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Brain computer interfaces provide a novel channel for the communication between brain

and output devices. The effectiveness of the brain computer interface is based on the

classification accuracy of single trial brain signals. The common spatial pattern (CSP)

algorithm is believed to be an effective algorithm for the classification of single trial brain

signals. As the amplitude feature for spatial projection applied by this algorithm is based

on a broad frequency bandpass filter (mainly 5–30 Hz) in which the frequency band is

often selected by experience, the CSP is sensitive to noise and the influence of other

irrelevant information in the selected broad frequency band. In this paper, to improve the

CSP, a novel relevant feature integration and extraction algorithm is proposed. Before

projecting, we integrated the motor relevant information to suppress the interference

of noise and irrelevant information, as well as to improve the spatial difference for

projection. The algorithm was evaluated with public datasets. It showed significantly

better classification performance with single trial electroencephalography (EEG) data,

increasing by 6.8% compared with the CSP.

Keywords: classification, motor imagery, brain computer interface, single trial, feature extraction

INTRODUCTION

Brain-computer interface (BCI) is a way of communication that aims to provide a communication
path between humans and computers. It directly translates brain activity into a series of
control commands. Accordingly, it provides a non-muscular output channel for the brain and
communicates with devices directly (Yu et al., 2014). This interface may offer disabled people
a great prospect by solely translating their intentions that are reflected in their brain signals
into actual instructions (Lemm et al., 2005). In addition, BCI can also be used as a neuro-
rehabilitation tool to improve motor and/or cognitive performance of people after neurological
diseases, such as stroke (van Dokkum et al., 2015) and tetraplegia (Vuckovic et al., 2015).
In the BCI system, several modalities have been used for brain signal acquisition, such as
electrocorticographic (ECoG) (Leuthardt et al., 2004), electroencephalography (EEG) (Bennet et al.,
2016), magnetoencephalography (MEG) (Sardouie and Shamsollahi, 2012), functional magnetic
resonance imaging (fMRI) (Ruiz et al., 2014), functional near-infrared spectroscopy (fNIRS)
(Naseer and Hong, 2013, 2015; Hong et al., 2015; Naseer et al., 2016a,b), and intracortical
neuronal spikes (Gupta et al., 2016). Among them, because of the real-time, low-cost, portable
and noninvasive properties of EEG, it is one of the most convenient means to measure
neurophysiological activity in the practical BCI application (Mihajlovic et al., 2015).
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Electroencephalography (EEG) modulated by motor imagery
(MI) is one of the most studied types of EEG signals of the BCI
systems for the similarities of motor-related area involvement
with motor execution (Pfurtscheller et al., 1997). MI can be
revealed on brain activity patterns of the imagination of a
motor action, but without its physical movement. During an
MI task, the EEG activity is accompanied by an increase or
decrease in the EEG magnitude which is known as an event-
related synchronization or desynchronization (ERS/ERD). The
ERD and ERS are non-phase-locked modulations of the EEG
power, usually confined to a specific frequency band. ERD and
ERS have been suggested to reflect the cortical activation and
cortical deactivation (Hu et al., 2015). In particular, ERD of µ-
rhythm (8–12 Hz) is usually associated with MI (Neuper and
Pfurtscheller, 2001; ter Horst et al., 2013). BCI based on MI is an
efficient path of rehabilitation, and it achieves excellent findings
on complex movement (Qiu et al., 2017).

A big challenge for BCI based onmotor imagery is to correctly
and efficiently identify and extract subject-specific features from
the blurred scalp EEG and translate those features into device
commands (Wu et al., 2008). Based on topographic patterns,
the Common Spatial Pattern (CSP) has been shown to be very
efficient in the establishment of subject-specific discriminative
spatial filters (Dornhege et al., 2006). The CSP algorithm
decomposes multi-channel EEG from two classes into spatial
patterns and enhances the separability between the two classes by
diagonalizing the covariance matrix at the same time (Park et al.,
2014). However, the conventional CSP algorithm selects multi-
channel magnitude features on frequency band, which is selected
by experience (Dornhege et al., 2006). As a result, it is sensitive
to noise and the influence of other irrelevant information in
the selected broad frequency band. Therefore, method for the
optimization of the characteristics is urgently needed.

