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Recent advances in functional magnetic resonance imaging (fMRI) have been used to

reconstruct cognitive states based on brain activity evoked by sensory or cognitive

stimuli. To date, such decoding paradigms were mostly used for visual modalities. On the

other hand, reconstructing functional brain activity in motor areas was primarily achieved

through more invasive electrophysiological techniques. Here, we investigated whether

non-invasive fMRI responses from human motor cortex can also be used to predict

individual arm movements. To this end, we conducted fMRI studies in which participants

moved their arm from a center position to one of eight target directions. Our results

suggest that arm movement directions can be distinguished from the multivoxel patterns

of fMRI responses in motor cortex. Furthermore, compared tomultivoxel pattern analysis,

encoding models were able to also reconstruct unknown movement directions from the

predicted brain activity. We conclude for our study that non-invasive fMRI signal can be

utilized to predict directional motor movements in human motor cortex.

Keywords: fMRI, reconstruction, classification, decoding, encoding, directional movement

INTRODUCTION

Recent fMRI studies have successfully discriminated visual object categories (Haxby et al., 2001;
Cox and Savoy, 2003), hand gestures (Dinstein et al., 2008), and visual features such as orientation
and motion direction (Kamitani and Tong, 2005, 2006) from patterns of activity across an array of
voxels. Similar methods have been used to reconstruct visual stimuli such as images or movies by
modeling the brain activity in each voxel evoked by the visual stimuli (Thirion et al., 2006;Miyawaki
et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011). On the other hand, decoding brain activity
in motor areas usually require more invasive techniques. For example, invasive electrophysiological
techniques have demonstrated that neuronal activities in human primary motor cortex (M1) can
be used to control an artificial devices (Hochberg et al., 2006, 2012; Truccolo et al., 2008; Collinger
et al., 2013). Such invasive techniques have been found to be more precise and intuitive when used
to control an external effector using neuronal signals related to armmovements. Nonetheless, these
methods inevitably involved considerable risks associated with surgical procedures and potential
inflammations. Therefore, we used functional magnetic resonance imaging (fMRI) to measure
brain signals non-invasively and investigated whether the recent decodingmethods were applicable
to motor areas.

Neurons in the macaque M1 are known to be broadly tuned to directional arm
movements (Georgopoulos et al., 1982). This type of directional tuning is known as a basic
functional property of neuronal activity in M1.Previous studies also demonstrated that human
M1 neurons are sensitive to the movement direction based on electrophysiological signals
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(Hochberg et al., 2006; Truccolo et al., 2008). Furthermore,
fMRI responses in human M1 suggested sensitivity to movement
directions although each voxel contains a large number of
neurons, where each of them has different selectivities (Eisenberg
et al., 2010; Fabbri et al., 2010). Given that each voxel in
motor cortex is directionally tuned, and despite the fact that the
sensitivity of a voxel is weak, spatial patterns of fMRI response
may be distinguishable for differentmovement directions. To this
end, previous fMRI studies have used multivoxel pattern analysis
(MVPA) based on linear classifier to discriminate cognitive states
based on spatial patterns of fMRI responses (Mitchell et al., 2004;
Haynes and Rees, 2006; Norman et al., 2006; Hansen, 2007; De
Martino et al., 2008; Formisano et al., 2008; Haynes, 2009).

In this study, participants performed a center-out reaching
task during fMRI scan. The participants moved their arm
from a center position toward one of eight target positions
repeatedly according to visual instructions. To investigate how
head motions induced by repeated reaching movements have an
effect on the identification of different movement directions, we
also compared contralateral motor cortex with ipsilateral motor
cortex which uninvolved in the center-out reaching task. The
results demonstrated that reaching-out movements toward eight
directions can be discriminated based on spatial patterns of fMRI
responses in M1, although it was influenced by head motion
artifacts. However, these methods were restricted to predicting
sensory, cognitive, or motor information. In this model, spatial
patterns of fMRI response are used to identify a specific
task from a known stimulus set. To reconstruct an unknown
stimulus, decoding methods using encoding model are applied.
Encoding models use given stimuli to estimate corresponding
brain activity in each voxel, and then are used to reconstruct
unknown stimuli using the estimated fMRI responses. Here,
we used the directional tuning properties in human M1
to estimate the brain activity evoked by directional motor
movements in each voxel. The responses of each voxel were
characterized as a linear combination of idealized directional
tuning curves (Brouwer and Heeger, 2009). The identification
and reconstruction of movement directions were performed
using that linear encoding model. In the identification, the
encoding model demonstrated similar performance compared to
MVPA. To determine the feasibility of reconstructing all possible
directional motor movements from a limited amount of pre-
specified movement directions, we compared the reconstruction
performance capabilities in the case when movement directions
were used to estimate the encoding model with when they were
not used.

