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We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus

(LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic

hardware built with very-low-power ARM processors. The parallel, event-based

data processing in SpiNNaker makes it viable for building massively parallel

neuro-computational frameworks. The LGN model has 140 neurons representing a

“basic building block” for larger modular architectures. The motivation of this work

is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of

the model is consistent with biology. The model response is validated with existing

literature reporting entrainment in steady state visually evoked potentials (SSVEP)—brain

oscillations corresponding to periodic visual stimuli recorded via electroencephalography

(EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with

inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output

from a state-of-the-art electronic retina subjected to a light emitting diode flashing at

10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of

simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations

defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is

executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work

in real time for time-steps dt > 1 ms. The model output shows entrainment with both

sets of input and contains harmonic components of the fundamental frequency. However,

suppressing the feed-forward inhibition in the circuit produces subharmonics within

the gamma band (>30 Hz) implying a reduced information transmission fidelity. These

model predictions agree with recent lumped-parameter computational model-based

predictions, using conventional computers. Scalability of the framework is demonstrated

by a multi-node architecture consisting of three “nodes,” where each node is the “basic

building block” LGN model. This 420 neuron model is tested with synthetic periodic

stimulus at 10 Hz to all the nodes. The model output is the average of the outputs

from all nodes, and conforms to the above-mentioned predictions of each node. Power

consumption for model simulation on SpiNNaker is≪1 W.

Keywords: lateral geniculate nucleus, SpiNNaker machine, sPyNNaker, steady state visually evoked potentials,

LGN interneurons, entrainment, electronic retina, multi-node models
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1. INTRODUCTION

Designing and building brain-inspired computational models
has made steady advances following the Nobel-prize winning
work by Hodgkin and Huxley (Schwiening, 2012). The
biggest challenge in this endeavor has been the inherent
serial processing von-Neumann architecture of our computers,
making the implementation of parallel information processing
complicated and expensive (Markram, 2006; Eliasmith, 2014).
Neuromorphic hardware is an emerging trend that has the
potential to overcome the constraints of conventional computers
in modeling brain structures and functions. Currently, several
neuromorphic platforms are under development and available
for academic research for example Neurogrid (Benjamin et al.,
2014), BrainscaleS (Schemmel et al., 2010), HiAER-IFAT (Yu
et al., 2012), SpiNNaker (Furber et al., 2013). Readers may
refer to a recent topical review of the current state-of-the-
art in neuromorphic computing platforms (Furber, 2016); an
introductory-level overview of neuromorphic systems in current
times is also discussed in Liu et al. (2016). Our goal in this
work is to design and develop a spiking neural network model
of the Lateral Geniculate Nucleus (LGN; the thalamic nucleus
in the visual pathway) on the novel platform that is SpiNNaker.
The motivation is to test the feasibility of simulating biologically
plausible behavior on the SpiNNaker machine; this will help
in assessing its potential as a “tool” for building large-scale
biologically plausible neural networks.

The SpiNNaker machine uses state-of-the-art digital
neuromorphic (brain-inspired) hardware based on very-low-
power ARM processors and developed under the University
of Manchester’s SpiNNaker project (Furber et al., 2014). Being
biologically inspired, the SpiNNaker machine, also referred
to as SpiNNaker, allows brain-like parallel, asynchronous
computation, and in real time with time-steps dt > 1 ms.
Indeed, one of the primary goals of the SpiNNaker project is to
provide users with a massively parallel framework for building
neuro-computational tools that run in biologically plausible
time-scales. Low power consumption has been an equally
important design issue for SpiNNaker, similar to the intelligent
energy saving mechanisms in biological networks (Sharp et al.,
2012; Stromatias et al., 2013; Knight et al., 2016), and others
have demonstrated the significant low power consumption
of SpiNNaker compared to supercomputing-clusters when
simulating large-scale biological networks. These attributes,
combined with an underlying flexible toolchain (Stokes
et al., 2017), make SpiNNaker a potentially “fertile” base for
emulating bespoke neuro-computational models applied to both
clinical neuroscience (for example emulating higher level brain
dynamics Sen-Bhattacharya et al., 2014) as well as intelligent
machines (for example cognitive robotics Adams et al., 2014).