A noteworthy attempt, namely the Common Spatio-Spectral
Pattern (CSSP) algorithm has been reported in Lemm et al.
(2005). In the CSSP algorithm, the filter is constructed by the
method of time-delay embedding. However, the CSSP algorithm
limits the flexibility of the filters. The Common Sparse Spectral-
Spatial Pattern (CSSSP) performs simultaneous optimization of
an arbitrary Finite Impulse Response (FIR) filter (Dornhege
et al., 2006). The spectral weighted common spatial pattern
(SPEC-CSP) (Tomioka et al., 2006) optimizes the filter in the
frequency domain and the spatial filter is an iterative procedure.
But, this method is computationally expensive. The Filter Bank
Common Spatial Patterns (FBCSP) (Ang et al., 2012) uses mutual
information to select the optimal frequency band and time range.
Xu applies particle swarm method to optimize frequency band
and time interval (Xu et al., 2014). Local temporal correlation
common spatial patterns employs local temporal information
to estimate covariance matrices instead of Euclidean distance
method of CSP (Zhang et al., 2013). The Regularizing Common
Spatial Patterns (RCSP) adds a regularization algorithm to the
CSP algorithm by a priori knowledge (Lotte and Guan, 2011).
However, it does not consider themultivariable nature of the EEG
signals, and thus it limits the feasibility of this method.

In this paper, an algorithm designated Spectral Component
Common Spatial Pattern (SCCSP) is proposed. It provides a new

approach to further improve the classification performance of the
motor-imagery-based BCIs. To feature optimize, it focuses on
the changes of the amplitude spectrum during motor imagery,
and utilizes Independent Components Analysis (ICA) to
extract the components from multi-channel amplitude spectrum
with the aim of separating motor-relevant and irrelevant
information from obscure EEG amplitude features applied
by CSP. Accordingly, SCCSP could increase the classification
accuracy of single-trial motor imagery EEG by improving the
spatial difference of projecting.

DATA ACQUISITION AND CONFIGURATION

Two publically available datasets from BCI competitions were
collected for the evaluation of the proposed algorithm for motor
imagery. For the classification algorithm of CSP is the binary-
class classification algorithm, two classes of motor imagery EEG
data are collected from the two public datasets. The first public
dataset recording the imagination left and right hands movement
is collected from the publically available dataset BCI competition
IV, dataset IIa (http://bbci.de/competition/iv/), including all 9
subjects. This dataset records EEG with twenty-two electrodes
with a sampling rate of 250 Hz. Each trial (experiment) lasts 7.5 s.
The subjects imaged movements from t = 3 s to t = 6 s in trials.
Before this period, it is the period for preparation. The second
public dataset is the dataset IIIa from the BCI competition III
using a 60-channel amplifier with a sampling rate of 250 Hz,
including all 3 subjects. The subjects imaged left and right hand
movements from t = 3 s to t = 7 s in trials. Before this period,
it is the period for preparation. Both of datasets were online
filtered by a bandpass filter and a 50 Hz notchfilter to remove
artifacts. A summary of the two datasets is presented in Table 1.
The electrodes locations of two datasets are shown in Figure 1.

NEUROPHYSIOLOGICAL AND
MATHEMATICAL METHODOLOGY

Feature Extraction and Integration
For each part of the human body, there exists a respective
region in the primary motor cortex and somatosensory area

TABLE 1 | Summary of the datasets.

Dataset Channels MI type Subjects Subject number Trials

IIa 22 Left vs. right hand A01 1 138

A02 2 136

A03 3 137

A04 4 129

A05 5 129

A06 6 113

A07 7 133

A08 8 132

A09 9 116

IIIa 60 Left vs. right hand k3b 10 90

k6b 11 58

l1b 12 60
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FIGURE 1 | The electrode locations of the datasets.

of the neocortex (Chainay et al., 2004; Blankertz et al., 2008).
The imaged part is surrounded by the other regions which
represent other parts of the human body. Previous studies (Pei
et al., 2005; Byblow et al., 2007) indicated that there was a
parallel functional process between the lateral somatosensory
area and the mid-central area during activation, indicating the
independence of the hand and feet/leg areas during imagery.
The inhibition mechanism was independent of the excitation
mechanism on the somatosensory area (Ikeda et al., 2000).
Accordingly, it is hypothesized that the area which represents
the part of the imaged human body is independent of other
areas which represent the parts of the un-imaged human body
in the neocortex. However, the effect of volume conduction,
EEG modulated by MI should be the combination of several
independent components. Thus, it is urgent to source separation.

