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Many papers have shown results from the multi-site dataset of resting-state fMRI

(rs-fMRI) in attention deficit hyperactivity disorder (ADHD), a data-sharing project named

ADHD-200. However, few studies have illustrated that to what extent the pooled findings

were consistent across cohorts. The present study analyzed three voxel-wise whole-brain

metrics, i.e., amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo),

and degree centrality (DC) based on the pooled dataset as well as individual cohort

of ADHD-200. In addition to the conventional frequency band of 0.01–0.08 Hz,

sub-frequency bands of 0–0.01, 0.01–0.027, 0.027–0.073, 0.073–0.198, and 0.198–

0.25 Hz, were assessed. While the pooled dataset showed abnormal activity in some

brain regions, e.g., the bilateral sensorimotor cortices, bilateral cerebellum, and the

bilateral lingual gyrus, these results were highly inconsistent across cohorts, even across

the three cohorts from the same research center. The standardized effect size was rather

small. These findings suggested a high heterogeneity of spontaneous brain activity in

ADHD. Future studies based on multi-site large-sample dataset should be performed on

pooled data and single cohort data, respectively and the effect size must be shown.

Keywords: attention deficit hyperactivity disorder, resting state fMRI, multi-site dataset, ADHD-200, voxel-wise

whole-brain analysis

INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental
disorders in children (Polanczyk et al., 2015). It is a highly heterogeneous disease, involving
multiple deficits and multiple neural pathways (Castellanos et al., 2006; Bush, 2010). The
complicated pathophysiology of ADHD has been widely investigated through task and resting-
state functional magnetic resonance imaging (fMRI) studies. Task-state fMRI studies commonly
employed various task paradigms, e.g., Go/NoGo (Schulz et al., 2004; Newman et al., 2015), Eriksen
Flanker Task (Vaidya et al., 2005; Vasic et al., 2014). These tasks are complicated, and various
paradigms did not exhibit consistent results (Cortese et al., 2012). In contrast, resting-state fMRI
(rs-fMRI) is easy to be implemented and provides a consistent approach for clinical investigations.
Thus, more and more researchers perform rs-fMRI studies on brain disorders, including ADHD.
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ADHD-200, as one of the most widely used multi-site MRI
dataset of brain disorders, has attracted considerable attention
from the ADHD research community. This dataset released
by ADHD-200 consortium contains ten independent cohorts
from eight different sites (ADHD-200-Consortium, 2012). These
cohorts provide rs-fMRI and anatomical MRI data of both
ADHD and typically developing children (TDC), about 776
participants in total. ADHD-200 facilitated the investigation
of the neural basis of ADHD, and about 30 studies based on
this dataset have been published according to PubMed (e.g.,
Tomasi and Volkow, 2012; Elton et al., 2014; Sripada et al., 2014;
Carmona et al., 2015).

Most studies on ADHD-200 pooled data of cohorts and
explored the abnormal brain activity for ADHD. Increasing
number of these studies were reported in recent years. For
example, Mills et al. (2012) pooled data of Brown University
(BU), Peking University (PKU), Kennedy Krieger Institute
(KKI), and New York University (NYU) together and observed
increased connection between the medial and anterior dorsal
thalamus and the basal ganglia in ADHD (Mills et al., 2012).
Pooling data of PKU, NYU together, Zhang et al. (2014) found
affected brain regions in ADHD mainly located in the orbito-
frontal cortex, inferior/superior frontal gyrus, anterior cingulate
gyrus, and calcarine cortex (Zhang et al., 2014). Pooling cohorts
together facilitated the establishment of a large sample size
and tended to provide very positive results. However, to what
extent the pooled results are consistent across individual cohorts
remains unknown. To the best of our knowledge, only one study
on ADHD-200 dataset answered this question (Cai et al., 2015).
They found that ADHD group of cohorts NYU, PKU, and OHSU
consistently showed decreased network-interaction among the
salience network (SN), central executive network (CEN), and
default mode network (DMN). Notably, the network analysis
could not indicate the exact aberrant brain regions for ADHD,
and it remains unclear whether findings of the local brain regions
for ADHD are consistent across cohorts or not.