The visual pathway has drawn considerable research interest
from neuroscientists over several decades (Pasternak et al., 2003)
perhaps due to the “ease of access” to the retina and the optic
nerve, allowing detailed physiological studies. This has resulted
in extensive information being available on the organizational
and functional mechanisms of vision (Wurtz and Kandel, 2000).
Thus, it has emerged that the LGN plays a fundamental role

in enhancing visual attention and cognition; this in addition to
what has been traditionally thought to be its primary role of
relaying retinal information to the visual cortex (Sherman and
Guillery, 2001). The computational model of LGN in this work
consists of three cell populations as in biology viz. thalamo-
cortical relay (TCR), thalamic interneurons (IN) and the thalamic
reticular nucleus (TRN). The basic unit of the network is an
Izhikevich’s model of a spiking neuron (Izhikevich and Edelman,
2008), a popular framework for spiking neuron modeling owing
to its versatility and yet, low computational requirements. The
structural layout of the model is based on physiological data
obtained from the dorsal-LGN (LGNd) of cats and rats (similar
to previous works, Sen-Bhattacharya et al., 2016). All LGN cells
are known to fire in two modes, viz. tonic and burst, depending
on the functionality of the circuit (Sherman, 2001); tonic firing
is often associated with the state of attention and information
processing (Weyand et al., 2001). For the purposes of this work,
we follow a “simple” assumption that all cells of the LGN fire in
the tonic mode when processing sensory information received
from the retinal spiking neurons.

The first objective toward our goal in this work is to
make a feasibility study of simulating steady state visually
evoked potentials (SSVEP)—brain oscillations recorded in
electroencephalogram (EEG) corresponding to periodic
visual stimuli—using the model. Our approach is justified by
experimental research showing a strong correlation between
local field potentials (LFP) recorded from the LGN and EEG
recorded from the occipital scalp electrode i.e., the location
of the visual cortex (da Silva et al., 1973; Crunelli et al., 2006).
Moreover, after several decades of experimental research on
isolated thalamic slices of mammals and rodents, it is now well
understood that the LGN plays a fundamental role in generating
and sustaining cortical oscillations observed via EEG (Timofeev
and Steriade, 1996). SSVEP have been used for several decades
now to study visual perception (Norcia et al., 2015). Indeed, the
paradigm continues to grow in popularity for its relatively easy
“frequency tagging” characteristics, which can have significant
applications in the area of clinical neuroscience as well as in
Brain Computer Interfaces (Vialatte et al., 2010; Diez et al., 2011;
Guger et al., 2012). Such frequency tagging, in turn, is facilitated
by the inherently stable spectrum of SSVEP signals and their high
signal to noise ratio. While the underlying neural mechanisms
of the harmonics and subharmonics in the SSVEP signals
are as yet unclear, there is a general understanding that the
non-linearity of the visual system plays a major role (Hermann,
2001). A recent computational model-based study that was
validated with experimental data further emphasized the
human visual system non-linearity as a causal factor in SSVEP
harmonics (Labecki et al., 2016). The authors of another recent
experimental work have argued that entrainment of brain signals
by visual rhythmic (periodic) stimulation underlies the “origin
of SSVEP” (Notbohm et al., 2016). In this work, we validate the
power spectra of the LGNmodel output with that corresponding
to SSVEP reported in Hermann (2001) and Labecki et al. (2016).