Independent Components Analysis (ICA) is a blind source
separation method under the temporal information. It has
emerged as a valuable signal processing method for the analysis
of multivariate channel data (Woods et al., 2015). Let the time-
varying observed signals be X = [x1(t), ..., xm(t)]

T, and the
S = [s1(t), s2(t)..., sn(t)]

T t = t0, ..., T, is matrix that contains
unknown pure components,m and n indicate the channels of the
observed signals and components, respectively. ICA assumes that
the signal X is an instantaneous linear mixture of independent
sources:

X = ES (1)

where the matrix E of size m×n is the mixing matrix, whose
component represents the linear memoryless mixing channels.
To recover all the independent components (ICs) of the observed
signals, ICA aims to obtain a de-mixing matrix W with minimal
knowledge of E and S. The recovered signals U= (u1, u2,..., un)

T

are given by Equation 2 (Monakhova et al., 2015).

U = WX (2)

Therefore, the ICA problem can be restated as the problem of
findingW such that the sources ofU are maximally independent.

We focus on the improvement of the classification accuracy
based on the oscillatory feature (ERD/ERS). Motor imageries
are accompanied by the ERD in specific frequency band
(Pfurtscheller and Neuper, 1997), indicating an obvious sinking
of the amplitude spectrum. To maximize the separability
between classes, the feature extraction and integration algorithm
is designed by integrating motor-related information. To
suppress the influence of imagination irrelevant information and
noise, we want to extract relevant information from blurred
feature and integrate imagination related information on multi-
channel dimensions into a single dimension. In this paper,
we extended the conventional ICA algorithm to the frequency
domain, and named it as Spectral Independent Components
Analysis (SICA). It is hypothesized that the independent
component, which is relevant to the imagination contains
most of motor imagination information under the information
theory. Information maximization algorithm of ICA (Hansen
et al., 2001) was applied, and two independent components,
imagination relevant information and imagination irrelevant
information, were extracted with the SICA. Accordingly, in SICA,
the Equation 2 is reconstructed as below:

[
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(3)

Where, the matrix of size 2 × m is the separation matrix. The
matrix Xf of size m × k is the amplitude spectrum matrix of
multi-channel. k is the length of amplitude spectrum.

According to neurophysiological observations, when subjects
engage in the unilateral limb imagination, large populations
of neurons in the contralateral cortex will be excited, and the
scalp EEG rhythm around 10 Hz (µ-rhythm) is significantly
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suppressed. Namely, the cortex is activated (ERD) (Pfurtscheller
and Neuper, 1997). This is a reliable feature of brain activity for
BCIs based on motor imagery. For evaluating the effectiveness
of SICA algorithm, the 6 channels simulation data of the adult
MI EEG without any kinds of mental disease and damage were
applied on the same hemisphere. Practically, the ERD often
appears on several channels. To imitate this phenomenon, the
µ-rhythm on two channels (the 5 and 6th channels) of the
simulation data was suppressed. The simulation data of every
channel was the sum of the sinusoidal signals with the frequency
range from 0 to 20 Hz. The amplitude of the frequencies
obtained a greater one on the low frequencies (simulation of
real EEG nature), and the sum of maximum and minimum
was under 12 uV. The frequency spectrum of simulation data
on 6 channels is shown in the Figure 2 after Fast Fourier
Transform (FFT). SICA based on information maximization
algorithm was used to extract the independent components from
the frequency spectrum information of simulation data and the
results are illustrated in Figure 2 (component 1 and component
2). The results of the simulation data indicated that the µ-
rhythm suppression or activation should be the criterion for
the separation of independent components, and the µ-rhythm
suppression information was integrated effectively and clearly.
Further, SICA is an effective tool in the amplitude spectrum for
feature extraction and integration of MI.