The present study aimed to examine the consistency of
abnormal local brain regions across cohorts of ADHD-200.
Specifically, we analyzed three voxel-wise whole-brain metrics,
i.e., amplitude of low-frequency fluctuation (ALFF) (Zang et al.,
2007), regional homogeneity (ReHo) (Zang et al., 2004), and
degree centrality (DC) (Buckner et al., 2009). Importantly, the
analytic processes of these kinds of methods are very similar
across studies, and hence facilitate the coordinate-based meta-
analysis (CB-meta) which helps to find regions of consistent
activity across fMRI studies (Bartra et al., 2013; Herz et al.,
2014; Iwabuchi et al., 2015). Analysis of these metrics is often
performed at the frequency band of 0.01–0.08 Hz which has been
widely used in rs-fMRI studies. In addition to this conventional
band, rs-fMRI signals at some sub-frequency bands can also be
modulated by different resting state (e.g., eyes closed and eyes
open; Yuan et al., 2014) as well as by disease (e.g., chronic pain;
Malinen et al., 2010; Otti et al., 2013). These sub-frequency bands,
i.e., Slow-6 (<0.01 Hz; Lv et al., 2013; Zhang et al., 2015a), Slow-5
(0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz; Zuo et al., 2010; Han
et al., 2011; Zhang et al., 2013), Slow-3 (0.073–0.198 Hz), and
Slow-2 (0.198–0.25 Hz; Wang et al., 2015), were also investigated

in the present study in order to obtain more information through
the frequency-dependent characteristic.

METHODS AND MATERIALS

Subjects and Data Acquisition
The data we used in this study is publicly available from
the ADHD-200 Consortium (http://fcon_1000.projects.nitrc.
org/indi/adhd200/). The ADHD-200 dataset contains both
functional and anatomical MRI data contributed by eight
institutions. Each cohort was approved by the research ethics
review boards of each institution. Signed informed consent was
obtained from all participants or their legal guardian before
participation.

We first selected the data cohorts according to the following
criteria: (1) Including both ADHD and TDC groups. So the
data from the BU, University of Pittsburgh and, Washington
University were excluded; (2) Employing the same TR with
<2,000 ms across the cohort. According to this criterions, data
from NeuroImage (TR = 1,960 ms), KKI (TR = 2,500 ms), and
OHSU (TR = 2,500 ms) were excluded. Then, the NYU, PKU1,
PKU2, and PKU3 cohorts were included in our research. The
PKU2 and PKU3 cohorts only had male subjects, so the female
subjects in NYU and PKU1 cohorts were excluded to remove
potential confounding effect of gender to the consistency across
cohort. Left-handedness subjects were also excluded for each
cohort. After case-by-case matching age between ADHD and
TDC, 58 subjects from NYU, 30 from PKU1, 56 from PKU2, and
38 from PKU3 were included in the current study. Demographic
information was summarized in Table 1. Flow-chart of data
exclusion was shown in Figure 1.

Psychostimulant medications were withheld at least 24 h prior
to scanning. The inclusion and exclusion criteria and more
detailed demographic characteristics of the participants of the
four cohorts can be seen in the http://fcon_1000.projects.nitrc.
org/indi/adhd200/. The rs-fMRI data of the four cohorts were
from three scanners, with TR of 2 s for all. PKU1 and PKU2 used
the same scanner but scanning parameters were slightly different.
The detailed parameters were listed in the Supplementary Table 1.

Data Preprocessing
Functional images of each subject were preprocessed by using
Data Processing Assistant for Resting-State fMRI (DPARSF)
(Chao-Gan and Yu-Feng, 2010) which is based on Statistical
Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm)
and Resting-State fMRI Data Analysis Toolkit (Song et al., 2011).
Preprocessing was performed as follows: removal of the first ten
volumes to avoid signal instability and to get subjects adapted to
the scanning noise. Then, the number of time point is 170 at least
(NYU), so the first 170 volumes were included for individuals in
PKU1, PKU2, and PKU3 considering the comparability across
cohorts (Molloy et al., 2014; Carmona et al., 2015). Slice timing
correction, image realignment to correct head motion were
followed. After individual structural images were segmented after
co-registered to functional images, functional images were spatial
normalized to Montreal Neurological Institute (MNI) space at 3
mm isotropic voxel resolution applying the unified segmentation
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TABLE 1 | Demographic information of each cohort in the current study.