A recent report by Hirsch et al. (2015) emphasizes the role
of feed-forward inhibition in the retino-geniculate pathway, viz.
from the retina to the TCR cells via the IN, in maximizing the
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information transmitted to the cortex by the TCR population.
This is not surprising as the IN population is known to receive
around 47% of its synaptic afferents by the retinal spiking
neurons compared to only 7.1% from the TCR cells. Interestingly,
the rat thalamus is found to be devoid of IN cells, the only
exception being the LGN; this further emphasizes the significance
of IN in the visual pathway of both mammals and rodents.
However, computational model-based research on thalamo-
cortical dynamics of health and disease largely ignore the feed-
forward inhibition by the IN. In contrast, the feed-forward
and -back connections between the TCR and TRN have been
studied extensively by both neuroscientists and modellers toward
understanding EEG and LFP in health (Huntsman et al., 1996) as
well as in neurological disorders, for example in epilepsy (Wang
et al., 2014). A recent mesoscopic-scale neural-mass model based
study has reported a causality of IN connectivity with LGN
dynamics (Sen-Bhattacharya et al., 2016). Motivated by this
model-based observations, the second objective in this work is to
test the LGNmodel on SpiNNaker for causality of the IN pathway
on the simulated SSVEP power spectra characteristics.

In summary, the aim of the work is three-fold: first, to
design and develop a spiking neural network model of the LGN
on the novel platform that is SpiNNaker; second, to simulate
SSVEP-like signals in the model; third, to test the causality
of feed-forward inhibition in the retino-geniculate circuit on
model dynamics. It is worth mentioning here that the current
work is an initial attempt to simulate a biologically plausible
LGN spiking neural network on the SpiNNaker machine. Thus,
benchmarking performance evaluation of SpiNNaker with other
available neuromorphic platforms when simulating the LGN
model is outside the scope and objectives of our current work.
Rather, the emphasis is on testing the SpiNNaker platform
as a viable device to simulate biologically plausible neural
network behavior. Furthermore, such instances of neural model
simulation also contribute toward enhancing the development
of the sPyNNaker toolchain by providing crucial feedback from
time to time for example on fixing bugs.

In Section 2, we present the methods of modeling the LGN,
followed by some background information on the two unique
hardware platforms used in this work: the SpiNNaker machine
and the electronic retina. In Section 3, we present the results from
this study as well as specify the simulation, data collection and
power evaluation methods. A discussion on the results as well
as on future works that can build on the framework presented
herewith is provided in Section 4. We conclude the paper in
Section 5.

2. MATERIALS AND METHODS

In Section 2.1, we present an overview of the LGN model and its
biologically informed synaptic layout. In Section 2.2, we present
the parameterization of the spiking neural network in the model.
The SpiNNaker toolchain, sPyNNaker, forms the backbone of
all neuronal model implementations on the SpiNNaker machine
and is discussed in Section 2.3. An overview of the electronic
retina is presented in Section 2.4.

FIGURE 1 | The synaptic layout of the model is based on experimental data

obtained from the dorsal Lateral Geniculate Nucleus (LGNd) of mammals and

rodents. Both TCR and IN cells of the LGN receive excitatory inputs from the

retinal spiking neurons. The IN cells make inhibitory synapses on themselves

as well as on the TCR cells. Information on the synaptic pathway from the TCR

to IN is ambiguous in literature and is ignored here. The TCR cells make

excitatory synapses on the TRN cells. The TRN cells makes inhibitory synapse

on the TCR cells as well as on themselves. The synaptic connectivities in the

network are sparse and the probabilities of connectivity pconn between

pre-synaptic and post-synaptic populations in the model are mentioned in

Table 1.

