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Circadian rhythms are widely known to govern human health and disease, but specific

pathogenic mechanisms linking circadian disruption to metabolic diseases are just

beginning to come to light. This is thanks in part to the development and application

of various “omics”-based tools in biology and medicine. Current high-throughput

technologies allow for the simultaneous monitoring of multiple dynamic cellular events

over time, ranging from gene expression to metabolite abundance and sub-cellular

localization. These fundamental temporal and spatial perspectives have allowed for

a more comprehensive understanding of how various dynamic cellular events and

biochemical processes are related in health and disease. With advances in technology,

metabolomics has become a more routine “omics” approach for studying metabolism,

and “circadian metabolomics” (i.e., studying the 24-h metabolome) has recently been

undertaken by several groups. To date, circadian metabolomes have been reported for

human serum, saliva, breath, and urine, as well as tissues from several species under

specific disease or mutagenesis conditions. Importantly, these studies have consistently

revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway.

Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and

directed by internal 24-h biological clocks. In this review, we will attempt to put these

data-rich circadian metabolomics experiments into perspective to find out what they can

tell us about metabolic health and disease, and what additional biomarker potential they

may reveal.
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INTRODUCTION

The word “circadian” is derived from Latin, and literally means “around a day”. Thus, circadian
rhythms oscillate with ∼24-h periodicity. “Circadian metabolism” refers to 24-h oscillating
biochemical changes in a given biological context (tissue, cell, sub-cellular compartment), and are
readily apparent throughout human physiology. These include several systemic and tissue-specific
metabolic pathways associated with activity/rest cycles, feeding/fasting rhythms, reproductive
cycles, body temperature, and related rhythms of circulating hormones and metabolites. As such,
time of day is a fundamental determinant of metabolic flux and pathway activity, and thus cannot
be ignored. Metabolomics studies performed at a single time point provide only a static glimpse
of metabolism relevant to that particular time point, and depending on the time selected and
experimental condition, may easily miss the bigger picture. The same can be said for the particular
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tissue selected. High-resolution sampling of steady-state
metabolite abundance over time and in space, i.e., combining
multiple time points and different tissues throughout the
circadian cycle, more faithfully captures the dynamic nature
of metabolic pathways and inter-organ metabolite dynamics.
This allows one to reconstruct a moving picture of circadian
metabolism within or among tissues, and even postulate how
related changes in metabolite concentrations reflect the actual
metabolic pathway activity and dynamics within a tissue or
compartment throughout the 24-h cycle. Subcellular resolution
within metabolomics experiments likewise allows for a more
complete picture, including a better inference of flux, since
the transport of substrates into cells and across intracellular
compartments are often rate-limiting steps regulating metabolic
flux.

RHYTHMICITY ACROSS TISSUES AND
ORGANS

Onemajor reason that rhythmicmetabolites are important is that
they provide key mechanisms by which clocks across the body
communicate- whether in alignment or misalignment. Clocks
in different cells and tissues respond to different synchronizing
zeitgebers (“time-givers”), and proper communication between
them is important for maintaining circadian homeostasis (Bass
and Takahashi, 2010). Accordingly, cells isolated from organisms
(i.e., mouse embryonic fibroblasts in culture) quickly become
desynchronized in the absence of rhythmic synchronizing cues.

Often referred to as the “central pacemaker,” the
suprachiasmatic nucleus of the brain is a light-responsive
region of the anterior hypothalamus that allows for entrainment
to the environment, and assists in the synchronization of tissues
within the organism (Eastman et al., 1984; Akhtar et al., 2002;
Welsh et al., 2004; Yoo et al., 2004; Reddy et al., 2007; Mendoza
and Challet, 2009). The SCN maintains its light-responsiveness
via melanopsin-containing neurons of the retinohypothalamic
tract, which transmit light information from the retina to the
SCN (Hattar et al., 2002; Ruby et al., 2002; Gooley et al., 2003).
Circadian timing information regarding the light/dark cycle is
then transmitted from the SCN to the periphery via sympathetic
and parasympathetic neural circuits. Accordingly, lesion studies
of the SCN in rodents reveal arrhythmic physiology.

