
PERSPECTIVE
published: 18 July 2017

doi: 10.3389/fnins.2017.00412

Frontiers in Neuroscience | www.frontiersin.org 1 July 2017 | Volume 11 | Article 412

Edited by:

Ruth Luthi-Carter,

University of Leicester,

United Kingdom

Reviewed by:

Detlef H. Heck,

Department of Anatomy and

Neurobiology, University of Tennessee

Health Science Center, United States

Robert W. Williams,

University of Tennessee Health

Science Center, United States

*Correspondence:

Spiro P. Pantazatos

spiropan@gmail.com

Specialty section:

This article was submitted to

Neurogenomics,

a section of the journal

Frontiers in Neuroscience

Received: 21 June 2017

Accepted: 30 June 2017

Published: 18 July 2017

Citation:

Pantazatos SP and Li X (2017)

Commentary: BRAIN NETWORKS.

Correlated Gene Expression Supports

Synchronous Activity in Brain

Networks. Science 348, 1241–4.

Front. Neurosci. 11:412.

doi: 10.3389/fnins.2017.00412

Commentary: BRAIN NETWORKS.
Correlated Gene Expression
Supports Synchronous Activity in
Brain Networks. Science 348, 1241–4
Spiro P. Pantazatos 1, 2* and Xinyi Li 3

1Department of Psychiatry, Columbia University, New York, NY, United States, 2Molecular Imaging and Neuropathology

Division, New York State Psychiatric Institute, New York, NY, United States, 3 Biomedical Informatics, Columbia University,

New York, NY, United States

A recent report claims that functional brain networks defined with resting-state functional

magnetic resonance imaging (fMRI) can be recapitulated with correlated gene expression

(i.e., high within-network tissue-tissue “strength fraction,” SF) (Richiardi et al., 2015).

However, the authors do not adequately control for spatial proximity. We replicated

their main analysis, performed a more effective adjustment for spatial proximity, and

tested whether “null networks” (i.e., clusters with center coordinates randomly placed

throughout cortex) also exhibit high SF. Removing proximal tissue-tissue correlations by

Euclidean distance, as opposed to removing correlations within arbitrary tissue labels as

in Richiardi et al. (2015), reduces within-network SF to no greater than null. Moreover,

randomly placed clusters also have significantly high SF, indicating that high within-

network SF is entirely attributable to proximity and is unrelated to functional brain

networks defined by resting-state fMRI. We discuss why additional validations in the

original article are invalid and/or misleading and suggest future directions.

Keywords: functional brain networks, gene expression, allen brain atlas, resting-state fMRI, spatial proximity,

confounding factors

A recent study explores relationships between gene expression and distributed spatial patterns
of synchronous brain activity consistently observed in resting state (RS) fMRI (Richiardi
et al., 2015) using microarray data from the Allen Brain Atlas (http://human.brain-map.
org; Hawrylycz et al., 2012). The authors correctly state that “While functional networks are
distributed spatially, meaning they cross over different tissue types, and that their sample can
be spatially distant, it is important to ensure that a high strength fraction (SF) does not simply
reflect the fact that tissues are the same.” They attempt to correct for spatial proximity by
omitting edges between regions falling in the same “tissue class,” which are ontological labels
provided by Allen Brain Atlas (Supplementary Table 4 in Richiardi et al., 2015). However,
this approach inadequately controls for spatial proximity: nearby regions will fail to have their
edges removed by a label boundary dividing them, while longer edges within a tissue label will
be removed instead (Figure 1A). The issues remains even when correction uses coarser tissue
classes.

Even after removing within-tissue edges, there remains an association between tissue-tissue
correlations and distance (R = −0.10, p < 10E-6), with nearby regions tending to have higher
correlations (Figure 1B). Within network (Wi) edges are significantly shorter than out-of-network
(T-W) edges (Wi distances vs. T-W distances 2-sample t-test: t(759,091) =−51.1, Wi mu= 52.9mm,
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T-W mu = 78.3mm). This biases the Wi SF to be greater
relative to a null distribution which calculates Wi using longer
connections (i.e., T-W edges which are labeled Wi as part of the
shuffling).