2.1. Synaptic Layout of the Lateral
Geniculate Nucleus Model
The synaptic layout of the LGN model in this work is shown
in Figure 1. Sensory information from the retina is carried by
the ganglion cell axons, which constitute the optic nerve, to
the LGN; the ganglion cells make excitatory synapses on both
the TCR and IN cells. The axons of the TCR cells are the
main carriers of the sensory information to the visual cortex (to
Layer 4 primarily); the visual cortex (Layers 5 and 6 primarily)
is known to send vital feedback signals to both TCR and IN
cells of the LGN. The TRN is a thin sheet of neuronal tissue
that surrounds the dorsal thalamus. All information carrying
pathways from the TCR to the visual cortex have major branches
that make excitatory synapses on to the TRN cells; similarly,
all feedback from visual cortex to the TCR and IN cells is also
communicated to the TRN via axonal branches. Thus, it is not
surprising that the TRN is located strategically, which allows it
to “monitor” all communication between the LGN and the visual
cortex. In this work, however, our objective is to understand the
dynamics of the de-decorticated (disconnected from the cortex)
LGN dynamics; thus we have not looked into thalamo-cortical
or cortico-thalamic connections. This is similar to experimental
studies on LGN slices in vitro (Bal et al., 1995) that paved the
way for a deeper understanding of the thalamo-cortico-thalamic
dynamics, which has been referred to as the “Rosetta stone” of
neurological disorders (McCormick, 1999).

The LGN comprises around 70–80% TCR cells and 20–25%
IN cells, suggesting the ratio of TCR to IN as≈4:1 (Sherman and
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Guillery, 2001). There is no available corresponding data on the
TRN to the best of our knowledge, and is arbitrarily set in this
model as twice the number of IN cells. The proportion of cells
in the TCR, IN and TRN populations is set as 8:2:4. The LGN
model is populated with a total of 140 neurons, and is intended
to serve as a “basic building block” for scaled-up model versions
toward building massively parallel frameworks on SpiNNaker.
Each neuro-computational “unit” of the model is the Izhikevich’s
spiking neuronmodel, defined in Equations (1)–(3) (Section 2.2).

Detailed physiological data reporting the synaptic afferents
(“fan-in”) and efferents (“fan-out”) for each LGN cell types is
scarce, understandably due to the expensive and complicated
overheads of experimental research, and the dependence on
advancements of recording equipments. Even for the few existing
studies, there is a significant deviation in reported data depending
on the species and animal being studied, as well as in the
experimental methods for data collection. In prior works on
parameterizing LGN models (Sen-Bhattacharya et al., 2011b,
2016), we have followed the most recent available physiological
data reported by Horn et al. (2000), which is subsequently
confirmed in Sherman and Guillery (2001) and Jones (2007). A
brief account of the intra-LGN connectivity is provided below
and the related parameters are mentioned in Table 1.

Data from the cat LGNd suggest that the TCR receive
≈7.1% of their inputs from the retinal ganglion cells, while
≈30.9% of their inputs are from inhibitory sources viz. IN and
TRN. However, and to the best of our knowledge, there is no
data available that distinguishes between the afferent synaptic
terminals from the IN and TRN due to similarity in their physical
shapes and sizes. Thus, we set each of these parameters to a
fraction x ∈ { 34 ,

1
4 } of the maximum value 0.309 such that the

total strength of inhibitory input to the TCR is 30.9% as reported
in literature. Furthermore, and aligned with the aims of our work
as outlined in Section 1, the feed-forward inhibitory pathway
connectivity is dominant in the “base” (reference) model state.
(In Section 3, we study the effects of a diminished role of the feed-
forward inhibition from IN on sensory information processing
by the LGN). The remaining≈62% of the TCR afferents are from
the cortex as well as other sub-cortical sources, and are outside
the scope of the current work.

As reported in Horn et al. (2000), the IN cells receive
around 47.4% synapses from the retinal spiking neurons, 23.6%
from other inhibitory sources including themselves, while 29%
synapses are from the cortex. It may be noted that the IN circuitry
in the LGN has a unique triadic spiking arrangement (Sherman,
2004) consisting of dendrites that are not only post-synaptic
to the retinal cells but are also pre-synaptic to the TCR cells
as well as to themselves (dendro-dendritic synapses). These are
referred to as the F2 terminals of the IN while the usual pre-
synaptic axonal terminals are referred to as F1. However, the
exact distribution of F1 and F2 terminals is not yet available
from physiological studies; thus the above-mentioned figures for
synaptic afferents to the IN refer to the combined numbers of
both types of terminals. Also worth mentioning here is that
experimental observations of IN cell dynamics do mention an
excitatory feed from the TCR to these cells (Crunelli et al.,
1988; Zhu et al., 1999; Lörincz et al., 2008), however, these were

TABLE 1 | Normalized base parameter values of synaptic projection from the

pre-synaptic population to the post-synaptic population expressed as a

probability pconn ∈ (0, 1).