One major SCN target is the pineal gland (Klein and
Moore, 1979), and SCN-dependent neural activity results in the
rhythmic release of melatonin, which is induced upon darkness
in both nocturnal and diurnal species. Melatonin functions as
a zeitgeber, binding to receptors located throughout the body,
promoting oscillations in blood pressure, and buffering the body’s
immune response (Slominski et al., 2012; Carrillo-Vico et al.,
2013). Other pathways of the sympathetic and parasympathetic
nervous system also contribute to time-keeping in peripheral
tissues. For example, hepatic rhythms in glucose output are a
result of sympathetic innervation from the SCN to the liver
via the paraventricular nucleus (PVN; Kalsbeek et al., 2004;
Cailotto et al., 2005). The adrenal gland, which contributes to
humoral regulation of peripheral clocks via the secretion of

glucocorticoids, is also a key SCN-driven source of circadian
communication to the peripheral organs. Glucocorticoids and
their analogs can alter the phase of peripheral rhythms and even
restore hepatic rhythmicity in the absence of a functioning SCN
(Balsalobre et al., 2000; Reddy et al., 2007).

Indeed, several peripheral tissue circadian clocks seem to
respond more robustly to non-neuronal zeitgebers, including
circulating nutrients and hormones associated with feeding
(Damiola et al., 2000; Stokkan et al., 2001; Vollmers et al., 2009).
Specific examples of the robust response of peripheral clocks to
nutrients include the restoration of hepatic rhythmicity in Cry1/2
double knockout mice under time-restricted feeding (Vollmers
et al., 2009), or the rescue of kidney and liver rhythmicity in
forebrain/SCN-specific Bmal1 knockout mice under constant
darkness, again, by restricted feeding (Izumo et al., 2014). While
the latter study suggests that not all peripheral tissues are
entrained by feeding, there is clear evidence that circadian clocks
in the liver, adipose, muscle, and kidney are all highly responsive
to nutrients and/or the downstream signaling pathways that arise
from acute changes in energy supply (i.e., high glucose). For
example, liver expression of Per2, part of the negative feedback
loop of the core circadian clock, is robustly driven by food
intake (Zani et al., 2013), and liver Per2 retains normal circadian
oscillation even in the midst of hepatic circadian clock disruption
(Kornmann et al., 2007; Lamia et al., 2008). Thus, relevant
information regarding current energy substrate supply can be
rapidly integrated into the circadian transcriptional program as it
becomes available, serving to synchronize individual cells within
a tissue and coordinating their functional response. One can
easily imagine this would be particularly important for the major
energy storing and energy consuming tissues.

Activation of various metabolic pathways within a cell is
largely dependent on the cycling availability, sensitivity and
transport of specific substrates. Thus, metabolic flux (the rate
of flow/conversion of metabolites through a given metabolic
pathway) is another rhythmic feature that groups individual cells
within a given tissue into a functionally coherent unit, and reflects
tissue-specific synchronization. Specific examples of metabolites
that cycle, and that have also been revealed to be important for
specific clock functions are discussed in subsequent sections (also
see Figure 1 for examples).

MAINTENANCE OF CELLULAR
CIRCADIAN CLOCKS

While there remains much to uncover, genomics studies have
already revealed a wealth of information about the cellular
determinants of circadian rhythmicity. Circadian rhythms of
gene expression and metabolism are driven in part by circadian
clock transcription factors (CLOCK and BMAL1 in mammals)
that heterodimerize and activate target gene expression. Among
these gene targets are their own negative regulators, the Period
and Cryptochrome genes. Multiple peripheral loops of kinases,
other transcription factors, phosphatases, and ubiquitin ligases,
have been identified which keep the CLOCK:BMAL1 protein
heterodimer and PER/CRY activity operating in a 24-h fashion
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FIGURE 1 | Circadian metabolites have pleiotropic mechanisms by which to maintain cellular rhythmicity. Metabolites are an essential part of the cellular circadian

clock, and function intracellularly in a variety of ways, from direct metabolic pathway activation to mitochondrial and nuclear events.

(Partch et al., 2014). While these are largely outside the scope of
this article, it is important to mention that disruption of these
proteins and some of their ancillary regulators disrupts rhythmic
metabolism in tissue-specific ways.