Projecting
The aim of CSP is the maximization of the difference between
signals of two classes after feature extraction and integration in
this study. Yk = [y1(t), y2(t),..., yp(t)]

T is defined as the kth time

domain feature after feature extraction and integration, where p
is the number of ICs. The normalization covariance matrices C1

and C2 of the two classes are calculated using Equation 4. The
covariance space C=C1 +C2 consists of the covariance matrices
of the two classes. Whiten the matrix C and receive a matrix P as
shown in Equation 5.

C1/2 =
(Y1/2 × YT

1/2)

trace(Y1/2 × YT
1/2)

(4)

PCPT = I (5)

S1 and S2 are defined as S1 = PC1P
T and S2 = PC2P

T, and then
calculate the orthogonal matrix R and the diagonal matrix D by
singular value decomposition.

Si = RDiR
T (6)

Where, i = 1, 2, as I = S1 + S2, D2 = I - D1. Therefore, when
the eigenvalue of Si (i = 1, 2) is closer to I, the eigenvalue of the
other Si (i = 2, 1) is closer to 0. The difference of the two classes
is maximization. The filter is constructed by Equation 7.

K = RTP (7)

Z = KYk (8)

The characteristic for the classifier is calculated by Equation 9.

f =
var(Z1)

var(Z1)+ var(Z2)
(9)

Where, Z1 and Z2 are the projection of Yk by the filters of two
classes.

FIGURE 2 | The results of the SICA on simulated data. The frequency spectrum information of six channels are shown from channel 1 to channel 6. Component 1

and component 2 are the ICs extracted.
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Data Processing
All trials were extracted from the two datasets with a bandpass
filter of 5–30 Hz by a fourth-order Butterworth filter before
analysis. Ak = [a1(t), a2(t),..., ag(t)]

T t = t0, ..., T was the kth
EEG record, where g is the number of electrodes. To suppress
the mutual interference of the hemispheres, and to extract and
integrate the imagination relevant information by SICA; the EEG
data were separated by hemisphere and named as Al

k and Ar
k in

every trial. After fast Fourier transform as illustrated by Equation
10, Hl

k and Hr
k were analyzed by SICA for the feature extraction

and integration. Two independent components Ul(r)
1 and Ul(r)

2
which contained imagination relevant or irrelevant information
were extracted over each hemisphere. In other words, the
imagination relevant information was separated from irrelevant
information and integrated together on each hemisphere. After
inverse Fourier transform, four temporal components Yl

1, Y
l
2,

Yr
1, and Yr

2 were rearranged as feature matrix according to

hemisphere, and the component matrix Yk =[Yl
1, Y

l
2, Y

r
1, Y

r
2]

T

was projected. The flow chart of proposed method is illustrated
in Figure 3.

Hl(r)
k (e−jωt) =

∣

∣

∣

∣

∣

T
∑

t=t0

Al(r)
k (t)e−jωt

∣

∣

∣

∣

∣

(10)

Furthermore, whether the proposed method could provide
better single trial classification capability than conventional
CSP which relied on the bandpass filter was verified by
the classification accuracy on twelve subjects of the public
datasets. The conventional CSP only applied a bandpass filter
from 5 to 30 Hz before projecting. Additionally, the results
of the competing feature extraction and integration method,
temporal ICA was also reported for comparison. The method
named as ICA-CSP which extracted imagination relevant and
irrelevant information by conventional temporal ICA before the
components were projected. Similarly, ICA-CSP extracted four
temporal components and rearranged them according to the
hemisphere as SCCSP. The Analytic Common Spatial Patterns
(ACSP), CSSSP and the Bilinear Common Spatial Pattern (BCSP)
(Yu et al., 2013) and FBCSP were also studied for comparison.
The parameters of the FBCSP were the same as the previously
reported (Ang et al., 2012). After projecting, a classifier was
adopted by LIBSVM (Chang and Lin, 2011) with Radial Basis
Function (RBF) by the algorithms. The training and test trials
did not overlap on every subject. The numbers of the training