NYU PKU1 PKU2 PKU3

ADHD TDC ADHD TDC ADHD TDC ADHD TDC

N 29 29 15 15 28 28 19 19

Gender (male) 29 29 15 15 28 28 19 19

Age (years) 12.1 ± 2.9 12.2 ± 2.8 11.2 ± 2.3 11.6 ± 1.5 12.7 ± 1.7 11.7 ± 1.8 13.2 ± 1.3 13.3 ± 1.0

IQ 106.1 ± 16.0 115.3 ± 14.3 101.7 ± 12.4 123.0 ± 14.2 111.5 ± 12.7 121.6 ± 12.2 102.7 ± 10.4 111.7 ± 12.7

Subtype (C/I/H) 19/10/0 – 9/6/0 – 16/12/0 – 12/7/0 –

Data are presented as mean ± SD. C, ADHD –Combined; I, ADHD –Inattentive; H, ADHD -Hyperactive/Impulsive.

FIGURE 1 | Flow-chart of data exclusion.

parameters. The linear trend, head motion parameter measured
by Friston-24model, white matter (WM), and cerebrospinal fluid
(CSF) signals were further regressed out as nuisance covariates.
Then, three voxel-wise whole-brain analytic methods, i.e., ALFF,
ReHo, and DC, were further used to analyze these preprocessed
data.

ALFF Calculation
ALFF is the amplitude of low frequency fluctuations of the blood
oxygen level dependent (BOLD) signal of every single voxel (Zuo
et al., 2010). ALFF calculation was the same as the procedure in
Zang et al. (2007). After preprocessing, the 4D rs-fMRI data of
each participant was spatially smoothed with a 6 mm FWHM
Gaussian kernel and then, the linear trend was removed from
the time course of each voxel. Then, ALFF was calculated for
the conventional low frequency band (0.01–0.08 Hz) as well as
five sub-bands, i.e., Slow-6 (0–0.01 Hz), Slow-5 (0.01–0.027 Hz),
Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz), and Slow-2
(0.198–0.25 Hz).

ReHo Calculation
ReHo is a voxel-wise measure of the local synchronization of the
time courses of nearest neighboring voxels (usually 27 voxels).
It was calculated by using Kendall’s coefficient of concordance
(KCC) as follows:

W =

∑

(Ri)
2 − n

(

R̄
)2

1
12K

2
(

n2 − n
) (1)

where W is the KCC among given voxels, ranged from 0 to 1;
Ri is the sum rank of the ith time point; R̄ = ((n+ 1)K/2)
is the mean of Ri’s; K is the number of time courses within a
measured cluster (27 in the current study); and n is the number of
ranks. After the removing of linear trend, the time course of each
voxel, band-pass filtering was performed for six sub-bands as in
ALFF analysis. ReHo was then calculated for each sub-band. The
spatial smoothing (FWHM = 6 mm) was performed after ReHo
calculation as did in previous studies (Zang et al., 2004).

DC Calculation
Degree centrality (DC) represents the node characteristic of
large-scale brain intrinsic connectivity networks by capturing
the relationship with the entire brain network in the voxel level
(Zuo et al., 2012). We used weighted DC since it provides
a more precise centrality characterization of functional brain
networks than binary version (Cole et al., 2010). Specifically,
after preprocessing, the linear trend of the time course of each
voxel was removed, and then band-pass filtering was performed
for six sub-bands as in ALFF analysis. The Pearson correlation
was performed between the time course of each voxel with that
of every other voxel in the entire brain (Buckner et al., 2009).
The correlation coefficients with r > 0.2 were summed up for
each voxel and then a weighted DC was obtained for each
voxel. 0.2 was used as threshold to eliminate counting voxels
that had low temporal correlation and it has been proved that
different threshold selections did not qualitatively change the
results (Buckner et al., 2009). As did in ReHo calculation, spatial
smoothing may introduce possible artificial local correlations,
we performed spatial smoothing (FWHM = 6 mm) after DC
calculation as did elsewhere as follows (Zuo et al., 2012):

D =
∑

aij

Where j = 1...N, i 6= j, aij =

{

0, aij < 0.2
aij, aij > 0.2

(2)

Negative correlation was removed according to previous fMRI
studies (Liao et al., 2013; Li et al., 2015). It was not calculated
separately because the physiological basis of the negative
correlations was ambiguous (Fox et al., 2009; Murphy et al.,
2009).