Post-synaptic→
TCR IN TRN

Pre-synaptic ↓

TCR X X 0.35

IN 0.232 0.236 X

TRN 0.077 X 0.20

RET 0.071 0.474 X

The values are derived from experimental data on LGN of mammals and rodents (Horn

et al., 2000; Jones, 2007) (see Section 2.1 for a brief overview). To the best of our

knowledge, specific data distinguishing the TRN and IN afferent terminals on the TCR

population are yet to be reported. Thus, we set each of these parameters to a fraction

x ∈ { 34 ,
1
4 } of 0.309, such that the combined strength of inhibitory input to the TCR from

the TRN and IN is 30.9% as reported in literature. All “X” indicate a lack of biological

evidence for synaptic connectivity in the specific pathway.

speculations based on cell behavior as opposed to cell physiology.
On the other hand, experimental studies on IN cell physiology
suggest two specific cell types in the LGN (Cox et al., 2003): the
intra-layer IN cells that do not receive any afferents from the TCR
cells; the inter-layer IN cells that do receive inhibitory feedback
from the TCR cells, and are often thought to be “stray” cells of
the TRN. In the present work, we consider the intra-layer IN cell
population only; thus, as in our previous work (Sen-Bhattacharya
et al., 2011b), the IN population do not receive any synaptic
afferents from the TCR.

Connectivity for the TRN population follows the data
reported in Jones (2007) and is obtained from the rat LGNd
and visual cortex. Both thalamocortical and corticothalamic
synapses on the TRN sector are excitatory in nature and
constitute ≈30–40% and ≈50% respectively of the total
synapses; the remaining up to 25% of the synapses are
from other inhibitory sources including neighboring intra-
population cells. In our model, we maintain the excitatory
afferents from the TCR as 35% (average of the reported figure),
and self inhibitory connectivity within the TRN population
(consistent with previous works Sen-Bhattacharya et al., 2016) as
20%.

It may be noted that the above-mentioned physiological
data are based on the number of synaptic vesicles observed
through electronic microscopy on dendritic boutons
that are located closer to the soma (as opposed to distal
dendritic locations) (Horn et al., 2000). Furthermore
the figures are normalized (percentage), thus providing
a relative estimate of the maximum possible fan-in per
“unit neuronal representation” in a network. In this
model, we set this normalized figure as the probability of
connectivity from one neuronal population to the other
(discussed further in the following section). Thus, all
figures mentioned in the table are expressed as a probability
pconn ∈ (0, 1).

2.2. Parameterizing the LGN Network
Each Izhikevich neuron model in this work is as defined in
Equations (1)–(3) (Izhikevich, 2003) and parameterized for
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generating tonic spiking pattern corresponding to a cognitive
brain state:

dv(t)

dt
= 0.04v2(t)+ 5v(t)+ 140− u(t)+ Ipsc(t)+ Idc (1)

du(t)

dt
= a(bv(t)− u(t)) (2)

If v(t) > 30, then v(t)← c; u(t)← u(t)+ d (3)

where, a, b, c, d are parameters that define the dynamic behavior
of the model and can be tuned to obtain various spiking patterns
as observed in biology (Izhikevich, 2004); v(t) is the membrane
potential and u(t) is a membrane recovery variable (Galbraith,
2011); Ipsc(t) is the post-synaptic current due to all extrinsic
spike inputs to the model; Idc is a constant bias current stimulus
to the model that forms part of the neuron model definition
on sPyNNaker. While the original works by Izhikevich (2003)
preferred not to provide units for the parameters a, b, c, d,
and u, subsequent works have indeed assigned units to these
parameters (Elibol and Sengör, 2015); we preferred to follow the
original work. The base parameter values of Izhikevich’s model
neurons used in the LGN model are mentioned in Table 2.

