
ORIGINAL RESEARCH
published: 30 June 2017

doi: 10.3389/fnins.2017.00378

Frontiers in Neuroscience | www.frontiersin.org 1 June 2017 | Volume 11 | Article 378

Edited by:

Jianhua Zhang,

East China University of Science and

Technology, China

Reviewed by:

Waldemar Karwowski,

University of Central Florida,

United States

Hari S. Sharma,

Uppsala University, Sweden

Xiaochuan Pan,

East China University of Science and

Technology, China

Beatriz Gil-Gómez De Liaño,

Universidad Autonoma de Madrid,

Spain

*Correspondence:

Chang S. Nam

csnam@ncsu.edu

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 19 December 2016

Accepted: 19 June 2017

Published: 30 June 2017

Citation:

Kim NY, Wittenberg E and Nam CS

(2017) Behavioral and Neural

Correlates of Executive Function:

Interplay between Inhibition and

Updating Processes.

Front. Neurosci. 11:378.

doi: 10.3389/fnins.2017.00378

Behavioral and Neural Correlates of
Executive Function: Interplay
between Inhibition and Updating
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Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States

This study investigated the interaction between two executive function processes,

inhibition and updating, through analyses of behavioral, neurophysiological, and effective

connectivity metrics. Although, many studies have focused on behavioral effects of

executive function processes individually, few studies have examined the dynamic

causal interactions between these two functions. A total of twenty participants from

a local university performed a dual task combing flanker and n-back experimental

paradigms, and completed the Operation Span Task designed to measure working

memory capacity. We found that both behavioral (accuracy and reaction time) and

neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task

(i.e., flanker task) were influenced by the updating load (n-back level) and modulated by

working memory capacity. Using independent component analysis, source localization

(DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study

demonstrated that manipulation of cognitive demand in a dual executive function task

influenced the causal neural network. We compared connectivity across three updating

loads (n-back levels) and found that experimental manipulation of working memory load

enhanced causal connectivity of a large-scale neurocognitive network. This network

contains the prefrontal and parietal cortices, which are associated with inhibition and

updating executive function processes. This study has potential applications in human

performance modeling and assessment of mental workload, such as the design of

training materials and interfaces for those performing complex multitasking under stress.

Keywords: working memory, executive function, EEG, granger causality, effective connectivity, cognitive control

network

INTRODUCTION

Most daily tasks require the ability to mentally process and maintain information, especially when
one is trying to adapting to activities where practiced cognitive processes are not useful (Nee et al.,
2013). Some examples include planning for a road trip, performing mental math, playing games
such as chess, and completing a project on time and under budget. Each of these tasks requires
flexible, long-term thinking, recalling knowledge, and inhibiting distractions, which are collectively
termed executive function (EF). EF is defined as “processes necessary to control or regulate other
cognitive processes in the service of goal-directed behavior” (Minzenberg and Laird, 2009, p. 3).
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Since EF is defined as a group of processes, there has been a
focus on fractionating this concept into three distinguishable
cognitive processes: (1) updating, coding incoming information
for task relevance, then revising the items in working memory
by replacing no longer relevant information with more relevant
information (Morris and Jones, 1990), (2) shifting, switching
between multiple tasks, operations or mental sets (Monsell,
1996) and (3) inhibiting, controlling the suppression of prepotent
responses (Baddeley, 1996a,b; Miyake et al., 2000). However,
fractionation of executive function led to further investigation
into whether these components shared a common, underlying
mechanism (unity hypothesis), or if they were completely
separable (diversity hypothesis) (Miyake et al., 2000; Jurado and
Rosselli, 2007).

Behavioral studies investigating performance on various
complex cognitive tasks (e.g., Wisconsin Card Sorting Task)
or the correlation between performance on multiple EF tasks
have shown that there are individual differences in EF ability,
with subjects performing well on some complex tasks but not
others or poor correlation between the single EF tasks (Lehto,
1996; Godefroy et al., 1999). Further investigation into these
research paradigms revealed that these studies are limited by
the impurity problem. That is, because EFs operate on other
cognitive processes, it is difficult to design paradigms that directly
target a single component (Miyake et al., 2000). Miyake et al.
(2000) aimed to address the EF unity or diversity question.
To avoid the impurity problem, simple cognitive tasks were
identified so that each task used only one primary EF (see
Table 1). Behavioral performance measures on these tasks for
137 college students were analyzed via latent variable analysis,
leading to the conclusion that there is evidence that updating,
shifting, and inhibiting share a common underlying process.
It has been suggested that this common underlying process is
controlled attention (Engle, 2002). Furthermore, neuroimaging
studies using similar simple EF tasks, as listed in Table 1,
indicated that EF components share a common brain network,
further supporting the unity hypothesis (Niendam et al., 2012).

Given that both behavioral and neuroimaging evidence
supports the unity of the EF components, there are additional

TABLE 1 | Summary of simple cognitive tasks used to investigate individual

executive functions.

Executive

function

Tasks from Miyake et al.

(2000)

Other tasks

(Niendam et al., 2012)

Shifting • Plus-Minus • Sorting Tasks

• Number-Letter

• Local-Global

Updating • Keep Track • N-back

• Tone Monitoring • Sequence Recall

• Letter Memory • Sternberg Task

Inhibition • Antisaccade • Erikson Flanker Task

• Stop-Signal • Simon Task

• Stroop • Go/No-Go Task

questions regarding the interaction between the three EF
components (shifting, updating, and inhibition) and the
underlying mechanism (i.e., controlled attention) unifying these
three components.

There are two opposite hypotheses which would show two
possible results: (1) the use of multiple EFs, requiring increased
attentional control, will enhance performance or (2) it will
diminish performance (de Fockert, 2013). Determining which of
these two hypotheses is supported has important implications
in human performance modeling, that is, do tasks requiring
intricate shifting, updating and inhibition to achieve task goals
result in better performance than simpler tasks requiring less
executive function, such as following simple instructions in a
distraction-free environment? The present study focused on the
relationship between EFs, specifically aiming to investigate the
implications of modulating updating load on the inhibition
process. Simple cognitive tasks (i.e., n-back and Erikson Flanker
tasks) were employed to appropriately and independently
manipulate both updating and inhibiting EF components.