MATERIALS AND METHODS

Participants
Eight healthy right-handed subjects (mean age, 24.25; range,
21–30 years) participated in the experiments, which consisted
of functional scanning sessions for center-out reaching task
along with a high-resolution anatomical scanning session. All
subjects had normal visual acuity and no neurological or
psychiatric history. They provided written informed consent
regarding their participation. The experimental procedures were

in compliance with the safety guidelines for MRI research and
were approved by the Institutional Review Board for research
involving human subjects at the Korea Advanced Institute of
Science and Technology.

MRI Acquisition
The experiments were performed at 3T MR scanner (Siemens
Magnetom Verio, Germany). The functional images were
acquired with a T2∗-weighted gradient recalled echo-planar
imaging (EPI) sequence (TR, 1,000 ms; TE, 20 ms; flip angle,
90◦; FOV: 64 × 64 mm; voxel size, 3 × 3 × 5.5 mm,
number of slices, 21). T1-weighted magnetization-prepared
rapid-acquisition gradient echo (MPRAGE) images were also
acquired (TR, 1,800 ms; TE, 2.52 ms; FA, 9◦; FOV, 256 × 256
mm; voxel size, 1× 1× 1 mm).

Experimental Design
Each subject performed a center-out movement task. This task
involved a total of six runs. In the task, subjects were instructed
to move their right arm from a center position to one of
eight target positions along a route carved into an acrylic
panel (Figures 1A,B). The reaching movement was performed
five times in each run, along with five no movement trials
on the center position. Each run involved 40 trials for the
reaching movements and 5 trials for the no-movement cases.
No movement trials were pseudorandomly interleaved between
reaching movement trials. The reaching movements in the
experiment accounted for 240 trials in total (30 trials per each
direction). Each trial lasted 12 s. One run lasted 9 min and 24 s.

In each trial, we showed the participants a gray circle in the
center and eight gray circles on the periphery of the center circle
on a screen. Initially, they were instructed to hold their arm at
the center position which was the initial position before reaching
their arm to the target position. After 4 s, one of the eight gray
targets turned blue, which indicated the target direction to which
to move. The participants had to move their arm toward the
blue target position for 2 s. After reaching the target position,
they were instructed to keep their arms still at the target position
for 4 s. When the circle in the center turned blue, they moved
their arm back to the initial center position (Figure 1C). The
visual task was programmed with MATLAB Psychtoolbox-3 for
windows (Brainard, 1997). The visual cues were presented with
MR-compatible video goggles (Nordic Neuro Lab, Norway).

Before performing a center-out movement task, each
participant was sufficiently trained to become familiar with the
reaching movement inside the scanner and instructed to move
smoothly and consistently. To perform reaching movements on
the acrylic panel without moving their head, shoulder, or upper
arm, the subject’s head was stabilized with foam paddings inside
the head coil and cushioned head stabilizers placed on each side
of the head coil to reduce head motion. The subject’s upper arms
and shoulder were stabilized with a strap wrapping across the
chest and shoulder (Figure 1A).

Data Preprocessing
Data preprocessing was performed using custom software
written in Matlab (The MathWorks, Inc., USA). The first four
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FIGURE 1 | Setup and Experimental Design. (A) Participants laid in the scanner and put their arm on the arm-rest table to perform a center-out reaching task. To

perform the task without moving their head, shoulder, or upper arm, the participant’s head was stabilized with foam padding inside the head coil (upper left corner in

(A) and fixed using cushioned head stabilizers placed on each side of the head coil (bottom left corner in (A). As additional precautions against head movements and

shoulder, the participant’s shoulder was stabilized with a strap wrapping across the chest and shoulder. (B) The acrylic panel for the reaching movement. The carved

route served to maintain a constant reaching direction for each trial. (C) Example sequence of a trial. There were eight gray target circles in the periphery of the center.