When a more direct correction for distance is applied
(removing proximal edges), within-network SF is no longer
greater than null. Figure 1C shows dependence of SF on
proximity. “Tissue” refers to the within-tissue class correction
applied by Richiardi et al. and demonstrates their primary
findings (p< 10E-4). However, as short-range edges are removed
(4–24mm), SF falls monotonically until it is no greater than null
at <20mm. In addition, applying linear regression to adjust for
distance (French and Pavlidis, 2011) results in a large negative SF
(SF = −0.61, p = 1, data not shown, see Section Supplementary
Discussion below for pitfalls of this approach and omitting
negative correlations prior to SF calculation). Thus, the claim
of the original article: “Given that we used only cortical samples,
that we removed edges linking tissues of the same class, and that
functional networks are spatially distributed, this finding cannot
emerge from spatial proximity or gross tissue similarity” is false.

FIGURE 1 | (A) Richiardi et al. attempts to control for spatial proximity by removing edges with nodes having the same tissue label (i.e., a and b). However. nearby

regions a and c will fail to have their edges removed by an arbitrary label boundary (arrow) that divides them, while more distant edges (a–b) within a tissue label will

be removed instead. (B) Even after removing within-tissue edges, there remains a strong dependence of tissue-tissue correlations on distance (R = −0.10, p <

10E-6), with nearby regions tending to have higher tissue-tissue correlations. (C) Strength fraction (SF) depends on spatial proximity. “Tissue” refers to the original

within-tissue class correction applied by Richiardi et al. and corresponds to their primary findings (p < 10E-4). However as short distances (edges) are removed (<4

through 24mm) the SF falls monotonically until it is no longer greater than the null distribution at <20mm. (D) Upper left corner (“orig”) shows the null distribution and

SF corresponding to the main results reported in Richiardi et al. (2015), while the rest of the panels show the same for 3 randomly placed sets of contiguous clusters.

Moreover, the null distribution derived in Richiardi et al. is
flawed because the permutation strategy assumes all regions are
independent and equally exchangeable, which is not true given
the spatial autocorrelation and distance bias.

Although, not reported in the original article, the authors
claim that SF remains significant after a linear regression-based
distance correction is applied and only positive connections
are included (personal communication). However, there are
two problems with this: (1) The assumption that tissue-tissue
correlation strength various linearly with distance is too strong.
A plot of the tissue-tissue correlations vs. distance shows that
the best-fit curve is steep for short edges and less steep at
around 20mm: after adjusting for the best-fit line there will
still be a distance bias. Model-based correction will not be as
optimal as simply removing proximal connections. (2) Applying
a cutoff of zero for connections contributing to the SF is not
well justified (this applies to the main analyses as well). What,
biologically, distinguishes a correlation of 0.1 vs.−0.1 other than
i.e., noise in the expression vector? Furthermore, after regression,
about half of the connections (that were included in the original
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main analyses) will be negative due to mean centering and
omitted in the new analysis, making the cutoff of zero even more
arbitrary.

Short (<16mm) connections account entirely for the
significant SF reported in Richiardi et al. (2015) (Figure 1C).
Given that the main claim of Richiardi et al. is that correlated
gene expression relates specifically to RS functional networks,
a crucial question is “is high local SF specific to the RS
networks”? If so, then the SF of distributed clusters with
centers randomly placed throughout cortex (with size and
total number of Wi nodes similar to RS networks) should be
non-significant. However, for 1,000 randomly selected cluster
sets, p-values were all 0 (<0.001). Panel D (“Orig,” upper left
corner) shows the null distribution and real SF corresponding
to the main results reported in the original article, while
the rest of the panels show the same for three randomly
selected sets of clusters. Thus the significant SF reported in
the original article is entirely attributable to spatial proximity
and is unrelated to RS fMRI networks. Note that SF of
Wi RS networks cannot be compared to SF of randomly
selected clusters since SF is a function of total number of Wi
connections.