ALFF measures the amplitude of time series fluctuation
at each voxel (Zang et al., 2007), ReHo depicts the local
synchronization of the time series of neighboring voxels (Zang
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et al., 2004), and DC represents the large-scale brain intrinsic
connectivity in the voxel level (Buckner et al., 2009). Thus,
the three measures of fMRI probe into the brain activity from
different aspects.

Statistical Analysis
ALFF, ReHo, and DC maps of each frequency band were
compared between the groups of children with ADHD and
TDC. Two-sample t-tests were performed on the pooled
data and each cohort, respectively. The full scale IQ and
mean framewise displacement (FD) were included as nuisance
covariates (Jenkinson et al., 2002; Yan et al., 2013), and
cohort was further taken as a covariate for the t-tests on
the pooled data. For each cohort, the statistical analyses were
performed in study-specific functional volume masks including
only voxels (in MNI152 standard space) present in at least 80%
of the participants and then intersect with gray-matter mask to
reduce non-cortical noise. The mask of the pooled data is the
intersection of cohorts’ masks. The results were corrected for
multiple comparisons with a combined threshold of single voxel’s
p < 0.05 and cluster size > 139, 144, 136, 129, and 129 voxels
for the cohorts and pooled data, corresponding to corrected p <

0.05 determined byMonte Carlo simulation and themask of each
cohort. The AlphaSim estimation was performed by DPABI V2.3
(http://rfmri.org/dpabi; Yan et al., 2016). At the same time, to
reduce the possibility of false negative results and, hence, a more
lenient threshold (p< 0.05, cluster size> 10 voxels) was also used
for each cohort.

We also performed the analyses of standardized effect size
(SES) of each measurement based on Cohen’s d which is
calculated as the equation as follows (Cohen, 2013):

Cohen’s d =
X̄ADHD − X̄TDC

SALL
,

SALL =

√

(nADHD − 1) S2ADHD + (nTDC − 1) S2TDC
nADHD + nTDC − 2

(3)

According to equation of independent two-sample t-test as
follows:

t =
X̄ADHD − X̄TDC

√

(nADHD−1)S2ADHD + (nTDC−1)S2TDC
nADHD + nTDC−2 ( 1

nADHD
+ 1

nTDC
)

(4)

The relationship of Cohen’s d- and t-value can be obtained as
follows:

Cohen’s d = t

√

nADHD + nTDC

nADHD.nTDC
(5)

According to Equation (5), we transformed t maps into SES map
for each cohort and pooled data. Then a combined threshold
SES > 0.30 and cluster size > 129 voxels was used which
corresponded to a combination threshold of t > 1.974 (p < 0.05)
of the pooled data. The same threshold was applied to the SES
maps of each cohort. SES of 0.30 corresponded to t = 1.141,

0.822, 1.124, and 0.926 (p = 0.26, 0.43, 0.27, and 0.36) for NYU,
PKU1, PKU2, and PKU3, respectively.

To view the consistency of results, the thresholded t-maps
and SES-maps were binarized and overlapped among the four
cohorts. Further, in order to view how consistent the results of
individual cohorts are with the pooled results, the overlapped
map of cohorts was further overlapped with the binary map of
the pooled data. The number of overlapped voxels across 4 and 3
cohorts was quantified using Dice overlap coefficient (Dice, 1944;
Burunat et al., 2016) where the voxel number of intersection was
divided by the total voxel number of all the cohorts.

RESULTS

Results of Pooled Data in Conventional
Frequency Band
The abnormal brain regions in the conventional low frequency
band (0.01–0.08 Hz) for children with ADHD of the pooled
data were shown in Figure 2 and Table 2. Children with ADHD
had increased ALFF and DC in the bilateral lingual gyrus
(Figures 2A,C). ReHo and DC were decreased in the bilateral
cerebellum. In addition, the three methods detected some
method-specific abnormality such as the bilateral paracentral
lobule (Figure 2B) and the left insula (Figure 2C).