The blue circle indicated the target position which to move and the red circle indicated the movement trajectory the participant used to move toward the target

direction.

volumes of each run were discarded automatically during the
scanning process. We performed three-dimensional motion
correction using the first volume as a reference, and the T2
anatomical image was coregistered to the functional image
data by SPM5 (http://www.fil.ion.ucl.ac.uk/spm). No spatial
smoothing was applied. The left primary motor cortex (M1)
ROI was individually defined for each participant by converting
the left M1 ROI of the standard MNI brain (Maldjian et al.,
2003) to that of an individual brain using the SPM5 deformation
toolbox. Voxels with extremely low signal intensity levels were
removed. The fMRI signals were linearly detrended and passed
through a high-pass filter using a cutoff frequency of 0.01 Hz
within each run to remove low-frequency drift. We regressed
out residual motion effects from the fMRI signals using six
motion parameters (three translational parameters and three
rotational parameters). The parameters were estimated using
rigid body transformation between each functional image and
a reference image during motion correction procedure by SPM.
Signal intensities were normalized by removing the baseline
from the fMRI signal of each voxel within each run and were
averaged within each reaching movement trial after shifting the
data by 3–5 s to compensate for hemodynamic delays in each
case. We selected relevant voxels within the left M1 using sparse
multinomial logistic regression (SMLR)-based feature selection.
In a typical fMRI experiment, there are too many voxels in the
brain compared to the number of samples that can be obtained.
Too many voxels or features can lead to poor generalization

performance by overfitting the learning model if all voxels are
used as input features. Support vector machine (SVM) we used in
this study for classification can avoid this problem bymaximizing
the margin and minimizing the classification error. However, the
generalization performance of SVM is also decreased if too many
irrelevant features are used to train themodel. Therefore, we used
one of voxel selection methods that can be used as a stand-alone
tool box for voxel selection to improve the model performance by
removing the irrelevant voxels. SMLR-based voxel selection was
based on the classification performance and selection frequency
as selection counting value (SC-value). Irrelevant voxels which
have 0 SC-value obtained by SMLR-based feature selection were
removed. SMLR-based feature selection was implemented by SLR
toolbox (Miyawaki et al., 2008; Yamashita et al., 2008).

Classification Using Multivoxel Pattern
Analysis
We investigated whether human M1 voxels show directional
sensitivity and whether the spatial patterns of the fMRI responses
in M1 evoked by directional movements could be discriminable
using MVPA based on linear classifier (Norman et al., 2006).
The classification was performed with a linear support vector
machine (SVM) classifier, one of the most popular classifiers in
MVPA literature. The SVM was implemented by the LIBSVM
toolbox (Chang and Lin, 2011) and we applied all of the default
parameters of linear SVM (C= 1). The fMRI responses of voxels
in left M1 ROI evoked by reaching movements were used for the
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classification. We evaluated the classification performance of the
SVM using a leave-one-run-out cross-validation procedure. In
each cross validation, one run (40 trials, 5 trials in eachmovement
direction) was retained as a test dataset while the remaining five
runs (200 trials, 25 trials in each movement direction) were used
to remove the irrelevant voxels using the SMLR-based feature
selection and to train the SVM classifier using the responses of
selected voxels. This procedure was repeated 6 times until all runs
were used as a test dataset. The classification performance was
obtained by averaging the prediction accuracies across runs.

Classification Using Encoding Model
To characterize the responses of each voxel, we used a simple
linear encoding model (Brouwer and Heeger, 2009) that has been
used for color decoding in visual cortical areas. Recent evidence
has showed that neurons in human M1 are directionally tuned
(Hochberg et al., 2006, 2012; Truccolo et al., 2008; Collinger
et al., 2013). The fMRI responses in human M1 were also
found to be sensitive to movement directions (Eisenberg et al.,
2010; Fabbri et al., 2010). Therefore, we could characterize the
directional tuning of the response of each voxel. To characterize
the directional tuning of each voxel, we assumed that the neurons
in human M1 were directionally tuned, and the activity shape
of the directionally tuned neurons was modeled as a half-wave
rectified sinusoidal curve. The negative values of the tuning curve
were set to 0 (Figure 2A). Given that there are a large number of
neurons in each voxel, we also assumed a relationship between
the fMRI responses and the neuronal activity. Previous studies
provides evidence that fMRI responses are linearly related to the
sum of the activity of all neurons within a voxel (Heeger et al.,
2000; Rees et al., 2000). Although it was an oversimplification, we
assumed a linear relationship between the fMRI response and the
local neuronal activity. Therefore, the response of a voxel was the
result of summing up responses of all neurons distributed in that
voxel. The tuning function of the voxel then characterized as a
linear combination of six half-wave rectified tuning curves. The
six directional tuning curves is shown in Figure 2B. The tuning
curve served as a basis function of the linear encodingmodel. The
directional movement stimulus was an angular variable ranging
from 0 to 2π .