Important insights into the relationships between task
difficulty (the use of multiple EF, increased attentional load)
and performance is provided by dual-task (DT) paradigms that
modulate working memory (WM) load on single EF tasks
(Vandierendonck, 2014; Gil-Gómez de Liaño et al., 2016). DT
studies investigating the impact of WM load on the inhibition
EF component utilize the Eriksen Flanker task (Eriksen and
Eriksen, 1974), where the subject is required to distinguish
between incongruent trials, in which the middle, target stimulus
conflicts with the flanking, distractor stimuli (e.g., << > <<)
and congruent stimuli (e.g.,<< < <<), and Stroop task (Stroop,
1935), where the subject must inhibit meaning of the word and
respond with the color of the text. Using the flanker task, Lavie
et al. (2004) found support for diminished performance under
high loads. In the DT condition, a varying number of probes
were presented for future recall after completion of the flanker
task, which resulted in a performance decrement when compared
to single task performance, suggesting that it is more difficult to
inhibit the incongruent flanker stimuli when WM is loaded. This
was interpreted as a depletion of common attentional control
processes necessary in both tasks, resulting in poor suppression of
irrelevant flanker stimuli in the DT condition (Lavie et al., 2004).
While this study provided insight on the impact of WM load on
inhibition, it did not include a quantitativemeasure of attentional
resources. Thus, it is still unclear how the authors can conclude
that attentional resources were depleted for all subjects in the DT
condition.

Conversely, in Kim et al. (2005) performance under high
loading was shown to enhance performance on the Stroop task.
In the condition whereWM load and the distractor (an additional
stimulus) were in the same modality, Stroop performance was
improved. The authors interpreted these results as an increase in
activation of attentional processes under high WM load, which
serve to facilitate inhibition. Again, this study investigated impact
of WM load on inhibition but did not include quantitative
measures of WM capacity. As can be seen in these inhibition
tasks, there was no consensus on the impact of WM load on EF
performance; there are studies that report that an increase inWM
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load leads to reduced performance (e.g., Lavie et al., 2004), little to
no impact on performance (e.g., Woodman and Luck, 2007), and
improved performance (e.g., Kim et al., 2005). The updating EF
is commonly evaluated using the n-back task, where the subject
is required to respond to the target stimulus only if it matches
the stimulus presented n-levels previously. Updating demand is
modulated by increasing the n-back level; higher n-back levels
increase task difficulty as compared to lower n-back levels (Owen
et al., 2005).

For both inhibition and updating tasks, reaction time and
accuracy are indicators of behavioral performance. In single
task conditions, increased updating demands in high n-back
levels result in increased RTs and decreased accuracy as
compared to low n-back levels (Jaeggi et al., 2010). Likewise,
incongruent Flanker trials results in increased RTs and decreased
accuracy compared to congruent Flanker trials because they
require increased inhibitory control (Eriksen and Eriksen, 1974).
Additionally, inhibition and updating tasks have been observed
to impact neurophysiological measures, primarily the amplitude
of the event related potential (ERP) around 300ms post-
stimulus presentation (P300), an indicator of internal attention
distribution, and the alpha band power (Watter et al., 2001).
Gevins and Smith (2000) observed that theta power increased
and upper alpha power decreased under higher cognitive
workloads. Additionally, Scharinger et al. (2015) demonstrated
that upper alpha band power was modulated by cognitive
workload level (n-back level). However, this group did not
observe a significant difference in theta power with change in
n-back level. Therefore, this study is limited to analysis of mean
upper alpha band power. In n-back paradigms, alpha band power
decreases at parietal electrodes and P300 amplitude decreases
at increased n-back levels (Gevins et al., 1997). In incongruent
flanker trials, P300 amplitude decreases compared to congruent
trials (Pratt et al., 2011). Also, trials that require increased
attentional control, such as in the incongruent flanker trials,
haven been shown to decrease alpha band activity in the parietal
lobe (Alfonso et al., 2013).

Lastly, studies that couple EF tasks with high spatial resolution
neuroimaging methods, such as functional MRI, have identified
areas of the brain responsible for attentional control and EF. In
a recent meta-analysis of 193 neuroimaging studies, Niendam
et al. (2012) identified activation of the cognitive control network
(CCN) in the frontal and parietal areas for both inhibition and
updating tasks. This network includes the dorsolateral prefrontal
cortex (Brodmann Area or BA 9, 46), anterior cingulate cortex
(BA 32), superior and inferior parietal lobe (BA 7, 40), prefrontal
cortex (BA 6, 10), temporal cortex (BA 13), occipital cortex (BA
19). Also, activation was seen in the subcortical regions including
the thalamus, caudate, putamen, and cerebellar declive. The
meta-analysis also identified activation of the cingulate (BA 32,
24) and temporal (BA 13, 37) cortex unique toWM and updating
tasks (Niendam et al., 2012). Scharinger et al. (2015) combined
n-back and flanker task stimuli into a single-task paradigm to
investigate the relationship between inhibition and updating EFs.
This study found that flanker task performance was improved
in trials with increased updating load for both behavioral and
neurophysiological measures, which supports the findings of

Kim et al. (2005). Scharinger et al. (2015) interpreted their
results as increased activation of the attentional network under
increased updating load, leading to enhancement of inhibitory
control and improved performance. However, their analysis was
limited to correlation of brain activity (i.e., P300 and alpha
power) between conditions and did not explicitly address the
mechanism underlying the EF relationship. That is, they did not
localize the sources of brain activity or investigate the directional
relationships that would support an increase in activation.

The goal of this study was to investigate the relationship
between inhibition and updating EF processes at behavioral,
neurophysiological, and neural connectivity levels. A dual-task
paradigm combining flanker and n-back stimuli was used to
modulate updating load and evaluate inhibitory control. All
subjects were categorized by the working memory capacity,
as measured by the operational span task (OSPAN), to
address the shortcomings of previous studies with regard to
the depletion/availability of attentional resources (Turner and
Engle, 1989). Additionally, this study expanded on Scharinger
et al. (2015) by exploring brain activity beyond correlation
relationships by measuring effective connectivity. Specifically,
Granger Causality analysis (GC) was used to determine the
directed causal dependencies of brain regions from the EEG
signal. GC is a method for investigating whether one time-
series correctly predicts another and allows us to analyze brain
circuit connections and how they change over the course of
a cognitive process (Coben and Mohammad-Rezazadeh, 2015).
We hypothesized that, similar to Scharinger et al. (2015),
an increase in updating load would affect both behavioral
and neurophysiological measures and these metrics would be
modulated by individual working memory capacity (i.e., OSPAN
score). Additionally, we hypothesized that source localization
would identify neural sources within the CCN in the frontal
and parietal areas. Lastly, we hypothesized that the effective
connectivity between high updating load conditions would
exhibit enhance activation of the CCN as compared to the
connectivity observed in low load conditions.