Consistency across Cohorts in
Conventional Frequency Band
The abnormal brain activity in the conventional frequency band
(0.01–0.08 Hz) was identified for each cohort, and the overlapped
results across the four cohorts were shown in Figure 3 (See
details of each cohort in Supplementary Figures 1–6). Only a
few voxels showed overlapped abnormality from three or four
cohorts by any method (ALFF, ReHo, or DC). Using DC, we
observed 6 voxels overlapped from NYU, PKU2, and PKU3 in
the left inferior occipital gyrus and fusiform gyrus. Even if taking
the overlapped abnormality from 2 cohorts into consideration,
only a few clusters were overlapped, e.g., the cerebellum by ReHo
as well by DC (Figures 3B,C), the bilateral cuneus (Figure 3C)
by DC.

The overlapped results of the pooled data and individual
cohorts were shown in Figure 4. Some clusters detected in
individual cohorts could not be observed in the results of pooled
data, e.g., in the cuneus for ReHo (purple marked in Figure 4B)
and thalamus for DC (purple marked in Figure 4C). Although,
some clusters could be identified as the overlapped regions
from two cohorts, they were not be observed in the pooled
data, such as the right cerebellum for ReHo (yellow marked in
Figure 4B).

The overlapped SES maps of each cohort and pooled data for
ALFF, ReHo, and DC were shown in Figure 5 (with a combined
threshold of SES > 0.3). Some clusters showing overlaps from
more than 3 cohorts could be also shown in the pooled data
(red marked). These clusters included the bilateral cerebellum
for ReHo and DC (Figures 5B,C), right calcarine for ALFF and
DC (Figures 5A,C) and the bilateral paracentral lobule for ReHo
(Figure 5B). However, if the SES threshold was set at 0.5, these
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FIGURE 2 | Differences of brain activity between TDC and children with ADHD on the pooled data. (A–C) indicate the results detected by ALFF (amplitude of

low-frequency fluctuation), ReHo (regional homogeneity), and DC (degree centrality). The statistical threshold was set at p < 0.05, cluster size > 129 voxels,

corresponding to corrected p < 0.05 determined by Monte Carlo simulation. Left in the figure indicates the right side of the brain.

TABLE 2 | Differences between TDC and ADHD on pooled data.

Method Region L/R BA Peak MNI coordinates t Number of voxels

x y z

ALFF Lingual gyrus/Cuneus L/R 18 0 −75 24 3.59 236

ReHo Cerebellum L/R – 33 −69 −36 −3.70 537

Paracentral lobule/Postcentral gyrus L/R 3/4/6 −3 −33 69 4.15 187

Mid. temporal gyrus L 19 −6 51 −6 3.34 332

DC Cerebellum L/R – −18 −75 −24 −3.96 744

Mid. occipital/Lingual gyrus R 18 21 −72 −9 4.28 1,054

Mid. occipital/Lingual gyrus L 18 −39 −63 −12 4.30 635

Insula L 13 −30 30 9 −3.15 202

ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; DC, degree centrality; Mid., middle; L, left; R, right; BA, Brodmann’s area.

clusters showed no overlap (Figure 6). The overlapped SES maps
across the 4 cohorts and the SES maps of the pooled data were
shown in Supplementary Figure 7.

Consistency across Cohorts in
Sub-Frequency Bands
After investigation in conventional low frequency band (0.01–
0.08 Hz) as shown above, overlapped results across cohort were
further examined in several sub-frequency bands including Slow-
6/5/4/3/2. Furthermore, to reduce the possibility of false negative
results and, a more lenient threshold (p < 0.05, cluster size >

10 voxels) was also applied for each cohort. There is no voxel
overlapped by all the cohorts. The number of the overlapped
voxels was not more than 12 across three cohorts, and the highest
Dice overlap coefficient is only 0.0131 (Table 3). In each sub-
frequency band, most overlapped clusters were also observed
from 2 cohorts (see details in Supplementary Figures 8–10).

DISCUSSION

The present study examined the consistency of abnormal local
brain activity across cohorts of ADHD-200. We applied three
voxel-wise whole brain analytic methods (ALFF, ReHo, and
DC), strict and lenient statistical thresholds, and conventional
frequency band (0.01–0.08 Hz) and sub-frequency bands
(Slow/2/3/4/5/6) in the analysis process. Results from these
analyses indicated that the abnormal local brain activity across
cohorts of ADHD-200 was inconsistent.