The classification performance of the encodingmodel was also
evaluated using a leave-one-run-out cross-validation procedure.
In each cross validation, five of the six runs (R1, 200 trials, 25 trials
in each movement direction) were used to remove the irrelevant
voxels and to fit the encoding model using the responses of
selected voxels, while the remaining one run (R2, 40 trials, 5 trials
in each movement direction) was used to predict the movement
directions using the fitted encoding model. The selected voxel
responses R1 could be expressed as the weighted sum of six basis
functions. The linear encoding model was given by

R1 = Sw,

where R1(m×n) is the measured voxel response matrix, S (m×k)
is a response matrix of the six basis functions related to the
reaching movement stimulus, and w (k × n) is a linear weight
matrix. Let m denote the number of reaching movement trials,

n denote the number of voxels, and k denote the number of the
basis functions.

The weight matrix w was obtained using a regularized linear
regression procedure to find an optimal weight to fit the encoding
model more robust. The optimal weight matrix was given by

ŵ =
(

STS+ λIk

)−1
STR1,

where Ik is the k-dimensional identity matrix and λ is the
regularization parameter used. The lowest Bayesian information
criterion (BIC) (Schwarz, 1978) was used to find the optimal
value of the regularization parameter λ through a bootstrap
method (Efron and Tibshirani, 1994). The parameter λ was
optimized by using a regression function in RBF networks
toolbox (Orr, 1996a,b).

The model was fit to the voxels individually using the
linear combination of a set of basis functions. Therefore, we
could estimate the response of each voxel and the spatially
distributed pattern of the response across voxels activated by
each movement direction. The reaching movement direction for
which the predicted spatial pattern of voxel responses could be
decoded by matching the most similar one with the observed
spatial patterns of voxel responses. However, since there exists
substantial variation in the measured voxel responses due to
noise, we used the estimated response of the basis functions
to match with the responses of the basis functions associated
with a movement stimulus. The responses of basis function Ŝ
were predicted using the estimated weight ŵ and test data R2 as
follows:

Ŝ = R2ŵ
T
(

ŵŵT
)−1

Because ŵŵT was close to singular in some cases, the inverse of
ŵŵT was unstable. Therefore, we used regularization to estimate
the inverse. The movement direction could then be predicted
by comparing the estimated response patterns of basis functions
Ŝ with known responses of the basis functions evoked by each
of eight directional movements, and selecting the most similar
patterns through an assessment of Pearson’s r-values. Cross-
validation step was repeated 6 times for all of the runs. The results
based on the encoding model show the averaged classification
accuracies across runs.

Reconstruction Using Encoding Model
MVPA and the encoding model were used to identify the
movement directions. Furthermore, using the encoding model,
the reconstruction of the movement direction was also
performed by creating response of the basis functions for all
possible movement directions from 0 to 360◦. The reconstructed
direction was estimated by matching the estimated response
pattern Ŝ with the most similar one from the created response
pattern. The reconstruction was also tested using a leave-one-
run-out procedure. Five of the six runs (200 trials, 25 trials in each
direction ofmovement) were used to remove the irrelevant voxels
and to fit the encoding model using the responses of selected
voxels. The remaining run (40 trials, 5 trials in each direction of
movement) was used to test the reconstruction performance.
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FIGURE 2 | (A) Directional tuning curve. The basis tuning shape was modeled as a half-wave rectified sinusoidal curve. (B) Six directional tuning curves were used to

characterize the response of each voxel. The response of the voxel could be fitted by a linear combination of the six half-wave rectified sinusoidal curves.

We further tested the reconstruction performance in the case
when movement directions were not used to fit the encoding
model in order to determine the feasibility of reconstruction for
unknown movement directions. To this end, the reconstruction
was tested using a leave-one-direction-out procedure. One of
the eight directional movements (30 trials) was remained to test
the reconstruction performance as the unknown direction. The
other seven directions (210 trials, 30 trials in each direction
of movement) were used to select the relevant voxels using
the SMLR-based feature selection and then to fit the encoding
model using the responses of selected voxels. This procedure
was repeated 8 times to test the reconstruction of all of eight
directional movements.