METHODS

Participants
A total of twenty participants (8 male; 12 female) from a
local university participated in the present study. Participants
were given monetary compensation for their participation.
All participants successfully completed the entire experiment
and were included in the data analyses, whose mean age
was 21.8 years (standard deviation, SD = 2.67). Participants
reported being free of any medical or neurological disorders
and had normal or corrected vision. Participants gave their
written consent after a detailed explanation of the experiment
procedure which was reviewed and approved by the University’s
Institutional Review Board.

Stimuli and Experimental Task
An arrowhead version of the flanker task (Eriksen and Eriksen,
1974; Kopp et al., 1996) was combined with a working memory
n-back task (Braver et al., 1997). Seven letters were used as stimuli
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in the n-back task (C, G, H, K, T, Q, or W) (Klawohn et al.,
2016). In other words, two types of stimuli (n-back and flanker)
were interleaved on each trial. At the beginning of each trial, one
letter was displayed for 500ms, followed by a black screen for
750ms, and then flanker stimuli was presented (five horizontal
arrowheads) for 500ms, followed by a black screen for 750ms.
The total duration of each trial, regardless of letter or flanker
stimuli, was 1,250ms. Refer to Figure 1 for stimulus presentation
and timing for one trial.

There were three n-back conditions (0-back, 1-back, and 2-
back). Six blocks, two at each n-back condition, were completed
by each participant in a counterbalanced order. Each block
consisted of one n-back level. Before the beginning of each
block, the instructor let them know the difficulty level of n-
back conditions. The stimuli sequence for each block had an
equal number of n-back and flanker stimuli (120 trials each).
Congruent and incongruent flanker stimuli were presented with
equal likelihood for each block and n-back stimuli consisted of
20% target and 80% non-target letters (Klawohn et al., 2016). The
participants were instructed to respond quickly and accurately
to the appropriate n-back target stimuli. Furthermore, subjects
were instructed to press either left or right buttons with their left
or right index finger based on the direction of the mid position
arrowhead, irrespective of the letter stimuli presented in between
(Klawohn et al., 2016). Each block lasted ∼5min, and the entire
testing procedure, including breaks, lasted∼50min.

Apparatus and Materials
Operation Span Task (OSPAN)
One of the common working memory span tasks that is
used to capture the cognitive construct of working memory
is the Operation Span task (Turner and Engle, 1989; Liu
et al., 2016). The OSPAN has proven to be a reliable and
valid indictor of overall working memory capacity (Conway
et al., 1999; Redick and Engle, 2006). The present study
employed the automated version of the Operation Span task to
assess participants’ overall working memory capacity, because
the automated OSPAN can quickly administered, completely
computerized, and automatically scored (Unsworth et al., 2005).
The automated OSPAN consisted of three practice sessions
(letter span, math problem, both of them combined) and one
experimental session with 75 trials. For each experimental trial,
participants first see a math equation, then indicate whether the
presented answer is correct, and finally remember a letter for
later recall. The present study adopted an 85% accuracy criterion
on the math operations for all participants in order to ensure

FIGURE 1 | Schematic of stimulus sequence and timing of the n-back task

with flanker stimuli for 1 trial.

that participants were not trading off between solving the math
operations and remembering the letters. The entire task took
∼20min to complete (Unsworth et al., 2005).

EEG Acquisition and Pre-processing
EEG signals were recorded using an EEG cap (Electro-
Cap International, Inc.) embedded with 48 active electrodes
covering frontal, central, parietal and occipital areas, based
on the modified 10–20 system of the International Federation
(Sharbrough et al., 1991). Recordings were referenced to the
left ear lobe and grounded to between AFz and Fpz. EEG
signals were amplified with a g.USBamp amplifier (g.tec Medical
Engineering). EEG signals were sampled at 512Hz and band-pass
filtered between 0.01 and 75Hz to take out unwanted frequency
bands, and notch-filtered at 60Hz to remove US electrical mains
hum.

EEG data was epoched using event-locked time windows,
ranging from 500ms proceeding subject response (button
press) to 1,250 ms following subject response. EEG data were
visually inspected to exclude trials that contained electrode
drift noise and muscle movement-related noise. Independent
component analysis was used to decompose the EEG signal into
independent components (ICs). All ICs were visually inspected
and components that resembled EOG activity were rejected
from further analysis. Signal acquisition and processing were all
conducted using BCI2000 system (Schalk et al., 2004), MATLAB
(The MathWorks), and EEGLAB (Delorme et al., 2011).

Experimental Design and Independent
Variables
The experiment design in this study consisted of a 3 (updating
demand level) x 2 (inhibition demand level) within-subjects
design.

Updating Demand Level
The necessity of updating working memory was manipulated
using an n-back task with three difficulty levels (0-, 1-, and 2-
back). In the n-back task, participants are required to decide
whether a currently presented stimulus matches the stimulus
previously presented “n” trials back. In the 0-back condition,
participants were instructed to respond to a single predetermined
target stimulus (e.g., “G”). In the 1-back condition, the target
was defined as a letter that was identical to the one immediately
preceding it (e.g., one trial back). In the 2-back condition, the
target was defined as a letter identical to the one which was
presented two trials back. Participants pressed a button for targets
(∼20% of trials) with their dominant hand (Klawohn et al., 2016).
The n-back paradigms have been employed in many human
studies to investigate the neural basis of executive functions,
in particular working memory, because the task requires on-
line monitoring, updating, and manipulation of remembered
information and is therefore assumed to place great demands on
key processes within working memory (Owen et al., 2005).

Inhibition Demand Level
Two levels of the inhibition demand (congruent vs. incongruent)
were manipulated using the flanker task, which is traditionally
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used to measure the efficiency of executive function processes
due to conflicts in the stimuli presented (Eriksen and Eriksen,
1974). The flanker task requires participants to evaluate
the direction of the center, target arrow and the flanking
arrows, which present cognitive interference (Nigbur et al.,
2011). Flanker stimuli were either congruent (i.e., target
and flanker arrows point in the same direction) or were
incongruent (i.e., target and flanker arrows point in opposite
directions (Kopp et al., 1996). Additionally, participants were
asked to press a button only for incongruent flanker trials,
thus presenting response conflict. Inhibition was required to
successfully overcome the cognitive interference between the
target and flanker stimuli and accurately selected the appropriate
response.

Dependent Variables and Data Processing
To investigate the roles of two EF processes (updating
and inhibition), this study measured several data at
behavioral, neurophysiological and neural connectivity
levels.

Behavioral Data
Signal detection accuracy and reaction times were evaluated for
both the flanker and n-back tasks at each n-back level.