Much of the rhythmic activity of the core clock transcriptional
feedback loop depends on interactions with other transcriptional
regulators, as well as a large group of chromatin modifying
enzymes (Aguilar-Arnal and Sassone-Corsi, 2015). For
example, histone acetyl transferases, such as p300 and CREB-
binding protein (CBP), can interact with the CLOCK:BMAL1
transcriptional complex (Etchegaray et al., 2003; Lee et al., 2015).
Similarly, methyltransferases, such as the EZH2, WDR5 and the
Mixed-Lineage Leukemia proteins have been shown to interact
with the core clock proteins (Brown et al., 2005; Etchegaray
et al., 2006; Katada and Sassone-Corsi, 2010). In short, rhythmic
chromatin dynamics, much of which center on interactions
with the clock proteins, are essential for driving rhythmic
transcription and, ultimately, rhythms in metabolism (Koike
et al., 2012; Menet et al., 2014). However, the transcriptional
feedback loop supported by the CLOCK:BMAL1/PER:CRY
system is not only maintained by ancillary proteins but also by
small metabolites themselves, which activate specific components
of this transcriptional feedback system as well as some of their
associating factors.

Several small metabolites have been demonstrated to be
important for 24-h rhythmicity in the cell across multiple
organisms. In fact, to date, there are few cellular processes
which have not been shown to be impinged upon by the
circadian abundance or activity of small metabolites. Some of

the many circadian processes directly regulated by metabolites
are displayed in Figure 1. Many metabolites function by affecting
rhythmic gene expression, either by activating proteins that
directly bind to the core clock machinery or by acting at one
or more of the many chromatin modifying enzymes involved
in rhythmic gene expression. One well studied example is the
metabolite nicotinamide adenine dinucleotide (NAD+), which
as an activator of several NAD+-dependent sirtuin proteins,
and controls the rhythmic circadian output at the level of
gene expression of the CLOCK:BMAL1 transcriptional complex
itself (Asher et al., 2008; Nakahata et al., 2008, 2009; Ramsey
et al., 2009). In addition to nuclear activation of the sirtuins,
rhythmic activation of SIRT3 by NAD+ in the mitochondria
promotes oscillations in acetylation and activity of downstream
enzymes important for mitochondrial oxidative function (Peek
et al., 2013). Heme is another energy metabolite that controls
circadian timekeeping at the cellular level. Heme is thought to
bind directly to the circadian transcriptional repressors REV-
ERBα and REV-ERBβ and thus influence their transcriptional
activity (Raghuram et al., 2007; Yin et al., 2007). Heme is
also considered to affect other clock components, including
the NPAS2-BMAL1 heterodimer (Dioum et al., 2002; Ben-
Shlomo et al., 2005). Nuclear receptors, including the REV-
ERB proteins, are highly rhythmic in a tissue-specific way
(Yang et al., 2006). This allows the cell to integrate and
decode a diverse array of circadian changes in metabolite/ligand
abundance directly into gene expression in a temporally and
spatially precise manner. Many nuclear receptor ligands (some
of which are diet-derived) are highly oscillatory (Sladek, 2011;
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Solt et al., 2011). Other oscillatory metabolites with specific
effects on circadian metabolism include acetyl-CoA, which, via
rhythmic sirtuin-dependent acetylation of the enzyme acetyl-
CoA synthetase 1 (AceCS1), induces rhythmicity in fatty
acid elongation (Sahar et al., 2014). DNA methylation, which
depends on availability of S-adenosylmethionine (SAM) and
S-adenosylhomocysteine (SAH), has also been reported to
undergo circadian oscillations throughout the circadian cycle
(Xia et al., 2015). While these serve as some of the better-
characterized examples of metabolites that directly control the
circadian clock, additional metabolites have been studied in
this context. For example, polyamines (compounds with more
than one primary amino [-NH2] group) have recently been
shown to oscillate and provide feedback into the clock system
(Zwighaft et al., 2015). Polyamines, which decrease with age,
play important roles in the cell (Figure 1), binding to both
DNA and proteins, and regulating processes as disparate as gene
expression and ion channel function (Pegg, 2009). Rhythmicity
in polyamine abundance is both clock- and feeding-dependent,
with the rate-limiting enzyme in polyamine synthesis, ornithine
decarboxylase (ODC), oscillating throughout the circadian cycle
in response to BMAL1:CLOCK transactivation. Interestingly,
polyamine depletion in cells and mice results in a longer
circadian period due to impaired PER2:CRY1 protein interaction,
whereas increasing polyamine content shortens circadian period
(Zwighaft et al., 2015).

HOW CAN HIGH-THROUGHPUT
METABOLOMICS HELP US UNDERSTAND
CIRCADIAN METABOLISM?

Just as genomics and transcriptomics studies have shed light
on mechanisms regulating gene expression, global metabolomics
experiments (if of sufficient temporal and spatial resolution) can
help us understand circadian metabolism by revealing whole
pathways of related metabolites that are changing in concert
throughout the circadian cycle. Many good reviews already
cover various technological aspects of metabolomics experiments
(Zamboni et al., 2015).