and testing trials were half of the whole trials for every subject.
The classification performance was evaluated by classification
accuracy which is the ratio between the correct number after
the classifier and the sum of trials. K-fold cross-validation was
applied as cross-validation. The number of K was half of trials
in every subject to make sure that every data could be used as
the training data and testing data once. K was higher than 10
in all subject. The Lilliefors test was used to evaluate results if
they obeyed normal distribution. One-way Analysis of Variance
(ANOVA) with repeated measures was applied for statistical
analysis of results, and pair t-test and least significant difference
were used as a post-hoc test methods. All calculations were
performed in MATLAB.

RESULTS

Figure 4 shows the ERD/ERS maps at 5–15 Hz of the fifth subject
from the dataset IIa during the left hand MI. It indicated that
the µ-suppression appeared on several contralateral electrodes.
The classification accuracies of the six methods are presented
after cross validation in Table 2. They showed that the SCCSP
outperformed CSP, ICA-CSP, CSSSP, BCSP and ACSP, achieving
6.8, 3.5, 11.5, 26, and 15.5% higher average classification accuracy
than these algorithms, respectively. Among the 12 subjects,
SCCSP showed better performance than CSP in 10 subjects.
The Lilliefors test showed that the classification accuracy from
six algorithms obeyed the normal distribution. The probabilities
were 0.1852, 0.5, 0.3136, 0.2141, 0.5, and 0.3909 for the CSP,
SCCSP, ICA-CSP, CSSSP, BCSP, and ACSP, respectively. ANOVA
indicated that there was significant difference among the six
algorithms [F(1, 72) = 8.53, p < 0.001]. Moreover, the paired t-
test showed that the better performances of SCCSP over CSP
(p < 0.05), ICA-CSP (p < 0.05), CSSSP (p < 0.05), BCSP
(p < 0.001) and ACSP (p < 0.001) were significant. Least
significant difference, used as post-hoc test, showed that the
better performances of SCCSP over CSSSP, BCSP, and ACSP
were significant at 0.05 level. Additionally, ICA-CSP achieved
3.3% higher average classification accuracy than CSP. The kappa
value was also applied to evaluate the consistency of classification
performance.

kappa =
po − pe

1− pe
(11)

FIGURE 3 | The flow chart for data processing.
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FIGURE 4 | The ERD/ERS maps of subject five on left hand motor imagery. X-axis and Y-axis represent time and frequency, respectively.

TABLE 2 | Classification accuracies (%) of subjects.

Dataset Subjects CSP Mean (std) SCCSP Mean (std) ICA-CSP Mean (std) CSSSP (Yu et al., 2013) BCSP (Yu et al., 2013) ACSP (Yu et al., 2013)

IIa A01 84.3 (1.58) 87.1 (2.63) 85.2 (3.05) 86.1 70.8 90.2

A02 79.4 (3.27) 86.8 (3.62) 81.0 (2.63) 52.0 50 52.0

A03 82.4 (2.89) 89.7 (1.39) 89.5 (3.56) 86.1 61.8 95.1

A04 82.3 (3.15) 83.9 (1.94) 81.1 (2.73) 65.9 55.5 69.4

A05 89.1 (2.34) 90.6 (2.75) 86.8 (1.99) 68.0 49.3 56.9

A06 83.9 (2.78) 83.9 (3.11) 91.9 (4.53) 66.6 56.2 70.1

A07 74.2 (2.92) 86.4 (2.84) 80.5 (3.50) 75.0 57.6 78.4

A08 83.3 (2.59) 89.4 (2.70) 89.0 (3.15) 95.1 63.1 97.2

A09 74.1 (2.22) 96.3 (8.24) 76.8 (4.99) 93.0 76.3 91.6

IIIa k3b 93.5 (2.76) 91.3 (2.01) 87.5 (2.50) 95.5 78.8 76.6

k6b 80.0 (5.96) 90.0 (2.97) 80.0 (4.39) 55.1 63.7 56.8

l1b 83.3 (2.98) 96.7 (6.05) 100.0 (2.57) 95.0 76.6 51.6

Average 82.5 (3.0) 89.3 (3.4) 85.8 (3.3) 77.8 (16.0) 63.3 (10.3) 73.8 (17.0)