It is believed that when firing in tonic mode, the TCR cells
display a Regular Spiking(RS) behavior (Izhikevich, 2003). The
spiking behavior of the TRN cells is also thought to be similar to
the TCR cells (Halassa and Acsady, 2016). Thus, in this work, the
Izhikevich’s model neurons for simulating each TCR and TRN
neuron are parameterized to fire in the RS mode. On the other
hand, the IN cells are reported to display a Fast Spiking (FS)
behavior (Izhikevich, 2003) and are modeled accordingly in this
work.

Figure 2 shows the spiking pattern of each cell population
corresponding to a constant value of Idc (nA). There are no
other extrinsic inputs to the circuit (i.e., Ipsc = 0), and all
network connectivities are removed (i.e., pconn = 0). Thus, all the
neurons in the model are firing independently of one another,
and are just dependent on Idc. Furthermore, as Idc forms part
of the neuron model definition on sPyNNaker, it is present as a
stimulus to all neurons in the model from start of the simulation.
The raster plots in Figure 2 demonstrate that all neurons in a
certain population respond similarly (in terms of spike time and
frequency) to the same stimulus. The respective frequencies of
spiking increase for all populations with increasing values of Idc.

Next, the cell populations are connected as a network as shown
in Figure 1. The constant current bias Idc for all cell populations
are now assigned a value of 0; thus the total current in the
model is only due to Ipsc that is initiated by retinal spiking
inputs simulated by both periodic and aperiodic spike trains,
the latter following a Poisson distribution. The model inputs
and corresponding response patterns are shown in Figures 3A,B.
Each synaptic connectivity in themodel network consists of three
attributes: (a) The weight wsyn of the synapse—this emulates a
synaptic weight assigned to the post-synaptic membrane current
Isyn and is defined thus:

Isyn(t) =wsyne
−t/τsyn , syn ∈ {e, i}, (4)

TABLE 2 | The base parameter values for Izhikevich’s neuron model used in the

LGN network to produce spiking dynamics shown in Figure 2.

LGN Spiking a b c d vi ui

cells pattern (mV)

TCR RS 0.02 0.2 −65 6 −65 −13

IN FS 0.1 0.2 −65 6 −70 −14

TRN RS 0.02 0.2 −65 6 −75 −15

The initial values of the variables v and u in Equations (1) and (2) are represented by vi and

ui , respectively. RS, Regular Spiking; FS, Fast Spiking.

where “e” and “i” denote excitatory and inhibitory synapses
respectively, and τsyn is the time constant of the synapse.
Equation (4) is solved separately to the Equations (1)–(3) at every
simulation time-step of the model; all equations are solved in
SpiNNaker. The values for the parameter wsyn are adjusted to be
above a minimum threshold required to effect action potential
in the post synaptic cells in the network and are mentioned in
Table 3. The parameters τsyn are mentioned in the legend of
Table 3 and are as in Roth and van Rossum (2009), which in turn
are based on physiology data from thalamo-cortical circuit. (b)
The delay of the synaptic connection dconn—this represents the
latency of a pre-synaptic cell spike in reaching the post-synaptic
cell. The delay parameters in this model are set arbitrarily in
arithmetic progression to reflect the overall distance between the
pre- and post-synaptic cells; thus, the delays for the self inhibitory
projections in the TRN and IN are the minimum, while those
for the external spike source input projections to the LGN cells
are the maximum. The parameter values are provided in Table 3.
(c) The probability of the synaptic connection pconn ∈ (0, 1)—
this parameter, discussed in Section 2.2, takes into account
the sparsity of the biological networks and defines the total
“fan-in” from the pre-synaptic population to the post-synaptic
population. Parameter values are mentioned in Table 1.