Accuracy (%)
In the flanker tasks, a hit was a correct response and a false alarm
(FA) was an incorrect response or an omission of a response
to a stimuli. Flanker task hit, FA, correct rejection, and miss
rates for each n-back level were averaged over all participants. In
the n-back tasks, a hit was a response to the appropriate target,
while a FA was a response to an incorrect target. Hit, FA, correct
rejection, and miss rates for the n-back task were averaged over
all participants at each n-back level.

Reaction Time (RT, Millisecond)
For each subject response, reaction time was calculated as the
difference between stimuli presentation and the down keystroke.
Both hit and FA reaction times were evaluated for incongruent
flanker (hit), congruent flanker (FA), and n-back stimuli and then
averaged over all individuals at each n-back level.

Neurophysiological Data
Both time-frequency analysis and ERP analysis were performed.
These measures were evaluated only for the incongruent and
congruent flanker trials with correct responses and averaged for
each n-back level.

Event Related Potential (ERP) Analysis
The positive potential occurring between 250 and 500ms
following stimulus presentation (P300) has been associated
with allocation of attentional resources (Watter et al., 2001).
Mean P300 amplitude was determined for both congruent and
incongruent stimuli within this time window. The modulation of
P300 amplitude have been observed over the parietal electrodes,
thus Pz was used for this analysis (Watter et al., 2001; Polich,
2007). Mean P300 amplitude was determined for incongruent
flanker trials at each n-back level.

Spectral Analysis
A spectral analysis was performed over the 2–32Hz frequency
range for each participant and task condition. The frequency
band power was calculated for the time window from 0 to
1,250ms post-stimulus presentation, which has been observed to
have maximal oscillatory effects for both updating and inhibiting
executive functions (Scharinger et al., 2015). The effects of
working memory load have been observed in the alpha band over
the parietal electrodes, therefore the mean frequency band power
for the alpha frequency was calculated at the Pz electrode for each
participant and task condition (Gevins et al., 1997).

Effective Connectivity Analysis
Following ICA and artifact rejection procedures, described
above, all retained ICs were localized using DIPFIT. The
Source Information Flow Toolbox (SIFT) for EEGLAB was
used to evaluate effective connectivity, the causal flow of
information between brain sources (Delorme et al., 2011).
A multivariate autoregressive model (MVAR) was fit to the
ensemble-normalized ICs using the Vieira-Morf algorithm with
a 350ms window length, 30 step size, and 39 model order. Model
order was optimized from 1 to 40, such that the Hannan-Quinn
criterion for each participant wasminimized. Then the optimized
model order values were averaged across all participants.

To validate the MVAR model, the whiteness of the residuals,
model stability, and percent consistency were determined for
each trial. The auto-correlation function (ACF) and the Li-
McLeod (LMP) Portmanteau tests were used as whiteness test
criteria. The LMP test was used due to its improved small-
sample properties and lack of variance inflation compared to
other available Portmanteau tests (Mullen, 2010). In addition to
meeting the ACF and LMP criterion, the model stability was less
than zero and percent consistency was above 85% for each trial,
indicating a validated model.

Following model fitting and validation, SIFT was used to
evaluate connectivity. The direct Directed Transfer Function
(dDTF), a measure of frequency-domain conditional Granger
causality, was estimated from the fitted model coefficients. The
Directed Transfer Function (DTF) allows for analysis of short
epochs of EEG activity to analyze information flow between
different brain structures, while making it possible to determine
spectral content of the signal (Kamiński et al., 2001). However,
DTF is limited by its ability to differentiate between direct and
indirect connections. By combining DTF and partial coherence
measures, dDTF quantifies conditional, directionally-specific
information transfer between sources over the trial time period at
each frequency (Korzeniewska et al., 2003). In this study, dDTF
was determined over the 2–32 Hz frequency range. A percentile
threshold of 97.5% was used for each frequency to visualize
relevant directional connections between brain sources.

Procedure
All experiments were conducted in a quiet, dimly lit room where
each participant was seated in a comfortable chair∼60 cm from a
17′′ computermonitor. All participants were instructed to remain
relaxed and avoid gross body movement during the experiment.
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After informed consent was given, participants were
instructed to completed the automated version of the Operation
Span task to assess participants’ overall workingmemory capacity
(Unsworth et al., 2005). Following the pre-experimentation
survey session, participants proceeded through a training session
in order to become familiarized with the experiment task
(combined n-back and flanker task). Training was repeated until
participants reached a criterion of no more than 36 errors out of
the 60 trials (i.e., at least 60% correct responses) before they could
move on to the main experiment. No tested participants failed to
reach this criterion and had to repeat additional training trials.
Afterwards participants performed the main experimental tasks.
The experiment used a 3 × 2 repeated within-subjects factorial
design featuring six conditions. Each participant completed
six blocks, each block containing 240 alternating n-back and
flanker trials (120 trials of each task). The overall flow of the
experimental procedure is depicted in Figure 2. A 5min break
was given between each block. Block order was constant for each
participant.

Statistical Analysis
Statistical analysis was performed in JMP (JMP, Version 12.
SAS Institute Inc.) for behavioral and neurophysiological data.
For all analyses, the level of significance was set to α = 0.05.
In addition, effect size (ηp

2) and Macuchly’s test of sphericity
(ε) were reported. Every subject was exposed to an experiment
with 2 (congruent, incongruent) × 3 (n-back level) mixed factor
design. However, we decided to focus only on the data under
the incongruent condition for relevance of neural connectivity
study. Several studies (Nigbur et al., 2011; Scharinger et al.,
2015) observed that the level of demand on inhibitory control
(i.e., incongruent relative to congruent flanker trials) resulted in
increased RTs, theta frequency band power, and pupil dilation as
well as in decreased alpha frequency band power and accuracy.

These studies have already compared congruent and incongruent
trials. On the other hand, Klawohn et al. (2016) utilizes dual
task (n-back + flanker) but only analyzes the main effect of
the n-back level rather than comparing the flanker conditions
(between congruent and incongruent). According to that, our
study only focuses on incongruent trials for the relevance of
neural connectivity analysis. For accuracy data, separate repeated
measures analyses of covariance (ANCOVAs) were performed
under incongruent flanker trials with factors n-back level (n= 0,
1, 2), andOSPAN score treated as a continuous covariate variable.
(Conway et al., 2005) For reaction time data, ANCOVAs were
performed only for incongruent Flanker trials with factors n-
back level and OSPAN score. ANCOVAs also were performed
for P300 amplitude and upper alpha band power with factors n-
back level (n= 0, 1, 2) only for incongruent flanker condition and
modulating factor of OSPAN score.