While most of the studies reviewed here rely on datasets
acquired by liquid chromatography/mass spectrometry (LC-
MS), metabolite quantification has traditionally been performed
using nuclear magnetic resonance spectroscopy (NMR) and MS.
While considerably less sensitive than MS, NMR analysis can
be performed with limited sample preparation, making it a
preferable method in some situations. However, since sensitivity
is lower than MS, higher initial sample volume is generally
required.

Mass spectrometry, usually coupled with gas or liquid
chromatography (GC-MS or LC-MS), can be performed in
a high-throughput manner, and usually results in increased
sensitivity. However, the more elaborate sample preparation
may result in some metabolite losses. Also, the type of tissue
under investigation may negatively impact ionization, and some
poorly ionizing metabolites and metabolite classes may be
underrepresented or missed altogether.

Overall, these should only be considered as very minor
limitations, as ever more powerful MS-based metabolomics
platforms have continued to evolve, and currently thousands
of signals are normally collected and assigned a metabolite
identity. However, many metabolites still cannot be assigned,
as the specific metabolite identity may not have yet been
described. Further complicating matters, mapping of many
known metabolites to specific metabolic pathways (i.e., KEGG)
is still incomplete, as the relatively slow pace of biological
knowledge has not kept up with the accelerated pace of
detection. While these “orphan” metabolites currently lack
biological meaning, the breadth of information provided by
circadian metabolomics studies can provide a unique context
from which to predict their metabolic pathways, based on how
they behave in relation to known metabolites. Thus, the size of
the “known” metabolome in any given biological sample is likely
to continue to rise substantially as more metabolite identities
and their metabolic pathways are confirmed over time. Typically,
assignment of LC-MS data to a particular metabolite is made
based on the mass-to-charge value, retention time, fragmentation
data, and isotopic detail. Various programs have been developed
to assist with metabolite identification based on this information
and have been described elsewhere (Zamboni et al., 2015).

While the specific number of metabolites identified in
a typical metabolomics experiment is still currently some
orders of magnitude smaller than analogous proteomics
and transcriptomics experiments, coverage across various
metabolite classes and metabolic pathways is usually sufficient
to gain important biological insight. For example, comparative
statistics and bioinformatics analyses, including metabolic
pathway enrichment analysis, time-series (ANOVA), circadian
analysis (e.g., JTK_Cycle) provide valuable starting points for
investigation.

Spatial resolution is currently a major limitation for many
circadian metabolomics studies. Metabolites can serve very
different physiological roles depending on their intracellular
localization. They can move across various intracellular
compartments, either by diffusion or active transport, or even
remain in different intracellular pools. While most circadian
metabolomics studies published to date have largely ignored
relevant information regarding subcellular localization of
metabolites (i.e., mitochondrial vs. cytosolic pools), recent
technological improvements are certain to change this trend.
Subcellular fractionation and organelle purification prior to
performing metabolomics is already used to help obtain a
slightly clearer picture of intracellular metabolite distribution,
but the time-consuming steps involved likely introduce
additional confounders. On the other hand, matrix-assisted laser
desorption/ionization coupled to Imaging Mass Spectrometry
(MALDI-IMS) is already proving to be a very promising
technology for mapping distribution of metabolites and proteins
within tissue sections in situ (Norris and Caprioli, 2013; Ly et al.,
2016).

We previously mentioned that relative changes in pathway
activity and circadian dynamics may be inferred based on the
relative changes in tissue steady-state metabolite levels. However,
it is important to stress that these types of analyses can serve
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only as imperfect surrogates, and not as substitutes for actual
metabolic flux analysis. Targeted pulse-chase biochemical and
functional assays are still necessary for proper validation of these
circadian dynamics. However, this may all soon change, as the
increasing development and availability of specific fluorescent
probes for monitoring 24-h metabolic flux in vivo are poised to
provide additional essential tools in the near future.

WHAT HAVE WE LEARNED SO FAR FROM
CIRCADIAN METABOLOMICS STUDIES?

