Addadelta-CNN3, and Adagrad-CNN3 in Case 1 and the
Adadelta-CNN2 and Adam-CNN5 in Case 2. The distribution
of four performance indices, viz. Accuracy, F-measure, G-means
and Precision, for the NM-CNN3 is obviously better than other
19 combinations.

Figure 11 showed the classification accuracy of each class
for participant A, in which the horizontal axis represents the
class label. In Case 1, NM-CNN3 achieved better classification
performance in unloaded and high class. More data points are
misclassified in Low class and Normal class, indicating that it
is harder to distinguish these two similar (neighboring) classes.
Non-etheless, the NM-CNN3 achieved better classification
performance on these two classes. For example, it achieved a
testing classification accuracy of 91.2% in Normal class, which
is 3.7, 14.1, and 1.3% higher than Adadelta-CNN3, Adagrad-
CNN3, and Adam-CNN3, respectively. Similarly, in Case 2
the Unloaded, Very High and Overloaded class has higher
classification accuracy.

Ensemble Results
Firstly we used resampling (i.e., bootstrapping) strategy (i.e., 80%
of samples in the training set were taken in each random run) to
form diverse training datasets for the base CNNmodels. Then we
designed the ensemble classifier. Since the base classifiers must
be rather different from each other, different CNN structures
and different parameter optimization algorithms were explored.
We compared four different ensemble strategies: (1) Select the
best one in each of the five CNN models for ensemble (i.e.,
five models from the 20 candidate models), whose results were
shown as Weighted1 and Voting1 in Tables 8, 9; (2) Select the
best and worst models in each of the five CNN models (i.e.,
10 models from the 20 candidate models), shown as Weighted2
and Voting2 in Tables 8, 9; (3) Select the top (best) 10 models
from the 20 (=5∗4) candidate models, shown as Weighted3 and
Voting3 in Tables 8, 9; and (4) Select all the 20 candidate CNN
models, shown as Weighted4 and Voting4 in Tables 8, 9. In
the first strategy, we selected the NM-CNN1, Adadelta-CNN2,
NM-CNN3, Adagrad-CNN4 andAdadelta-CNN5 as the five base
classifier models in Case 1, whose normalized weights are set to
be 0.1, 0.2, 0.4, 0.2, and 0.1, respectively. Then the outputs of the
base models were aggregated by means of weighted averaging
and majority voting approaches. The final results are shown
in Table 8, from which we can find that the ensemble model
outperforms individual base models and the weighted averaging
approach achieved the best performance. Specifically, Weighted3
leads to the best classification Accuracy of 93.8%, which is 4,
7.4, 1.8, 3.6, 2.9, 3.4, 0.1, 0.3, and 1% higher than NM-CNN3,
Stacking, Weighted1, Voting1, Weighted2, Voting2, Voting3,
Weighted4, and Voting 4, respectively. Similarly, Weighted3 also
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achieves the best precision, F-measure, and G-means. The NM-
CNN1, Adam-CNN2, NM-CNN3, NM-CNN4, and NM-CNN5
were selected as the base models in Case 2, whose normalized
weights are assigned to be 0.1, 0.2, 0.3, 0.25, and 0.15, respectively.
The ensemble results are shown in Table 9. From the 2nd column
of Table 9, we can find that in Case 2 the Weighted3 approach
also achieved the best average classification accuracy of 93.2%.

DISCUSSION

The performance comparative results between the proposed
ensemble CNN model and 3 standard classifiers, namely Linear
Discriminant Analysis (LDA; Sanguansat et al., 2006), Naive
Bayes (NB; Friedman et al., 1997) and Step Discriminant Analysis
(SDA), are given in Table 10. The input feature matrix (102∗10)
was first concatenated into a column vector (1020∗1). Then the
PCA algorithm was used to extract the discriminative features
(30∗1). In LDA, we choose linear distance measurement. In NB,
we assume each feature is subject to Gaussian distribution. The
default prior probability is the frequency that each class appears.
The proposed ensemble model achieved the best classification
performance on all the four evaluation indices. For example,
it achieved the best classification accuracy of 93.8%, which is
30.7, 34.8, and 9.3% higher than LDA, NB, and SDA classifier,
respectively in Case 1. Similarly, it achieved the best classification
accuracy of 93.2%, which is 39.3, 40.3, and 18% higher than other
three conventional (shallow) classifiers in Case 2. The significant
performance enhancement of deep CNN model is due to the
fact that its complex structure enables it to extract more effective
features.

Nevertheless, it should be noted that the proposedmethod still
has the following limitations:

(1) A more systematic method or at least guideline for selecting
the appropriate parameters (i.e., the number of kernels
and the learning rate parameter), other than the heuristic
method, should be developed. The weights in the ECNN
are determined based on the rankings of CNNs, but the
best weighs must be adjusted adaptively according to the
ensemble results.

(2) The machine learning techniques employed for MWL
recognition consist of two stages: feature extraction and
classifier design. It is usually a time-consuming (inefficient)
trial-and-error procedure to determine the most appropriate
feature extraction and classification methods. Furthermore,
the machine learning model constructed, e.g., Artificial
Neural Network (ANN), is subject-specific. The learned
parameters are optimal for one subject, but usually not so
for another. This may limit the practicability of the proposed
machine learning techniques.

(2) The machine learning based classifier is not readily
interpretable (or transparent), which would reduce its
applicability in applied environments.

CONCLUSION AND FUTURE WORK

In this paper, we proposed an ECNN framework to solve
the MWL classification problem. We examined five CNN

models that differ in network depth and convolution
kernels. It was found that the deeper CNN model with the
small convolutional kernels leads to improved classification
performance. Furthermore, we compared four different
parameter optimization algorithms for each of the five CNN
models. The NM-CNN3 was shown to have the best classification
accuracy among the 20 candidate base models. The ECNNmodel
was constructed to further improve classification performance.
Extensive comparative results demonstrated that the proposed
ECNN framework can effectively bolster the 4- (or 7-) class
MWL classification robustness and accuracy.

Along this line of research, future research directions, aimed at
overcoming the inherent limitations of the present investigation
pointed out in Section Discussion, may include:

(1) An adaptive ensemble learning strategy would be proposed
and validated.

(2) To facilitate the real-world applications, a generic (i.e.,
subject-independent or cross-subject) machine learning
based classifier model needs to be built to accommodate
a group of subjects with similar psychophysiological
characteristics. This is quite important for online (or real-
time) MWL classification.

(3) In order to achieve a better balance between the classification
accuracy and the interpretability of the classification results,
we need to develop fuzzy-rule-based MWL classifier.
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