RESULTS

Behavioral Data
Accuracy (%)
During n-back test, for hit rate, we found significant main effects
of n-back level [F(2, 113) = 42.2776, p < 0.0001, ε = 0.808, ηp

2

= 0.631] and significant modulating effect of OSPAN [F(1, 113)
= 11.1574, p = 0.0011]. Table 2 shows mean value and standard
deviation of hit and false alarm (FA) rates during n-back and
flanker tasks. With the increase of n-back level (0-back: 98.4%,
1-back: 93.7%, 2-back: 79.6%; all n-back level Hit rate were
significantly different), hit rate decreased during n-back test.
Tukey’s HSD (honest significant difference) showed that 2-back
was significantly different with other two n-back levels (0-back
and 1-back) for the hit rate of n-back test.

As previously mentioned, the experimental design of current
study was 2 (congruent, incongruent) x 3 (n-back level) mixed

FIGURE 2 | Experimental procedure.
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TABLE 2 | Mean value and standard deviation of hit and false alarm (FA) rates.

N-back Flanker

Hit rate

(%)

False alarm

rate (%)

Hit rate

(%)

False alarm

rate (%)

0-back 0.984(0.03) 0.005(0.01) 0.998(0.01) 0.028(0.04)

1-back 0.937(0.08) 0.017(0.02) 0.997(0.01) 0.033(0.03)

2-back 0.796(0.14) 0.069(0.06) 0.989(0.02) 0.039(0.06)

factor design. However, we only analyzed data under the
incongruent condition for the flanker task. For the false alarm
(FA) during n-back test, the main effect n-back level, showed
significant effect [F(2, 113) = 32.0015, p < 0.0001, ε = 0.555, ηp

2

= 0.408], but no significant modulating effect of OSPAN[F(2, 113)
=1.442, p= 0.2327] was found. FA increased with the increase of
n-back level (0-back: 0.5%, 1-back: 1.7%, 2-back: 6.9%). Tukey’s
HSD test showed that 2-back was significantly different with
other two n-back levels (0-back and 1-back).

For the hit rate during flanker test, the main effect, n-back
level [F(2, 113) = 6.5119, p = 0.002, ε = 0.821, ηp

2
= 0.167]

showed significance and marginally significant modulating effect
of OSPAN was found[F(2, 113) = 4.3889, p = 0.0385]. With
the increase of n-back level, hit rate of flanker test decreased
but the lesser degree compared with n-back hit rate (0-back:
99.8%, 1-back: 99.7%, 2-back: 98.9%). For the FA of flanker test,
only OSPAN was found marginally significant modulating effect
[F(1, 113) = 7.3598, p= 0.0077].

Reaction Time (RT, s)
Table 3 shows mean value and standard deviation of reaction
times (RTs) on correct and incorrect responses during n-back and
flanker tasks. RTs increased with increasing n-back levels.

RTs of hit increased with the increase of n-back level (0-
back: 510ms, 1-back: 515ms, 2-back: 587ms; all n-back level
RTs were significantly different). In addition, RTs of false alarm
also increased with the increase of n-back level. (0-back: 522ms,
1-back: 568ms, 2-back: 636ms) The main effect n-back level
showed significant effect on RT of hit for n-back test [F(2, 113)
= 13.498, p < 0.0001, ε = 0.806, ηp

2
= 0.276], but non-

significant effects were modulated by an individual working
memory capacity, which is OSPAN score, [F(1, 113) = 0.0481,
p = 0.827]. The post-hoc analysis, Tukey’s honest significant
difference (HSD) test, showed that 2-back was significantly
different with other two back levels (0-back and 1-back) for
the RT of hit in n-back test. The n-back level effect showed
significant effect on the RT of false alarm [F(2, 113) = 1.636, p
= 0.049, ηp

2
= 0.427] but no modulating effect. The Tukey

HSD showed that all three levels of n-back were significantly
different with each other for the RT of false alarm in n-back
test.

During the flanker test, RTs of the hit increased with the
increase of n-back level (0-back: 478ms, 1-back: 480ms, 2-back:
505ms) and those outcome were significantly affected by main
effects, n-back level [F(2, 113) = 4.4740, p= 0.0136, ε = 0.653, ηp

2

= 0.210] and showed significant modulating effects of OSPAN

TABLE 3 | Mean value and standard deviation of reaction times (RTs) on correct

and incorrect responses.

N-back Flanker

RT correct (s) RT incorrect (s) RT correct (s) RT incorrect (s)

0-back 0.510(0.04) 0.522(0.24) 0.478(0.03) 0.389(0.07)

1-back 0.515(0.07) 0.568(0.11) 0.480(0.04) 0.405(0.07)

2-back 0.587(0.10) 0.636(0.14) 0.505(0.06) 0.371(0.08)

[F(1, 113) = 11.7384, p = 0.0009]. The post-hoc analysis, Tukey
HSD test showed that 2-back was significantly different with
other two back levels (0-back and 1-back) for the RT of hit during
flanker test.

Correlation Analysis
According to the Table 4, N-back level and hit rate have shown
strongly negative correlation (r=−0.686, p< 0.005). False alarm
rate during n-back task and n-back difficulty level presented
positive correlation (r = 0.728, p < 0.005). Lastly, reaction time
for n-back (r = 0.368, p < 0.01) also was significantly correlated
with n-back level. In terms of OSPAN, n-back hit rate(r = 0.373,
p < 0.01), flanker reaction time (r = −0.372, p < 0.01) and
P300 amplitude (r = −0.387, p < 0.01) have shown significant
correlation with OSPAN score.

Neurophysiological Data
For P300 amplitude (µV), with the increase of n back level,
P300 amplitude decreased (0-back: 6.493, 1-back: 6.250, 2-back:
3.911). N-back level showed significant effect [F(2, 95) = 154.6,
p = 0.0009, ε = 0.938, ηp

2
= 0.394] but no modulating effect

of OSPAN was found. Tukey’s HSD test showed that 2-back was
significantly different with other two n back levels (0-back and 1-
back) for P300 amplitude. For the upper alpha power (µV2/Hz)
(0-back: 5.130, 1-back: 5.071, 2-back: 4.411), no significant effect
was found. Figure 3 shows mean P300 amplitude and upper
alpha power at Pz. With the increase of n back level, P300
amplitude decreased. Tukey’s HSD test showed that 2-back was
significantly different with other two n back levels (0-back and
1-back) for P300 amplitude.