Where, po is the classification accuracy; pe denotes the probability
of expected agreement. The results of the kappa values are listed
in Table 3. The SCCSP outperformed CSP, ICA-CSP and FBCSP,
achieving 0.247, 0.094, and 0.109 higher average kappa value
than these algorithms, respectively. The Lilliefors test showed
that the kappa value from these algorithms followed the normal
distribution. The probabilities were 0.5, 0.3573, 0.5, and 0.076
for the CSP, SCCSP, ICA-CSP, and FBCSP, respectively. The
ANOVA indicated that there was significant difference among
these algorithms [F(1, 36) = 5.99, p< 0.05] in the kappa value. The
paired t-test showed that the better performances of the SCCSP

over CSP (p < 0.001) and ICA-CSP (p < 0.05) were significant.
The better performance of the ICA-CSP over CSP (p < 0.001)
was significant. Moreover, the probability of SCCSP performance
over FBCSP was 0.08. Least significant difference, used as post-
hoc test, showed that the better performance of SCCSP over CSP
was significant at 0.05 level.

The feature extraction and integration result of subject 5
is presented in Figure 5. The result presented in Figure 5A

shows the topographical view of the average time-frequency
representation of ERD/ERS values in µ-rhythm during hand
imagery. The result in Figure 5B shows the filtered result by
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the bandpass filter in CSP. Figure 5C reveals the result obtained
by feature extraction and integration algorithm proposed where
the components were converted by matrix W. The result in
Figure 5Awas consistent with the fact that the EEG suppressions
were contralateral to the imagined handmovement (Pfurtscheller
and da Silva, 1999).

To study the stability of the SCCSP, the number of the trials
for training the classifier was varied from 2 to 50 with about

TABLE 3 | Kappa scores of BCI competition IV dataset IIa.

Dataset Subjects CSP

Mean (std)

SCCSP

Mean (std)

ICA-CSP

Mean (std)

FBCSP

(Ang et al., 2011)

IIa A01 0.556

(0.0316)

0.664

(0.0526)

0.687

(0.0579)

0.747

A02 0.599

(0.0654)

0.776

(0.0724)

0.689

(0.0359)

0.416

A03 0.539

(0.0579)

0.776

(0.0277)

0.560

(0.0712)

0.824

A04 0.419

(0.0629)

0.732

(0.0388)

0.771

(0.0546)

0.400

A05 0.656

(0.0469)

0.838

(0.0549)

0.742

(0.0399)

0.608

A06 0.490

(0.0556)

0.701

(0.0622)

0.607

(0.0906)

0.309

A07 0.430

(0.0585)

0.758

(0.0568)

0.668

(0.0700)

0.849

A08 0.411

(0.0518)

0.735

(0.0540)

0.615

(0.0631)

0.787

A09 0.372

(0.0455)

0.717

(0.1648)

0.507

(0.0998)

0.772

Average 0.497

(0.0528)

0.744

(0.0649)

0.650

(0.0648)

0.635 (0.208)

10 steps. The results of classification accuracy with error bar
for every step are presented in Figure 6 after cross validation.
The average classification accuracy and standard deviation of
accuracy of the SCCSP and CSP were calculated and are
shown in Table 4. The SCCSP achieved 12.1% higher average
accuracy than CSP. The Lilliefors test shows that the average
classification accuracy from these algorithms obeyed the normal
distribution. The probabilities were 0.5 and 0.5 for CSP and
SCCSP, respectively. The ANOVA results indicated that there was
significant difference between these algorithms [F(1, 24) = 35.97,
p < 0.001] for classification accuracy. The paired t-test showed
that the better performance of SCCSP over CSP was significant
(p < 0.001). Furthermore, SCCSP had a smaller average standard
deviation of classification accuracy than CSP. A classification
of the f in Equation 9 of subject 5 is shown in Figure 7 for
visualization. The statistical results of the f under the SCCSP and
CSP are shown in Figure 8. A paired t-test analysis showed that
the SCCSP achieved a higher difference between the two classes
than CSP (p < 0.05). For quantitative analysis, the within-class
distance B and between-class distance D were applied.