The reconstructed directions for each directional movement
trials were spread out from the actual movement direction.
Therefore, we used the angular variance (AV) to quantify
the measurement of the angular dispersion of reconstructed
directions. The AV was defined as AV = 1 − ‖ r ‖, where
‖ r ‖ is the length of the mean angular direction which is
obtained bymeans of vector addition of reconstructed directions.
The quantity of AV lies in the interval [0, 1]. It is indicative
of the spread in reconstructed directions. If the reconstructed
directions were spread out evenly around all directions, the
AV would be close to maximal, otherwise the reconstructed
directions were concentrated completely in the actual movement
direction.

To compare the reconstruction performance capabilities in
the case when movement directions were used to fit the
encoding model with when they were not used, we investigated
the association between the results of the two reconstructed
directions by computing the circular correlation coefficient ρ

(Jammalamadaka and Sengupta, 2001), as follows,

ρ =

∑

i sin (αi − ᾱ) sin
(

βi − β̄
)

√

∑

i sin
2 (αi − ᾱ) sin2

(

βi − β̄
)

In this equation, α and β denote the reconstructed directions,
ᾱ and β̄ denote the mean angular directions, and i denotes the
number of reconstructed directions for each target direction. The
correlations were obtained separately for each direction and by
combining all directions for each subject.

To evaluate the reconstruction performance how they are
reconstructed correctly to the actual movement directions,
we computed the mean absolute error (MAE) between the
reconstructed and actual movement directions across all of
the reconstructed directions for individual subject. This is
also computed in both cased when movement directions
was included in fitting the encoding model and when they
were used as unknown movement directions to compare the
reconstruction performances. In this study, the reconstruction
was performed based on single-trial directional movement. To
investigate performance improvements when the directional
movement was executed repeatedly, we computed MAE
values of the mean angular directions obtained by averaging
all reconstructed directions and compared the performances
between the reconstruction based on single-trial and the trial-
averaged reconstruction.

Head Motion Effects
In fMRI experiments, head motion associated with motor tasks
is a prominent source of noise which leads to fMRI data
artifact, false detections, and misinterpretations of brain signals
(Friston et al., 1996; Thesen et al., 2000; Yang et al., 2005;
Culham et al., 2006). In this study, participants performed
reaching-out movement task from a center to one of eight target
directions. These repeated arm movements could have an effect
on head motion sufficiently by generating constant movement
patterns. Therefore, we investigated how head motion induced
by participant-active reaching movements has an influence on
the classification of directional movements. We used left M1 as
a region of interest (ROI) because all reaching movements by
right-handed participants were performed with the right hand.
Movements performed with the dominant hand was associated
with a greater activation compared with those of the non-
dominant hand in the contralateral motor cortex. (Dassonville
et al., 1997; Fabbri et al., 2010; Grabowska et al., 2012). Moreover,
although highest directional selectivity in the right parietal reach
region for both left and right hand movements was observed,
executed movements performed with the right hand as well
as observed and imagined movements led to non-significant
activations in the ipsilateral motor cortex (Dassonville et al.,
1997; Fabbri et al., 2010). The movement activation in the
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right M1 would have been trivial even though it reflects any
neural motion related signal by hemispheric interactions. The
activation in ipsilateral M1 uninvolved in the task would reflect
the head motion effects dominantly rather than hemispheric
interactions. Therefore, we chose the right M1 as a control region
to identify the headmotion effect by the reachingmovement. The
performance of the control region would yield some evidence
for residual head motion. The classification using MVPA and
the encoding model was conducted from the right M1. The
procedures were exactly identical, except for the spatial prior
mask from the MNI atlas left and right M1.

RESULTS

Classification Performance
We evaluated the classification performance of MVPA based
on SVM classifier and the encoding model via a leave-one-out
cross-validation scheme. We excluded one run (40 trials) from
the set of six runs to test the performance and trained the
SVM classifier or the encoding model using the remaining five
runs (200 trials). The classification result indicated that reaching
movements toward eight different directions could be decoded
from the spatially distributed patterns of the voxel responses.
The classification performances of both MVPA and the encoding
model were significantly greater than the chance level of 12.5% in
all participants (Figure 3). Each point indicates the classification
performance of each run which was used as test dataset during
cross validation. Average accuracies across all participants for
the MVPA and the encoding model were 41.8 and 36.1%,
respectively. In comparison, MVPA outperformed the encoding
model. These results indicated that decoding approaches using
the linear classifier outperform the encoding model when used
to classify brain states evoked by certain executed movements.
However, such a classification-based technique shows limitations
when used for decoding complex motor actions. It is impractical
to measure brain activity given many states which are possible.
Compared to classification-based technique, the encoding model
is more applicable to decode the complex motor actions by being
able to predict unknown brain states as well as to identify known
states.