Mean P300 amplitude, as measured 250 to 500ms post-
stimulus on-set, over the parietal region decreased as cognitive
workload (n-back level) increased. Figure 4 depicts the ensemble
average EEG waveform for the Pz electrode on Flanker trials
across all subjects at each workload level.

Effective Connectivity Data
The data is common average referenced and zero phase high
pass filtered at 0.1Hz. The datasets were segregated into correct
responses, time-locked to the button press, and separated
into maximally independent components using Infomax ICA
(Independent component analysis; Bell and Sejnowski, 1995).
These sources were localized using a single or dual-symmetric
equivalent-current dipole model using a four-shell spherical
head model co-registered to the subjects’ electrode locations by
warping the electrode locations to the model head sphere using
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TABLE 4 | Correlation between n-back difficulty level, OSPAN score, behavioral data and neurological data (Pearson’s correlation coefficient).

Variables N-back OSPAN Behavioral Neurological

n-back Hit n-back FA Flanker hit Flanker FA n-back RT Flanker RT P300 UA

N-back 1 0 −0.686*** 0.728*** −0.359 0.018 0.368* 0.200 −0.324 −0.062

OSPAN 1 0.373* 0.106 0.196 0.251 0.032 −0.372* −0.387* 0.083

n-back hit 1 0.324 0.324 −0.005 −0.287 −0.286 0.239 −0.034

n-back FA 1 −0.396* 0.094 0.154 0.203 −0.252 −0.059

Flanker hit 1 0.165 −0.217 −0.434* 0.013 −0.063

Flanker FA 1 −0.254 −0.529* 0.081 −0.137

n-back RT 1 0.464* −0.037 −0.012

Flanker RT 1 0.157 0.186

P300 1 0.348

UA 1

Correlation is significant at the level ***p < 0.005, **p < 0.05, *p < 0.01 (2-tailed). Pearson’s correlation was used, and sample size is (n = 19).

FIGURE 3 | Mean P300 amplitude and upper alpha power at Pz. The error bar

indicates the 98% confidence interval of one standard error. **p < 0.05.

tools from the EEGLAB DIPFIT plug-in. Table 5 lists the cortical
regions associated with Brodmann’s areas (BAs) localized during
0-, 1-, and 2-back tasks.

For 0-back level, ICA revealed 7 independent components.
Their dipoles were source localized to following regions: right
middle temporal gyrus (BA 21), right primary visual cortex (V1)
(BA 17), right ventral anterior cingulate (BA 24), left anterior
prefrontal cortex (BA 10), right and left angular gyrus (BA 39)
and left secondary visual cortex (V2) (BA 18). Under 1-back
level, ICA revealed 8 independent components. Their dipoles
were source localized to following regions: left secondary visual
cortex (BA 18), right middle temporal gyrus (BA 21), right
thalamus (BA 50), right primary visual cortex (BA 17), right
anterior prefrontal cortex (BA 10), right and left angular gyrus
(BA 39) and dorsolateral prefrontal cortex (DLPFC) (BA 9). For
2-back level, ICA revealed 6 independent components. Their
dipoles were source localized to following regions: left secondary
visual cortex (BA 18), right middle temporal gyrus (BA 21), right
primary visual cortex (BA 17), right anterior prefrontal cortex
(BA 10), right thalamus (BA 50), and right parietal cortex (BA 5).

Time-Frequency Distribution
Mean causal information transfer (averaged across all
participants) from each IC (column) to all other localized
ICs (rows) as measured by the dDTF, is shown in Figure 5.
Each cell of the matrix shows the time-frequency distribution
(1–40Hz) of information transfer between a respective pair
of ICs, with highest information transfer indicated by warm
colors.

Under the 0 back condition, the boxed area (a) highlighted
in red [row 2, col 6] shows information flow at different times
and frequencies from the source column 6 (Parietal) to the source
row 2(V1). The boxed area (b) [row 5, col3] shows casual flow
from the source column 3 (ACC) to the source row 5 (Parietal).
On the other hand, under 1 back condition, two boxed area
(c) and (e) show bi-directional causal flow between V2 and
right parietal cortex. The boxed area (d) indicates flow form
the source column 8 (Left Parietal) to the source row 4 (V1).
Lastly, under the 2 back condition, the boxed area (f) shows
causal flow from the source column 6 (Parietal cortex) to the
source row 1 (V2). The boxed area (g) shows information flow
from the source column 4 (PFC) to the source row 3 (V1).
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FIGURE 4 | ERP waveforms at Pz electrode. (A) Mean ERP curve for 0-back level. (B) Mean ERP curve for 1-back level. (C) Mean ERP curve for 2-back level.

(D) Mean ERP curves at all workload levels. Light vertical line is onset of Flanker stimulus, dark vertical lines indicate time window for mean P300 amplitude calculation

(250–500 ms post-stimulus onset).

TABLE 5 | The cortical regions associated with Brodmann’s area (BA) localized

during 0-, 1-, and 2-back tasks.

0-back 1-back 2-back

Brodmann’s

Area

• Prefrontal cortex

(BA 10)

• DLPFC (BA 9) • Parietal cortex

(BA 5)

• V1 (BA 17) • Prefrontal cortex

(BA 10)

• Prefrontal cortex

(BA 10)

• V2 (BA 18) • V1 (BA 17) • V1 (BA 17)

• Temporal lobe

(BA 21)

• V2 (BA 18) • V2 (BA 18)

• Temporal lobe

(BA 21)

• Anterior

cingulate cortex

(BA 24)

• Parietal cortex

(BA 39)

• Temporal lobe

(BA 21)

• Parietal cortex

(BA 39)

• Thalamus

(BA 50)

• Thalamus

(BA 50)

Dotted vertical lines indicate events of interest (the button-press)
and horizontal blue lines denote 15 Hz frequencies. On the
diagonal we have plotted the event-related spectral perturbation
(ERSP).

The most notable feature of the analysis is that the PFC and
parietal cortex are the strongest drivers of activity between other
ICs. The PFC and parietal cortex are most strongly coupled to

each other, but also demonstrate influence on the visual cortex
and left and right parietal cortices. The greatest information flow
was seen in the lower frequencies (3–15Hz), which includes
discrete theta and alpha bands with the highest information
transfer observed in the theta band (3–7Hz). Weaker reciprocal
connectivity is apparent from temporal to occipital cortices.