To date, several circadian metabolomes from a variety of
organisms and tissues have been published. For obvious practical
reasons related to collecting sufficient numbers of samples under
tightly controlled genetic or environmental conditions, most
circadian metabolome studies have been performed on rodent
tissues. However, several high-resolution human circadian
metabolomes have also been reported, which biologists and
clinicians can already utilize for hypothesis generation/validation
and biomarker discovery. For example, several human serum
metabolomes have provided high-resolution snapshots of
robustly changing metabolic pathways across the circadian cycle
(Minami et al., 2009; Dallmann et al., 2012; Kasukawa et al.,
2012; Davies et al., 2014; Giskeodegard et al., 2015). Importantly,
these studies have yielded interesting information that must
be interpreted in the context of the experimental paradigm.
Specifically, Dallman et al. (Zamboni et al., 2015) provided
the first global circadian metabolome from humans, in which
approximately 15% of the metabolome in plasma or saliva was
shown to oscillate throughout the circadian cycle under constant
conditions of sleep deprivation and isocaloric hourly feeding.
As feeding is a strong driver of peripheral circadian rhythms, it
may be expected that a much higher percentage of metabolites
would be found to oscillate throughout a more typical 24-h day,
with normal eating and sleeping rhythms. Indeed, subsequent
studies have revealed that a majority of detected metabolites
show circadian rhythmicity when the sleep/wake cycle and
energy intake patterns are rhythmic (Davies et al., 2014).
Specifically, human plasma samples collected every 2 h for
48 h revealed that a majority of metabolites oscillate under
controlled laboratory conditions (environmental light, sleep,
meals, and posture) during a complete 24-h wake/sleep cycle.
Furthermore, acute sleep deprivation over the following 24 h
alters only a small percentage of oscillating metabolites (under
20%). Interestingly, metabolites elevated by sleep deprivation,
including serotonin, tryptophan and taurine, may explain why
acute sleep deprivation has been shown to have an antidepressive
effect (Voderholzer, 2003). Similar studies involving chronic
sleep deprivation have not yet been performed. Thus, for humans,
most circulating metabolites display rhythmic diurnal oscillation
under normal physiological conditions. This rhythmicity likely
helps to coherently communicate time of day to tissues
throughout the body, maintains tissue-specific synchronization
of circadian clocks, and promotes efficient temporal gating of
circadian metabolic pathways.

In a similar study comparing the effects of sleep deprivation
on a smaller group of metabolites obtained from human urine,
22% of metabolites were observed to be rhythmic, either under
normal or sleep-deprived conditions (Giskeodegard et al., 2015).
Approximately half of the metabolites were altered by acute
24-h sleep deprivation, with similar numbers being increased
or decreased as a result of sleep deprivation. Similar to results
obtained from human plasma, metabolites related to tryptophan
metabolism and taurine were also increased in urine as a
result of sleep deprivation. Consistent with human 40-h sleep
deprivation results (Dallmann et al., 2012), the tryptophan
metabolite 3-indoxyl sulfate (which is produced from tryptophan
by gut bacteria and hepatic cytochrome P450 enzymes) was also
significantly elevated after acute sleep deprivation.

Circadian metabolomics studies performed on rodent tissues
have also revealed a high degree of circadian oscillation among
metabolites, largely reflecting diurnal rhythms of local tissue
metabolism. For example, numerous amino acids oscillate
in the liver throughout the circadian cycle (Eckel-Mahan
et al., 2012), with pathways involved in lysine and glutamate
metabolism particularly rhythmic. In addition, nicotinamide-
relatedmetabolites, including nicotinamide adenine dinucleotide
(NAD+), oscillate robustly in mouse liver (Eckel-Mahan et al.,
2012, 2013; Masri et al., 2014). As previously mentioned, NAD+

has substantial influence over cell rhythmicity as an activator
of NAD+-dependent sirtuins and their interactions with the
clock transcriptional machinery (Asher et al., 2008; Nakahata
et al., 2008, 2009; Ramsey et al., 2009; Masri et al., 2014).
Some lipid species are also highly rhythmic in livers, and even
persist in livers of clock-disrupted Per1/2 null mice, likely due
to the maintenance of diurnal expression of Pparα, a master
regulator of lipid metabolism (Adamovich et al., 2014). In this
study, feeding time again emerged as a particularly strong driver
for some oscillating liver metabolites. Per1/2 null mice showed
arrhythmic feeding patterns and a drastically shifted diurnal cycle
of triglyceride accumulation. However, restricting food access
to exclusively the dark phase was sufficient to consolidate peak
diurnal triglyceride accumulation in Per1/2 null mice to around
ZT12, as occurred in wildtype mice (Adamovich et al., 2014),
suggesting that rhythmic liver triglyceride accumulation is driven
by systemic feeding/fasting cycles independently of a functional
hepatocyte circadian clock.