Matlab code replicating the primary results presented in
Richiardi et al. (2015) and results presented here are available
at https://github.com/spiropan/ABA_functional_networks. See
Section Supplementary Discussion below for why the additional
validation analyses in Richiardi et al. (2015) (Figures 2, 3) are
invalid and/or misleading, and the relationship of their results
with differentially stable genes identified in Hawrylycz et al.
(2015).

SUPPLEMENTARY DISCUSSION

An alternative/complementary approach to distance correction is
to regress out the effects of distance on tissue-tissue correlations
prior to computing SF. As mentioned in the main text, linear
regression-based distance correction leads to a large negative
and non-significant SF. However, SF remains significant after
this correction is applied and only positive connections are
included when calculating SF. However, there are two problems
with and explanations for this: (1) The assumption that tissue-
tissue correlation strength various linearly with distance is too
strong. A plot of the tissue-tissue correlations vs. distance
shows that the best-fit curve is steep for short edges and
less steep at around 20mm: after adjusting for the best-
fit line there will still be a distance bias. No matter what
model is adjusted for, the correction will not be as optimal
as simply removing proximal connections. (2) Applying an
arbitrary cutoff of zero for connections contributing to the SF
is not well justified (this applies to the main analyses as well).
What, biologically, distinguishes a correlation of 0.01 vs. −0.01
other than i.e., noise in the expression vector that nudges the
correlation across zero? Furthermore, after regression, about half
of the connections (that were included in the original main
analyses) will be negative due to mean centering and omitted

in the new analysis, making the cutoff of zero even more
arbitrary.

It is likely that the optimization approach in Richiardi et al.
used to derive the 136 consensus genes (i.e., multiplying each
gene’s expression by 10 and recalculating the strength fraction)
identified genes with both high local spatial autocorrelation
and variability across the cortex. This is consistent with the
observation that >75% of these 136 consensus genes are in the
top 10% of genes found to have consistently high region-to-
region variability (so called differentially stable, DS genes) across
the cortex identified in Hawrylycz et al. (2015). Furthermore, GO
functions related to potassium channels (featured prominently
in Richiardi et al. Supplemental Table S3) were most over-
represented among high-DS genes (P < 1.70 × 10−12) in
Hawrylycz et al. (2015) Given that genes high in DS (i.e.,
consistent region-to-region variability), irrespective of belonging
to resting state functional networks, are more likely to be involved
in brain functioning (Hawrylycz et al., 2015), this could account
for the enrichment (p= 0.006) of SNPs associated with functional
network SF observed in the IMAGEN portion of the Richiardi
et al. analyses.

Figure 2 in Richiardi et al. is misleading, and does not
constitute evidence for “definite differences in functional
connectivity strength mostly within the functional networks
themselves.” Given that the authors used a post-hoc, biased
approach to generate the loosely thresholded functional
connectivity difference matrices and maps, it is unclear whether
comparable results could be generated when applying their
scoring procedure to 136 genes randomly selected from
the background set or from the top 10% of genes showing
variability across the cortex (i.e., cortical DS genes reported
in Hawrylycz et al. (2015). Finally, the results from mouse
tractography data (p = 0.011 Mantel correlation, Figure
3 in Richiardi et al.) does not make any adjustment for
spatial proximity, and is likely also confounded by spatial
proximity.

The Richiardi et al. study is an important step toward
identifying genes whose spatial pattern of cortical expression
relate to distributed functional networks consistently observed
in resting state fMRI. However, we are not quite there yet.
Further work will be required to adequately control for the
confounding effects of spatial proximity. While here distances
were computed in 3D MNI space, computing distances in
flattened cortical surface (2D) space would make distance
measurements more accurate. While distance correction using
3D Euclidean distance is suboptimal compared to 2D Euclidean,
it is optimal compared to using region labels. 2D Euclidean
distance would be more accurate than 3D distance, and while
the slope and shape of the curve in Figure 1C might change,
SF would still fall monotonically as short-range edges are
removed and be no greater than the null distribution at around
24–32mm.

Future studies to relate gene expression with resting-state
functional networks will require valid and more appropriate
null distributions, and could benefit from “non-parametric”
approaches to correct for distance (i.e., calculating outcome
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measures such as within-network SF across distance bins to
directly visualize distance effects etc.).
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