In the encoding model, the classification performance was
less than that of MVPA. Reaching directions were predicted
by matching the estimated response pattern Ŝ with the highest
correlated one among response patterns by each of eight
directional movements through an assessment of Pearson’s r-
values. The decision boundary used to classify the reaching
movement directions was not optimized in the encoding model.
Therefore, we further investigated the performance validity of
the encoding model by combining the encoding model with
the SVM classifier. To use the SVM classifier in the encoding
model, we trained the SVM classifier using the estimated
response pattern of basis functions from the encoding model
that was fitted by training data and then tested the classification
performance capabilities. The average performance across all
participants improved from 36.1 to 42.8% (Figure 3). There
were no statistically significant performance differences between
MVPA and the combined model. These results indicated that the

FIGURE 3 | Classification accuracies for individual participants and average

accuracies across all participants using the conventional decoding approach

based on the linear SVM classifier, the linear encoding model and combination

of the encoding model and the SVM classifier. + Indicated the performance of

each run which was used test dataset during cross validation.
⊕

Indicates the

performance of each run was overlapped twice. • Indicates the performance of

each run was overlapped three times. The solid line indicates the chance level

of 12.5%. The error bars in averaged accuracies (mean) indicate the SDs

across participants.

encoding model could be used to decode which direction had
been moved, and these performances confirmed the validity of
the encoding model for classification.

Reconstruction Performance
The result of reconstructed direction for the first subject (S1)
is shown in Figure 4A. The red arrows represent each actual
movement direction to which the subject moved. Each black
point indicates all reconstructed directions across all runs (30
trials per each movement direction). The blue arrows represent
the mean angular direction for all reconstructed direction trials.
The results indicated that most of the reconstructed directions
were clustered near each actual movement direction and that
some reconstructed directions had large errors.

We further investigated the reconstruction capabilities of
when unknown directions are used. This reconstruction result
is shown in Figure 4B. The results of the reconstructed
direction indicated patterns similar to those of the reconstructed
directions used to train the encoding model (Figure 4A). Even
so some reconstructed directions had large errors showed
similar patterns. To quantify this, we investigated the association
between the results of the two reconstructed directions using
the circular correlation coefficient ρ. The correlation result for
the first subject (S1) is illustrated in Figure 5. For this subject, the
reconstructed directions of when movement directions are used
to fit the model were highly correlated with the reconstructed
directions of when the movement directions are not used to fit
the model for each target direction. The distributed pattern of
the combined reconstructed directions over all directions also
showed a highly significant correlation of ρ = 0.92. This result
confirmed that the reconstructed directions by the encoding
model revealed a similar pattern regardless of whether or not the
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FIGURE 4 | Reconstruction results for subject 1. The red arrows indicate the actual movement directions (target directions). Black points indicate the reconstructed

directions on a single-trial basis (total 30 reconstructed directions in each movement direction. The blue arrows represent the mean angular direction for all

reconstructed directions in each target direction. The mean angular direction was obtained by means of vector addition. The angular variance (AV) was defined as

AV = 1− ‖ r ‖ and the interval of the AV was [0, 1]. ‖ r ‖Indicates the length of the mean angular direction. (A) Results of the reconstructed directions that were

used to fit the encoding model. (B) Results of reconstructed direction that were not used to fit the encoding model.

reaching directions were included when fitting the model. The
correlation results for all subjects are shown in Table 1.

To evaluate the reconstruction performance capabilities
of when unknown directions are used and not used, we
computed the absolute error and mean absolute error (MAE)
between the reconstructed and actual movement directions
(target directions) across all of the reconstructed directions
for individual subject and the MAE across all subjects.

When unknown directions were used as test directions for
the reconstruction, the errors were larger than when known
directions were used (Figure 6A). That is, the reconstruction
accuracy when unknown directions were used was less than
the accuracy when known directions were used. However, there
were no significantly different reconstruction errors between
both cases. The shape of skewed distribution toward target
directions also showed that the reconstructed directions were
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FIGURE 5 | Circular correlation result between the reconstructed directions

used to fit the model and those not used for subject 1. Each color point

corresponds to the reconstructed directions in each target direction. ρ

Indicated the circular correlation coefficient obtained separately for each target

direction and that after combining over all directions in each subject.

TABLE 1 | Circular correlation coefficients.