Effective Connectivity Analysis
We analyzed information flow between several of these
anatomically localized sources of brain activity during trials
with correct responses on incongruent flanker. Figure 6 shows
three frames of a causal BrainMovie3D showing transient
theta information flow during correct response. The frames
correspond to −325ms (left), 20ms (center), and 70ms (right)
relative to the button press (0ms). It is interesting to note that the
theta rhythm (reflecting synchronized neural activity around the
4–7Hz range) is associated with memory and cognitive function
(Gevins et al., 1997; Tesche andKarhu, 2000) and has been related
to decreased metabolism (Schacter et al., 1997).

Figure 6 shows the changes in causality over the time course
of correct response events. For the first row, under the 0-back
condition, parietal cortex and anterior cingulate cortex node
color are red and orange. It indicated that those two components
are the causal source for whole network. The edge size and color
between visual cortex and parietal cortex coupling, and parietal
cortex to prefrontal cortex coupling have red hue and thicker
than the others. After button press, there is greater activation
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FIGURE 5 | Time-Frequency Grid. Each cell of the matrix shows the time-frequency distribution of information transfer between a respective pair of ICs (i.e., columns

represent the source or FROM and rows represent destination or TO), with the highest information transfer indicated by warm colors. The frequency is on the y-axis

and time on the x-axis on each cell of the matrix. The upper and lower triangles of the grid (i.e., above and below the red-bordered diagonal cells, respectively)

represent the dDTF (conditional GC) between each pair of sources (e.g., Visual cortex 2:Visual cortex 1; Prefrontal cortex:V2). Under the 0 back condition, the

area (a) boxed in red [row 2, col 6] shows information flows at different times and frequencies from the source column 6 (Parietal) to the source row 2 (V1). The area (b)

[row 5, col3] exhibits casual flow from the source column 3 (ACC) to the source row 5 (Parietal). On the other hand, under the 1 back condition, two boxed area (c) and

(e) show bi-directional causal flows between V2 and right parietal cortex. The boxed area (d) indicates flows from the source column 8 (Left Parietal) to the source row

4 (V1). Lastly, under the 2 back condition, the boxed area (f) shows causal flows from the source column 6 (Parietal cortex) to the source row 1 (V2). The boxed area

(g) presents information flows from the source column 4 (PFC) to the source row 3 (V1). The anatomical dipole locations for each source are rendered on the margins.

of the ACC and connectivity of the ACC and parietal cortex, as
indicated by the deeper red color of the ACC node. Secondly, the
second row, under the 1-back condition, it shows similar network
pattern to 0-back condition. Before the button press, the causality
flowwas observed between parietal cortex and visual cortex. After
button press, the coupling between prefrontal cortex and parietal
cortex was activated. Lastly, under highest working memory
load (2-back), different pattern from the previous condition was
observed. From the −352ms the anterior prefrontal cortex was
activated as a causal source. As seen in Figure 6, there appeared
to be enhanced coupling involving parietal cortex and prefrontal
cortex across all time points. Moving to the time just following
the button press event (center frame) we observed load-related
specific patterns which have some is some bidirectional flow, but
the flux is largely outward from parietal cortex, as indicated by the
red hue of the node (indicating large positive asymmetry ratio).

DISCUSSION

The goal of this research was to better understand how two
executive function processes (updating and inhibition) interact
with each other. This study investigated this EF interaction at
multiple levels of analyses (behavioral, neurophysiological, and
effective connectivity).

Effect of Working Memory Load
As expected, increasingWM load on the updating task decreased
the n-back task hit rate. This increase in WM load also decreased
the hit rate for the flanker task, but to a lesser degree (ref.Table 2).

The direction of these effects were significantly modulated by
OSPAN score. For the neurophysiological metrics, updating
level significantly affected P300 mean amplitude, however, this
correlation is not modulated by OSPAN score. These observed
effects in behavioral and electrophysiological measures for
updating load concur with previous studies that utilized the n-
back task, confirming that the used indicators are appropriate
measures of WM updating load (Scharinger et al., 2015). In the
correlation analysis, n-back level has significant correlation with
behavioral data, such as n-back hit rate and reaction time and
flanker task false alarm rate. OSPAN score also showed significant
correlation with n-back hit rate, reaction time for the flanker task
and mean P300 amplitude.

Validation for Cognitive Control Network
(CCN)
We hypothesized that source localization would identify neural
sources within the CCN in the frontal and parietal areas.
Additionally, it was expected that the neural sources involved in
correct Flanker responses with high updating load conditions (2-
back) would exhibit enhanced activation of the CCN as compared
to the connectivity observed in low updating load conditions (0-
back and 1-back). Our finding conformed to the model proposed
by Baddeley (1996b), which was proven from numerous imaging
studies on effective connectivity of healthy subjects that have
identified cortical areas particularly associated with the working
memory network (Cabeza et al., 1997; Della-Maggiore et al., 2000;
Glabus et al., 2003). Executive control functions are reported to
be sub-served by the anterior cingulate cortex and the prefrontal
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FIGURE 6 | Effective connectivity analysis. Three frames of a causal brain maps show transient theta information flow during correct commission: The frames

correspond to −325ms (left), 20ms (center), and 70ms (right) relative to the button press (0ms). The color of the edges represents connectivity strength (i.e., amount

of information flow along that edge.). Red = high connectivity, Green = low connectivity. The size of edges of the graph represents connectivity magnitude (absolute

value of connectivity strength). The color of node represents the asymmetry ratio of connectivity for that source. Red = causal source, blue = causal sink, green =

balanced flow. The size of a node represents the amount of information outflow from the source.

cortex (BA9 and 10), whereas preprocessing and maintenance of
information mainly involve activation of the parietal association
cortex (BA 39) (Chee and Choo, 2004). The current study showed
the change of the connectivity strength inside the executive
subsystem of the working memory networks. There is growing
evidence that attentional processes may recruit structures in
superior parietal and anterior cingulate areas among others
(Courtney et al., 1996). Taken together, these hypotheses account
for the majority of cognitive processes involved in the n-back and
flanker task.

Effective Connectivity along with Updating
Demand
Granger causality methods were utilized to study dynamic
interactions between prefrontal and parietal cortices. Granger
causality between these two regions can be defined as the extent
to which data from one region at one point in time improve

the prediction of another region’s data at a later point in time
(Goebel et al., 2003). Using GC analysis of EEG time series data,
the current study demonstrated that manipulation of cognitive
demand in dual tasks influenced the updating and inhibition
process. Themain result of this study was in line with our original
hypothesis that experimental manipulation of WM load in the
n-back paradigm would cause changes in the integrated function
of the large-scale neurocognitive network.