B =
1

M

∑

k∈C1/C2

∥

∥dk
∥

∥ (12)

D(C1C2) =
1

N1N2

∑

i∈C1

∑

j∈C2

∥

∥dij
∥

∥ (13)

λ =
B1 + B2

D
(14)

Where, || dk || denotes the Euclidean distance between the f k
and the gravity in C1 or C2. || dij || is the Euclidean distance
between the f i in C1 and the f j in C2. To evaluate the difference
between the two classes, the ratio of within-class distance and

FIGURE 5 | Topographical view of feature extraction algorithm’s results. (A) Topographical view of average time-frequency representation of ERD/ERS values of hand

imagery in 5–15 Hz on the fifth subject. (B) Topographic distribution of average power after bandpass filter from 5 to 30 Hz. (C) Topographic distribution of average

power after feature extraction and integration method.
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FIGURE 6 | Classification accuracy with varied training datasets from 2 to 50 of the classifier in 12 subjects.

TABLE 4 | Average classification accuracies (%) and standard deviation of

accuracy (%) of the datasets IIa and IIIa in different steps.

Dataset Subjects CSP Mean (std) SCCSP Mean (std)

IIa A01 75.2 (2.7) 81.7 (3.6)

A02 69.0 (2.5) 88.3 (2.5)

A03 75.3 (2.0) 89.1 (1.8)

A04 70.48 (2.7) 84.8 (2.5)

A05 82.1 (3.0) 88.8 (2.1)

A06 78.3 (1.7) 82.3 (4.1)

A07 68.3 (1.3) 85.2 (3.9)

A08 73.8 (2.9) 86.4 (3.3)

A09 65.9 (2.4) 86.0 (2.9)

IIIa k3b 82.8 (8.9) 92.9 (6.8)

k6b 69.0 (6.0) 88.2 (1.2)

l1b 84.8 (3.0) 86.9 (1.8)

Average 74.6 (3.3) 86.7 (3.0)

between-class distance λ is derived using Equation 14. A lower
λ indicated a greater separability between classes. As a result, the
SCCSP achieved nearly twenty times reduction of λ compared to
the conventional CSP algorithm, on average.

DISCUSSION AND CONCLUSION

Before the onset of motor imagery and execution, somatosensory
area which is a part of the posterior parietal lobe needed some
information, such as location, which comes from proprioception
and visual area, etc. The prefrontal lobe and posterior parietal
lobe determine and control movements. The axons of the
prefrontal lobe and posterior parietal lobe concentrate on
the Brodmann area 6 of which including the Supplementary
Motor Area (SMA) and the Premotor Area (PMA). Most of
the corticospinal tracts connect with the efferent fibers of the
Brodmann area 6 which encodes the movement and primary
motor cortex. The independence discussion of the inhibition
mechanism and excitation mechanism on different motor-
function area of somatosensory area (Ikeda et al., 2000; Pei et al.,
2005) provided a great possibility of activation independence on
function areas which represent different parts of body in the
primary motor cortex. This reveals that EEG of one-task mental
motor imagery should be the combination of time and spatial
independent sources on motor-related areas.

In this paper, we extended the temporal ICA to amplitude
spectrum analysis. A novel SCCSP algorithm for motor imagery
classification based on SICA was proposed. This SCCSP method
provided greater classification accuracy than CSP, ICA-CSP,
CSSSP, BCSP, and ACSP. The kappa results also exhibited
a better performance than CSP, ICS-CSP, and FBCSP. SICA
is the extension of blind source separation. Therefore, the

Frontiers in Neuroscience | www.frontiersin.org 8 June 2017 | Volume 11 | Article 371

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Li et al. Single-Trial Motor Imagery Classification

FIGURE 7 | The fifth subject’s classification result of two classes on f. The circles and crosses indicated the left and right motor imagery.