Uncovering the molecular mechanisms that drive circadian
metabolite oscillations in tissues, and understanding the extent
to which they are linked to tissue-specific circadian clocks
remains an important and active area of research. A few studies
have examined how the core circadian clock regulates circadian
oscillations of specific metabolites (Eckel-Mahan et al., 2013;
Dyar et al., 2014; Aviram et al., 2016). For example, while
muscle-specific Bmal1 knockout mice (mKO) display reduced
muscle insulin sensitivity and impaired muscle glucose oxidation
compared to wildtype littermates, robust circadian cycles of
most glycolytic intermediates are apparently normal (Dyar
et al., 2014). However, mKO muscles show a large general
accumulation of sugarmetabolites from several pathways directly
linked to glycolysis, including the pentose phosphate, polyol,
and glucuronic acid pathways. This suggests that muscle clock
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disruption uncouples glycolysis from glucose oxidation, and
diverts glycolytic intermediates toward alternative metabolic
fates. Interestingly, many of these metabolites were found
to be increased predominantly around the transition from
the fasting+rest phase to the feeding+activity phase, when
glycolytic flux is increased, and glucose becomes the predominant
fuel source for skeletal muscle. In conditional and inducible
muscle-specific Bmal1 knockout mouse models, the authors
noted impaired circadian oscillation of PDP1 mRNA and
protein, the main activator of the pyruvate dehydrogenase
complex (PDH), as well as persistent circadian oscillation
of PDK4 mRNA and protein, the main inhibitor of PDH.
Likewise, diurnal PDH activity was found to be impaired,
especially around the transition from the fasting+rest phase to
the feeding+activity phase. Thus, BMAL1-driven rhythms are
important for muscle insulin sensitivity and for maintaining
metabolic flexibility by promoting glucose oxidation during the
fasting to feeding transition. Similar to the loss of BMAL1, lack
of its heterodimer, CLOCK, results in profound disruption of
the hepatic circadian clock (Eckel-Mahan et al., 2012). Clock-
deficient livers show impaired circadian pyrimidine metabolism
due to loss of CLOCK-dependent transcriptional activation of
specific enzymes, such as uridine phosphorylase. In addition,
circadian carbohydrate metabolism is considerably flattened,
while many feeding-related metabolites peak prior to the onset
of the dark phase, consistent with an advanced onset of food
intake. The circadian metabolomes of these and other circadian
models can be found at the website for CircadiOmics (http://
circadiomics.igb.uci.edu/). (For data integration and analysis
with the corresponding transcriptomes also see Patel et al., 2012,
2015).

Another open issue based on these results is the extent to
which rhythmicity in cell metabolism is cell autonomous. To help
answer this question,metabolite profiling was recently performed
on mouse liver as well as a cell autonomous system [human
U2 OS (bone osteosarcoma) cells] with a 1–2 h resolution
over the course of 48-h (Krishnaiah et al., 2017). Similar to
prior studies, approximately half of the detected metabolites
from liver were determined as rhythmic following circadian
synchronization. Enrichment was observed for metabolites
associated with nucleotide and amino acid metabolism, but
methylation pathway-associated metabolites were also observed
to by highly rhythmic. Interestingly, in both hepatocytes and
autonomous osteosarcoma cells, metabolite oscillations, in terms
of percent of detected metabolites, exceeded the percent of
transcript oscillations, suggesting an increase in oscillatory
function in the cell from transcription to metabolism. Cell-
autonomous osteosarcoma cells showed less rhythmicity at the
level of individual metabolites than liver (which could also
be due to their transformed state); however, metabolites that
were observed to be rhythmic in both cell types included
several involved in epigenetic regulation. Loss of the circadian
proteins BMAL1 generally decreased the amplitude of metabolite
rhythms, while CRY1-depletion actually induced 8-h oscillation
patterns for a number of metabolites. Thus, rhythmicity of
many metabolites is a clock-driven and cell autonomous process
(Krishnaiah et al., 2017).