The data of all four cohorts were first pooled together in the
present study, as the general process way of the studies using
ADHD-200 (Sato et al., 2013; Zhang et al., 2014). The abnormal
brain activity for ADHD was identified in the clusters, such as
the bilateral sensorimotor cortices and the bilateral lingual gyrus.
Our further analysis showed that these results from pooled data
were not consistent across cohorts. Most of the clusters identified
for pooled data could not be observed in the results for individual
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FIGURE 3 | The overlapped results across the 4 cohorts. (A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Purple indicates the regions

detected in only one of the 4 cohorts. Mint, red, and yellow indicate the regions detected in 2, 3, and 4 cohorts, respectively.

FIGURE 4 | Overlapped results of the pooled data and individual cohorts. (A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the

regions detected only in pooled data. Purple indicates the regions detected only in one of the 4 cohorts. Yellow indicates the regions detected by only 2 of the 4

cohorts but not in the pooled data. Brown indicates the regions detected in the pooled data and in only one of the 4 cohorts. Green indicates the regions detected in

the pooled data and 2 of the 4 cohorts. Left in the figure indicates the right side of the brain.

cohort. This finding was further supported by the analyses of
SES. The overlapped regions did not reach a medium (0.5) level.
Thus, the results of directly pooled data from different cohorts
do not mean consistent results among the cohorts included, and
the SES of the results should be examined in the future studies of
large sample dataset. Future studies derived frommulti-site large-
sample dataset should not only present the statistical result of a
pooled data, but also present the results of each cohort of both
t-map and SES.

Moreover, all examined cohorts did not exhibit overlapped
clusters, suggesting a high heterogeneity of ADHD. We noticed

a recent finding that detected the consistent abnormality across
cohorts of ADHD-200 (Cai et al., 2015). Using the resource
allocation index (RAI) (a measure of network interactions across
the SN, CEN, and DMN), Cai et al. found RAI was significantly
lower in children with ADHD than in control subjects and
the results were reproducible across three independent cohorts.
While abnormality of network interaction may reveal the
complexity of spontaneous brain activity in ADHD, it could
not illustrate which brain region is abnormal. From the
perspective of clinical practice, analytic methods for precise
localization of the abnormality in a whole-brain voxel-based
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FIGURE 5 | Overlapped effect size results of the pooled data and individual cohorts. The threshold of effect size was set at 0.3 for the pooled data and each cohort.

(A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the regions detected only in pooled data. Purple indicates the regions

detected only in one of the 4 cohorts. Mint indicates the regions detected in 2 cohorts. Yellow indicates the regions detected by only 3 or 4 cohorts but not in the

pooled data. Brown indicates the regions detected in the pooled data and in only one cohort. Green indicates the regions detected in the pooled data and 2 cohorts.

Red indicates the regions detected in the pooled data and 3 or 4 cohorts. Left in the figure indicates the right side of the brain.

FIGURE 6 | Overlapped effect size results of the pooled data and individual cohorts. The threshold of effect size was set at 0.5 for the pooled data and each cohort.

(A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the regions detected only in pooled data. Purple indicates the regions

detected only in one of the 4 cohorts. Mint indicates the regions detected in 2 cohorts. Yellow indicates the regions detected by only 3 or 4 cohorts but not in the

pooled data. Brown indicates the regions detected in the pooled data and in only one cohort. Green indicates the regions detected in the pooled data and 2 cohorts.

Red indicates the regions detected in the pooled data and 3 or 4 cohorts. Left in the figure indicates the right side of the brain.

way should be emphasized. Whole-brain voxel-based analysis
facilities coordinate-based meta-analysis (CB-meta) which can
help to define precise localization of abnormal spontaneous
brain activity by quantitatively aggregating independent results
reported in a standard coordinate space (Eickhoff et al., 2009)

and further help to guide intervention therapies, such as deep
brain stimulation and transcranial magnetic stimulation (Zang
et al., 2015). Thus, the present study used three whole-brain
voxel-based measurements, i.e., ALFF, ReHo, and DC. These
measurements are widely employed in rs-fMRI studies to access
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TABLE 3 | Clusters which were the overlap for three/four cohorts and contained

maximal number of voxels.