Target

direction

S1 S2 S3 S4 S5 S6 S7 S8

0◦ 0.66 0.33 0.66 0.19 0.86 0.32 0.5 0.66

45◦ 0.77 0.77 0.53 0.47 0.5 0.31 0.35 0.82

90◦ 0.84 0.77 0.77 0.53 0.91 0.55 0.53 0.46

135◦ 0.72 0.8 0.75 0.2 0.71 0.79 0.49 0.7

180◦ 0.7 0.79 0.77 0.07 0.81 0.56 0.17 0.68

225◦ 0.7 0.46 0.68 0.54 0.15 0.23 0.63 0.29

270◦ 0.86 0.82 0.77 0.75 0.76 0.75 0.45 0.44

315◦ 0.78 0.67 0.89 0.29 0.72 0.78 0.51 0.52

Combined 0.92 0.9 0.7 0.58 0.8 0.7 0.81 0.71

clustered near the target directions. The angular dispersion of
reconstructed directions when unknown movement directions
were used as the test directions was also similar to the dispersion
of reconstructed directions when known directions were used
(Figure 6B). These reconstruction results confirmed the validity
of the encoding model to reconstruct unknown movement
directions. Furthermore, to compare the performance between
the reconstruction based on each trials and the trial-averaged
reconstruction, we also computed the MAE values of the
mean angular direction obtained by averaging all reconstructed
trials. The trial-averaged reconstructed performances were much
higher than the performances based on the single trials
(Figure 6C). The average MAE of the mean directions across all
participants reduced from 49.8 to 26.6◦ when known directions
were used to test the reconstruction and from 51.9 to 31.6◦

when unknown directions were used. This indicated that the
trial-averaged reconstruction approach could more efficiently
improve the reconstruction performance than the single-trial
approach.

Head Motion Effects
We evaluated the classification performance from the right M1
ROI via a leave-one-out cross-validation to identify head motion
effects by the reaching movement task. One run (40 trials, 5
trials in each movement direction) from the set of six runs
was excluded to test the performance. Remaining runs were
used to train the SVM classifier and encoding model (200
trials, 25 trials in each movement direction). It was repeated
6 times until all runs were used to test the performance. The
classification performance compared the left M1 and the right
M1 is shown in Figure 7. The average accuracies across all
participants for the left and right M1 based on MVPA were 41.8
and 18.9%, respectively, and the average accuracies for the left
and right M1 based on encoding model were 36.1 and 16.4%,
respectively. The small discriminability in right M1 could have
been influenced by a residual motion signal that was not captured
by the rigid body transformation for motion correction. Because
each fMRI volume is slice-wise assembled over time, the rigid
body transformation may not properly estimate the actual head
movements between and within slice acquisition. Compared to
average performances of the right M1 across participants, the
left M1 is significantly higher than the right M1 for both MVPA
and encoding model. The results indicated that the directional
movements measured on the right M1 were insufficient for
discrimination. Therefore, the effect of head motion does not
have a significant effect on the classification and reconstruction
performance.

DISCUSSION

It is well known that motor cortical neurons encode
various movement features, such as directions of movement
(Georgopoulos et al., 1982), hand positions (Georgopoulos
et al., 1984), velocities (Moran and Schwartz, 1999), and force
(Taira et al., 1996; Sergio and Kalaska, 1998) to generate a
variety of complex motor actions. The directional tuning of
motor cortical neurons is one of the most important factors
related to reaching movements. In this study, we investigated
whether an approach using the directional tuning could be
applied to fMRI responses to reconstruct movement directions
non-invasively. The responses of voxels reflect pooled activity
of neuronal populations because a large number of neurons
with different movement selectivities are distributed within
each fMRI voxel. Thus, the directional sensitivity of the overall
response would be weaker than that of single motor neurons by
averaging out the sensitivity and adding the noise. Nevertheless,
the pooled response of the neurons consistently characterized
with directional sensitivity due to the spatial distribution of
the neurons not being uniform. This generates distinct spatial
patterns of responses across multiple voxels for the reaching
movements and makes it possible to decode the directional
movements from the distributed response patterns. Earlier fMRI
work was also revealed that individual voxels in human M1
have directional tuning properties by computing the coefficient
of variation of five directions of reaching movements for each
voxel (Eisenberg et al., 2010). In this study, we verified that when
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FIGURE 6 | (A) Absolute error between the reconstructed directions and the target directions by combining all reconstructed directions in each subject. It represents

the distribution of reconstructed direction errors in each subject. The central reds line in central boxes indicate the median of the reconstruction errors. Black + in the

central box indicate the mean of reconstruction’s absolute errors (MAE). The central box represents the central 50% of the absolute errors. Its lower and upper

boundary lines are at the 25%/75% quantile of the errors. Vertical lines from the central box indicate the remaining data outside the central box except outliers (red +).