In addition to global and tissue-specific genetic perturbation
of clock genes, and restricting access to food, high fat diet (HFD)
is another common experimental model used to elicit circadian
clock disruption. Circadian metabolomics studies performed
under different diets (i.e., chow vs. HFD) suggest that the serum
circadian metabolome may be more susceptible to disruption
by nutrient challenge than other tissues (Abbondante et al.,
2016). Serum metabolites are profoundly affected by HFD, with
over half of metabolites changing significantly at some circadian
time point following prolonged high fat diet feeding. Similar
to studies looking at oscillating metabolites in humans during
relatively normal sleeping and feeding behaviors (Davies et al.,
2014), mice engaged in ad libitum (rhythmic) feeding on a
typical chow diet reveal metabolite oscillations in approximately
half of the serum metabolome. However, unlike the liver, where
many metabolite and transcript oscillations persist under HFD
feeding (Eckel-Mahan et al., 2013), oscillating serum metabolites
are highly prone to disruption by nutrient challenge, with the
majority of oscillating metabolites eliminated after HFD in
spite of rhythmic eating patterns (Eckel-Mahan et al., 2013;
Abbondante et al., 2016). A profound contributor to this loss of
oscillation is the ablation of rhythmic lipid metabolites. Similar
to the circadian imbalance of some circadian lipid metabolites
under conditions of Bmal1 deficiency in adipose tissue (Paschos
et al., 2012), it is worth speculating that hypothalamic sensing
of fatty acids under conditions of HFD feeding is temporally
impaired. This loss of circadian oscillations in the circulation
under HFD reveals that not only is there unlikely to be temporal
coherence across tissues that release metabolites into the blood,
but also that the circulation is unable to provide rhythmic
information from one tissue to another under conditions of
nutrient challenge. This has tremendous implications as to
the extent to which diet may misalign circadian clocks in
the body, a process which is thought to be disadvantageous
in terms of energy balance (Froy, 2010; Roenneberg et al.,
2012; Asher and Sassone-Corsi, 2015; Ribas-Latre and Eckel-
Mahan, 2016). Further circadian analyses of additional tissue
metabolomes under conditions of nutrient challenge is likely to
reveal the extent to which suchmisalignment across tissues might
occur.

Recent studies suggest that many metabolites oscillate
according to the organelle in which they reside. For example, a
recent study looking at circadian lipidomics in the mitochondria
and nucleus revealed that while many lipids oscillated in both
compartments, some lipid species oscillate distinctly based on
their location (Aviram et al., 2016). Nuclear lipid species tend
to peak early in the light phase (ZT2-4) while most of the
oscillating lipid species within the mitochondria peaked between
ZT10-14, in line with the onset of the dark period. Feeding
is again an important modulator of oscillating lipids in both
compartments, with dark phase restricted feeding inducing
more nuclear lipid oscillations, while decreasing the number of
oscillating lipid species in the mitochondria. While the direct
functional relevance of these differentially oscillating species has
not been fully explored, it is likely that they reflect the unique
demands associated with each compartment during different
times of the day.
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While numerous metabolites and hormones oscillate in a
circadian manner in vivo, Figure 2 represents only a few
of the many disparate rhythmic metabolites or hormones
that orchestrate circadian responses within target tissues. For
example, the phosphatidylcholine metabolites PC 18:0/18:1 have
been shown to circulate in the serum as a result of rhythmic
hepatic PPARδ activity, and in a manner which drives fatty acid
use in the muscle (Liu et al., 2013). Interestingly, HFD reduces
the circadian oscillation of this metabolite in the circulation. The
dark-induced hormone melatonin is released by the pineal gland
in a circadian fashion and targets many tissues via its rhythmic
circulation and widespread expression of its receptors (Slominski
et al., 2012). Interestingly, non-diabetic obese individuals have a
significantly higher amplitude of melatonin oscillation compared
to weight matched obese patients with type II diabetes, and lean
non-diabetic individuals (Mantele et al., 2012). The antidiuretic
hormone vasopressin is released in a circadian manner and has
target effects on the liver (gluconeogenesis and glycogenolysis)
and kidney, where it exerts its primary antidiuretic effects.
Genetic variance in the vasopressin receptor AVPR1B have
recently been linked to weight regulation, and copeptin, a C-
terminal fragment of the arginine vasopressin pro-hormone is
predictive of diabetes mellitus and abdominal obesity (Enhorning
et al., 2009, 2013). Adrenocorticotrophic hormone (ACTH)
is released rhythmically by the pineal gland, yet antiphase
to melatonin. Subsequent stimulation of the adrenal cortex
results in rhythmic cortisol release in humans as well as
rhythmicity in aldosterone production and release. Cushing’s
disease, characterized by an overproduction of ACTH by the
pituitary, severely diminishes the amplitude of oscillating cortisol
in human patients (Boyar et al., 1979). Glucose and insulin, both

elevated in the context of metabolic disease, are also present in
the circulation in a rhythmic fashion, and directly depend on the
circadian clock (Marcheva et al., 2011; Kalsbeek et al., 2014).