Method Number of

overlapped

cohorts

Region L/R BA Number of

overlapped

voxels

Dice

CONVENTIONAL BAND (0.01–0.08Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Paracentral

lobule

R 4 12 0.0041

DC 4 None

3 Cerebellum R – 12 0.0096

SLOW-6 (0–0.01Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Med. frontal

cortex

L 11 1 0.0004

DC 4 None

3 None

SLOW-5 (0.01–0.027Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Paracentral

lobule

L/R 4 3 0.0016

DC 4 None

3 Paracentral

lobule

L/R 4 7 0.0025

SLOW-4 (0.027–0.073Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Cerebellum R – 6 0.0026

DC 4 None

3 Mid. occipital

gyrus

L 19 11 0.0131

SLOW-3 (0.073–0.198Hz)

ALFF 4 None

3 Paracentral

lobule

L 4 1 0.0005

ReHo 4 None

3 Mid. frontal

gyrus

L 8 2 0.0013

DC 4 None

3 Supplementary

motor area

R 6 1 0.0004

SLOW-2 (0.198–0.25Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Sup. frontal

gyrus

R 6 2 0.001

DC 4 None

3 None

Sup., superior; Mid., Middle; Med., Medial; L, left; R, right. The threshold was p < 0.05

and cluster size > 10 voxels for each cohort.

local brain activity from different aspects. Here we applied these
three measurements to explore the consistent local abnormality
of children with ADHD across cohorts. Nevertheless, consistent
results across cohorts were not identified through any one of the
three measurements.

The present study not only focused on the conventional
frequency band but also stressed several sub-frequency bands.
Frequency-dependent investigation provides us a new prospect
to investigate the physiological mechanism of the brain activity.
A recent rs-fMRI study reported some frequency-dependent
abnormalities for children with ADHD (Yu et al., 2015). For
example, in the orbital frontal cortex (OFC), the frequency bands
of slow-3 and slow-2 contributed more to the differences than
did the slow-5 and slow-4 bands. We found that the detected
differences between ADHD and TDC are different according to
different frequency bands. For example, compared with TDC,
children with ADHD had decreased DC in the left inferior
parietal gyrus only in slow-3 but others frequency bands and
decreased DC in the bilateral putamen/thalamus only in slow-4
but others frequency bands (Supplementary Figure 11). Previous
studies often consider the Slow-6 (<0.01 Hz) as signal drift,
and it was usually discarded from further analysis. However, our
recent publications on finger force feedback task have challenged
this issue. ReHo and ALFF of basal ganglia in Slow-6 showed
difference between real and sham feedback conditions, and the
ALFF in Slow-6 was related to finger force (Zhang et al., 2015a,b).
Moreover, ReHo difference between ADHD and TDC in Slow-6
was detected in previous study (Yu et al., 2015). Thus, the Slow-
6 was involved in our analysis and differences can be detected.
However, the results couldn’t be detected in any other cohorts.

Several limitations exist in the present study. First, we
could not explore the contribution of different subtype to the
inconsistency in ADHD neuroimaging findings because of the
small sample size for statistical analysis. For example, PKU1
only included 6 inattention and 9 combined subjects. Their
contribution should be explored on a large sample dataset in
the future. Second, we only used three whole brain voxel-
based measurements to evaluate the consistency across cohorts.
Thus, our observations were restricted to these measurements.
Investigations withmore whole-brain voxel-basedmeasurements
will be helpful.

CONCLUSIONS

Data-sharing projects like ADHD-200 provide large sample
analysis. But pooled data itself is not enough. The current
study used three whole-brain voxel-based analytic methods,
i.e., ALFF, ReHo, and DC not only on the pooled data but
also on each individual cohort. We found that the findings
based on the pooled data of ADHD-200 were inconsistent
across the individual cohorts. Even in a more lenient threshold,
this inconsistency could be observed. Such inconsistency could
be found not only in the conventional low frequency-band
(0.01–0.08 Hz) but also in a few sub-frequency band of Slow-
2/3/4/5/6. These results support the view that ADHD is a highly
heterogeneous disorder. Future studies should try more efforts
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on exploring more consistent findings of rs-fMRI data of ADHD.
Data sharing could benefit improving the reproducibility of
neuroimage studies, and we suggest that analysis based on multi-
site large-sample dataset should be performed on pooled data and
single cohort, respectively.
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