FIGURE 8 | Statistical results of f under SCCSP and CSP on two classes.

better classification performances of SCCSP and ICA-CSP may
indicate that the time-frequency independence nature of motor-
related sources in this experiment. Moreover, the greater average
classification accuracy of SCCSP than ICA-CSP may show a
possibility of greater separability or independence on frequency
domain. In practice, the channels which reveal µ-suppression
varied with trials. For the volume conduction, the suppression
appeared in a wide region. This was a challenge to improve the
spatial separability of the features. However, the algorithms for
projecting were sensitive to the arrangement of feature, spatial
distribution. Under SCCSP, a feature extraction and integration
method based on SICA was applied. This method can extract
the relevant imagination information into one component. That
is, the integration of the feature algorithm could separate the
motor relevant information from blurred data on multi-channel,
concentrate relevant feature, suppress the influence of other
region which represent other un-imaged parts of the body, and
noise, and enlarge the spatial distribution separability of the
features. The pure bandpass filter applied by CSP only suppressed
the interference of other frequencies, while the information

of other irrelevant function areas and noise remained in the
frequency band selected. The results presented in Figures 5B,C

illustrate that the proposed algorithm obtained a greater spatial
separability, while the information extracted by bandpass filter
was obscure. The greater spatial separability extracted by the
feature extraction and integration algorithm was favorable for
improving the classification accuracy. Therefore, this SCCSP can
reduce the interferences both in the other frequency bands and in
the frequency band selected to improve classification accuracies.
Moreover, the results of SCCSP and spatio-spectral filter selection
method by cognitive fuzzy inference system (SCIF) (Das et al.,
2016) indicated that there was 3.3% accuracy increase of SCCSP
over SCIF on dataset IIa. Though there were different datasets,
it was comparability. SCCSP achieved 5.18% higher average
accuracy than the dynamic frequency feature selection method
mentioned in Luo et al. (2016). Therefore, SCCSP achieve a better
performance on MI classification.

SCCSP provided a lower average standard deviation of
classification accuracy than almost all other methods. The
statistical results of classification accuracy and kappa values
indicated that the feature extraction and integration of SCCSP
should be individual variability and adaptability. That is, SCCSP
can decrease the individual difference. In Table 3, ICA-CSP
and SCCSP both achieved significantly higher performances
regarding the kappa value. Therefore, ICA is an efficient feature
extraction algorithm to improve the spatial separability of
features. The results presented in Figure 6 and Table 4 illustrated
that SCCSP achieves greater average classification accuracy and a
smaller standard deviation compared with CSP, simultaneously.
The curve of the classification accuracy on SCCSP was steadier
than CSP, and it obtained greater classification accuracy under
the small training dataset. Therefore, SCCSP was less affected
by the number of training datasets. This is very important for
BCI application. Figure 7, 8 illustrated that the SCCSP algorithm
obtained a greater separability between classes after classifier.
The statistical results of λ indicated that SCCSP can improve the
classification accuracy by improving the separability of classes. In
BCI applications, there existed multi-class classification problem.
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The algorithms by spatial projection applied multiple binary-
class classification to achieve multi-class classification, such as
CSP. Thus, SCCSP can obey this way to classify multi-classes. In
this way, one class can be seperated from other classes. Moreover,
SCCSP applied SICA and spatial projection to obtain the spatial
filter, and furter, the methodmay also be extended to other higher
time resolution signal modalities analysis, such as fNIRS.

In conclusion, in this study, SCCSP has been introduced
to the CSP family. This algorithm naturally integrates the
relevant information and suppresses the influence of irrelevant
information. The accuracy merits of SCCSP as supplemental
to the broadband CSP filtering have been attentively validated
on the public datasets of motor imagery EEG signals. The
quantitative comparisons suggest superior discrimination and
stable capability of the proposed method over the conventional
CSP. Moreover, the test with varied training datasets shows
excellent performance in small training datasets, and this is
important in practical application. However, SCCSP spends

longer time than CSP. This algorithm needed to be optimized.
The SCCSP is affected by the µ-rhythm oscillation on
the homolateral hemisphere. For improving the classification
accuracy, the suppressed method of the homolateral hemisphere
influence should be studied in further studies. In the future, we
plan to study the SCCSP for multi class classification.
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