We used Granger Causality analysis to model a set of
directional or effective connections between frontal and parietal
cortical areas, and found evidence for load-related modulation of
effective connectivity patterns. Referring to Figure 6, the present
study compared connectivity patterns for correct, incongruent
Flanker responses, before, during, and immediately following
response. Under the 0-back level, a causal flow exhibited a
V-shape pattern, with connectivity between visual, parietal, and
prefrontal cortices (visual cortex →parietal cortex → prefrontal
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cortex). Under the 1-back level, patterns showed an angle bracket
shape (“>”) (visual cortex → parietal cortex → prefrontal
cortex). However, under the 2-back level, patterns displayed a
substantially different shape, with the causal flow exhibiting a
cross shape (“+”). Even before participants pushed the button,
the causal flow activated visual cortex → prefrontal cortex
and parietal cortex → thalamus. The changes in causal flow
patterns depending on memory load supported the over additive
hypothesis; high working memory load can induce an efficient
brain network for simultaneous activation of visual, parietal,
prefrontal cortex.

This study demonstrated that an interaction between
inhibition and updating functions became hyper-synchronized
during the experiment. As one set of trials ended and moved into
a post-phase, hyper-coupling subsided and returned to normal.
Constant hyper-coupling among the prefrontal cortex, parietal
cortex and visual cortex seemed to appear during this transition.
Hyper-coupling seemed to be associated with an increase in
causality from posterior to anterior regions. There was also a
pervasive pattern of low connectivity at and between regions
including temporal lobe. It was clear that there were multiple,
complex connectivity relationships involved in these processes
that need to be understood better.

Major Causal Flow during Dual Task
Rypma and Prabhakaran (2009) argued that the neural
mechanism has a cost-efficient component which causes
prefrontal cortex to exert more influence over other brain
regions. Although, their founding was subject to individual
capacity, intrapersonal analysis suggested that the extent of direct
processing links between neural nodes determined the efficiency
of working memory load. The benefit of the direct processing
links stemmed from a surplus of resources that maximize
available capacity permitting better performance in upper alpha
power.

As shown in Figure 6, PFC along with parietal cortex served as
a main hub for the cognitive network. This finding concurs with
that of previous studies that have shown that PFC contains WM-
specific sensitivity lesions (Quintana and Fuster, 1993; Rypma
and Prabhakaran, 2009). The current study showed that PFC
under highWM load exhibited stronger causality than one under
low WM load. The relationship between PFC and WM load
suggests the importance of trainings needed for those working in
a dangerous working environment that often requires complex
multitasking under stress. This is supported by Olesen et al.
(2004) that trainings of working memory increased activity levels
in prefrontal and parietal regions.

LIMITATION AND FUTURE RESEARCH

The results of the current study indicated that if EFs are
specifically loaded, rather than a reduction of attentional
processes, an enhanced activation of attention control might
occur, thus leading to a different CCN patterns under high
WM updating load. Moreover, under high WM load the CCN
exhibited a differential activation pattern as compared with the
low WM load, which may be indicative of a more efficient causal

flow between the two executive function processes. Certainly,
the current study can only serve as a first step in studying the
interplay between different EF components when manipulated
within one single task, therefore, there remain open questions to
be addressed inmore detail in future studies. First, the sample size
of this study is relatively small. While a power analysis supports
the use of 19 subject to analyze and draw conclusions from
the covariance of performance and neurophysiological metrics,
the findings of this study would be more strongly supported if
future studies using a similar paradigm utilize a larger sample
size. Next, simple cognitive tasks, the flanker and n-back tasks,
were utilized in this study to avoid the “impurity issue” and
ensure direct investigation of updating and inhibition executive
functions (Miyake et al., 2000). However, these tasks may lack
ecological validity and the context usually associated with real-
world tasks. To allow for more wide-spread transferability of the
connectivity analysis, future research paradigms should aim to
modify real-world stimuli or tasks. Additionally, while subject
OSPAN score was found to be a main effect in both behavioral
and neurophysiological metrics, the direction of the OSPAN
effect was not explored. Future studies should aim to characterize
the directional effect of high and low working memory capacity
on performance neurophysiological responses during dual EF
tasks. Furthermore, the impact of WM capacity could not
be investigated in the GCA analysis due to the small sample
size. This analysis may reveal differential connectivity patterns
correlated with behavioral or neurophysiological metrics.

Activation of distinct brain regions to perform a specific task,
as observed in this study, can be modeled as a network with
each node being a single brain region and each edge representing
interaction between brain regions. This study utilized the dDTF
as a measure of Granger Causality to analyze the time-varying
interaction between brain areas at different n-back levels. While
GCA allows for a statistical analysis of the EEG time-series data
to identify and characterize causal relationships, this analysis
method lacks regard for the underlying structural connectivity
of the brain (Seth et al., 2015). Other modeling methods, such
as dynamic causal modeling, require a more detailed definition
and analysis of the underlying neural structure and physical
mechanisms underlying a specific response (Friston et al., 2013;
Seth et al., 2015).

Furthermore, GCA provides a characterization of interactions
between brain areas, with no analysis of the efficiency of this
interaction. Brain networks can also be modeled as “small-
worlds,” as they have clustered local connectivity with short
path lengths between regions in the network (Latora and
Marchiori, 2001; Achard and Bullmore, 2007). This small-world
model of brain networks can support analysis of different
means of information processing and of network efficiency.
Analysis of these functional networks throughMRI data, support
the hypothesis of the small-world properties, including high
performance at a low cost, termed efficiency. Brain network
efficiency is impacted by both individual factors, such as age,
pharmacological blockades of dopamine transmission (Latora
and Marchiori, 2001) and diseases such as multiple sclerosis
(He et al., 2009). While GCA is a powerful analysis method
to investigate cause and effect relationships between brain
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regions during task performance, it is not without limitations.
To expand our knowledge of the interplay between updating
and inhibition, including the role of the capacity of attentional
resources, different modeling techniques, and measures of
network connectivity should be explored.

CONCLUDING REMARKS

This research explored how two executive function processes
(updating and inhibition) interacted with each other. The
study investigated interaction between the two executive
function components through analyses of behavioral,
neurophysiological, and effect connectivity metrics. Using
Granger Causality analysis of EEG time series data, the study
demonstrated that manipulation of cognitive demand in a
dual executive functions task influenced the updating and
inhibition process. Specifically, the experimental manipulation
of working memory load in the n-back paradigm would
increase the integrated function of a large-scale neurocognitive
network, which contains prefrontal and parietal cortices.
These results provide insights into the neural mechanisms

underlying cognition, specifically the relationship between
unitary executive functions that are building blocks of complex
cognition. Future applications of these results include task
design and working memory training for human operators
performing complex, multi-tasking operations in stressful
environments.
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