Bar plot indicates average MAE and SD across all participants. (B) Angular variance (AV) of reconstructed directions. Black dots indicated angular variance of each

target directions which was used to reconstruct movement directions. The error bars in averaged variance (mean) indicate the SDs across participants. (C) Absolute

error between mean angular directions obtained by averaging all reconstructed directions and target directions in each subject and the average MAE and SD across

all participants.
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using decoding approaches based on a linear classifier, reaching
movements toward eight directions were distinguishable with
high accuracy from the spatially distributed patterns of responses
across an array of voxels measured in humanM1. Although fMRI
signals were influenced by head motion effect, this indicated that
responses of M1 voxel were directionally sensitive for movement
directions. Therefore, we assumed that directional tuning was
encoded in M1 voxel. The responses of each voxel could be
simply modeled using the directional tuning property of the
motor cortical neurons. The directional tuning in each voxel was
estimated by a linear combination of the six sinusoidal curves.
Thus, directional movements could also be predicted using the
estimated responses of M1 voxels.

As a result of the classification of reaching movement
directions, the encoding model also demonstrated high
performance capabilities for all participants which were also
comparable to MVPA. Although the classification performance
of MVPA was better than that of the encoding model, the
encoding model is more applicable to predict complex motor
information. The classification-based decoding approaches
are used to classify brain activity into a specific experimental
stimuli or tasks, while the encoding model could predict brain
activity without any prior stimulus. To this end, we performed
the reconstruction of unknown directional movements and
compared the reconstruction results of the encoding model
which was fitted by seven directional movements with those
of the encoding model which was fitted by all eight directional
movements. The reconstruction results demonstrated that they
were clustered around the target direction to which the subject
moved. Furthermore, the distributed patterns of reconstructed
directions showed a highly significant correlation regardless of
whether the encoding model was estimated by seven or eight
movement directions. This indicated the potential feasibility
of decoding any possible directions over the eight movement
directions given during experiment task.

Recent fMRI studies have advanced beyond the classification
of cognitive states from experimentally predefined stimulus.
However, such advanced fMRI studies have mostly been
conducted using visual stimuli such as visual images (Kay
et al., 2008; Miyawaki et al., 2008; Naselaris et al., 2009) and
dynamic natural movies (Nishimoto et al., 2011). Thus, we
applied such decoding methods to predict motor information
about directional motor movements in human motor cortex.
In the present study, we used an intuitive and simple encoding
model to classify and reconstruct the movement directions.
The encoding model was defined based on directional tuning
properties in human motor cortex to estimate fMRI responses
in each voxel evoked by a center-out reaching task. We could
perform the identification and the reconstruction of movement
directions using the encoding model. During the reaching
task, head motions by repeated reaching movements could
have an influence on the identification performance. However,
the left M1 showed significantly higher performance than
the right M1, and the performance from the right M1 was
closed to chance level. This implies that motor information
associated with directional motor movements is encoded in
the responses of voxels, and fMRI responses in human M1

FIGURE 7 | Classification accuracies for individual participants and average

accuracies across all participants using different motor cortex regions (left and

right M1). + Indicates the performance of each run which was used test

dataset during cross validation.
⊕

Indicates the performance of each run was

overlapped twice. • Indicates the performance of each run was overlapped

three times. • Indicates the performance of each run was overlapped over four

times. The solid line indicates the chance level of 12.5%. The error bars in

averaged accuracies (mean) indicate the SDs across participants.

are directionally selective. Therefore, this result suggests that
decoding approaches based on the encoding model could be
applied to use motor information. Nonetheless, precise and
detailed encoding models for decoding complex motor actions
in real life can be considered to be used more practically. In
the present study, the identification and reconstruction were
performed based on single-trial basis. Reconstructed directions
based on single-trial were spread out around target directions.
It could cause a lot of errors to use motor information
practically. Thus, using the mean angular direction predicted
by averaging movement trials could reduce the reconstruction
error much more than using reconstructed directions on the
single-trial basis. To improve the decoding accuracy even more,
a trial-averaged procedure in which movement executions are
repeatedly performed is not suitable. Therefore, in the place
of movement executions, decoding approaches based on motor
imagery could be considered as future work. Furthermore, a
future investigation with the encoding model would need to
consider a variety of features related to complex movements such
as directions, velocities, positions, and force.
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