CONCLUSIONS AND FUTURE
DIRECTIONS

Circadian metabolomics is just beginning to shed light on
some of the mechanisms underlying our circadian behavior
and physiology, and much more remains to be gained by such
experiments. The opportunity to discover new biomarkers, to
better predict physiological time, and to develop novel insights
for personalized medicine are key areas for which circadian
metabolomics experiments are likely to be extremely valuable in
the near future.

New Biomarkers
As the number of published circadian metabolomics experiments
continues to increase, one hope is that these uniquely robust
and rich datasets will help serve to uncover novel biomarkers or
complex metabolic signatures of various diseases. For example,
jet-lag paradigms in mice have recently been shown to induce
hepatocellular carcinoma (HCC), a phenomenon that appears
to depend at least in part on impaired circadian metabolism in
the liver (Kettner et al., 2016). Interestingly, jet-lag and mouse
models of circadian disruption share this predisposition for HCC,
as well as the altered circadian profile of numerous serum and
hepatic carnitines, lipids and prostaglandins, TCA metabolites,
and acetyl-CoAmetabolites. Other studies looking at lung tumor-
bearing mice also reveal altered circadian metabolite signatures

FIGURE 2 | Tissue rhythmicity is in part driven by oscillating metabolites in the circulation. Some examples of rhythmic circulating metabolites (many of which are

controlled by the central clock) which are linked to metabolic disruption when aberrantly released. Under nutrient challenge conditions, the majority of circadian

metabolite oscillations in the serum are abolished. Most tissues release metabolites back into the circulation in a manner which reflects their circadian biological

activities [examples: (1) activity/exercise, (2) nutrient metabolism, (3) myocardial contraction, (4) fluid filtration, (5) bone resorption]. Many tissue-derived circadian

metabolites released in the circulation have been shown to directly influence the rhythmic energy use in another tissue (example: hepatic-derived PC18:0/18:1).
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(Masri et al., 2016). If circadian neuroendocrine and metabolic
markers could collectively or in isolation be an indication of
predisposition to tumorigenesis, or alternatively as evidence
of existing tumorigenesis, this would greatly assist in cancer
prevention and treatment.

Time Prediction
One hope already envisioned by several groups is that a clear
temporal mapping of gene and metabolite oscillations and
interactions will help us to better predict internal time. For
example, can we predict drug efficacy or toxicity based on
metabolite-based chronotype determinations? Can we determine
the time of death? Blood metabolomics in mice has been
studied for the purpose of predicting internal time (Minami
et al., 2009) and metabolomics performed by breath analysis,
where “breathprinting” is accomplished over hourly intervals, has
revealed the potential for circadian rhythms in a large number
of metabolites (Martinez-Lozano Sinues et al., 2014). Such an
approach could greatly assist with chronotype determination.
As the metabolomes of more subjects are studied with greater
resolution, and better categorized into specific health and disease
states, time prediction is likely to be a powerful end point of
circadian metabolomics data for a variety of research areas.

A potentially fruitful outcome for circadian metabolomics
as it relates to time prediction is its use in chronotherapy.
Pharmacometabolomics is used to understand drug
pharmacokinetics and pharmacodynamics. However, a
better understanding of circadian fluctuations throughout
the day and under specific environmental conditions could

facilitate determination of optimal drug administration times,
considering the toxicity and efficacy achieved in the body by
the drug. Some drugs have already been shown to be more
effective and/or less toxic when taken at a specific time of
the day. One example is 5-fluorouracil (5-FU), which targets
the oscillating thymidylate synthase, and which is already
exploited for its effectiveness when administered at specific
circadian times (Levi et al., 1992), when its toxicity is lowest
at the level of bone marrow and gut, while concomitantly
having the most antitumor effects (Wood et al., 2006). A recent
high-throughput analysis importantly stressed that many more
widely used drugs remain to be studied in this context (Zhang
et al., 2014). Accordingly, personalized chronotherapy will
undoubtedly emerge as a critical component of personalized
medicine’s future, as it holds great promise for disease treatment
(Ballesta et al., 2017). It is hoped that additional knowledge
gained from existing and future circadian metabolomics
studies will facilitate and expedite our progression into this
future.
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