2.3. Overview of SpiNNaker Toolchain
Interface
The SpiNNaker (short for “Spiking Neural Network
architecture”) machine consists of a large number of very-
low-power ARM processing units, coupled together by a novel
low-powered network architecture designed to send small
messages (i.e., neural spikes) across the system to multiple
destinations simultaneously, using a SpiNNaker-specific
multicast protocol to ensure efficiency. Each chip of the machine
has up to 18 ARM 968 cores, each of which operates at 200
MHz, and has access to 32 K of instruction memory, 64 K of
data memory, and a shared SDRAM of 128 MB. Though these
numbers are relatively small by modern computing standards,
the machine is highly extendable, with boards containing 48-
chips each (approaching 1,000 cores on a board) being coupled
together to yield a machine consisting of up to a million such
cores.

Users of the SpiNNaker software such as those from the
computational neuroscience community are often not in a
position to write neural code that is optimized to execute
efficiently on the SpiNNaker platform. The SpiNNaker software,
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FIGURE 2 | Behavior of the Izhikevich model neurons when acting independently (i.e., not connected to one another) and stimulated by a constant input current (Idc).

Each Izhikevich model neuron simulating a TCR and TRN cell is parameterized to fire in a Regular Spiking (RS) mode corresponding to Idc, while each IN cell is

parameterized to fire in a Fast Spiking (FS) mode. The corresponding parameters are mentioned in Table 2. The case for Idc = 5 nA is shown here. The

Implementation of the Izhikevich neuronal models are as defined in PyNN (Davison et al., 2009) and mapped on SpiNNaker by the underlying toolchain sPyNNaker

version 3.0.0 (Stokes et al., 2017). Idc forms part of the Izhikevich neuron definition on sPyNNaker, therefore acting as current stimulus to each neuron model from the

start of simulation time. The raster plots show that all neurons in a certain population, when acting independently, respond similarly to a stimulus in terms of spike

times and frequency.

sPyNNaker (Stokes et al., 2017), allows these users to define
neural networks using the PyNN description language (Davison
et al., 2009), which is then compiled into appropriately sized
units of computation and communication, which in turn are
placed onto the machine in such a fashion that ensures that
real time constraints are met and that all packets are delivered
during the simulation. The sPyNNaker software then executes
the simulation for a pre-determined time period and extracts
the results from the SpiNNaker machine to the host for post
processing. One obvious advantage of this is that a certain
simulation running in “X” seconds on SpiNNaker is guaranteed
to complete execution in that time for every run.

The sPyNNaker software release 3.0.0 (Stokes et al., 2017),
used to simulate the model in this paper, contains a fair variety
of neuron model implementations including the widely used
Leaky Integrate and Firemodel and the Izhikevich neuronmodel.
As indicated in Section 1, the LGN circuit in this work is
implemented using the Izhikevich’s neuron model [Equations
(1)–(3) in Section 2.3] with exponentially decaying current-based
synapses (specified in PyNN as “IZK-curr-exp”) (Hopkins and
Furber, 2015). The differential equations of IZK-curr-exp are
solved with a 2nd order Runge-Kutta method.

Readers may note that the SpiNNaker hardware is designed

inherently to simulate in real time for time-steps>1ms. Recently,

the sPyNNaker toolchain was modified to support smaller

time-step resolutions; however the current implementation of

the software can result in the simulation not maintaining
synchronization when run in real time. Thus, a technique is
implemented by default on the configuration file (spynnaker.cfg)
whereby an user application requiring time-step <1 ms is
automatically set to run at a time that is scaled up by the
inverse of the time-step. For example, if the time-step of a certain
simulation is 0.1 ms and the total simulation duration is 1 s, then

by default the simulation will run in 10 s real time. However, the
users can override the default in the configuration file according
to their application requirements.

With regards to accessibility by wider audience, we would
like to note that the SpiNNaker machine comprising over half-a-
million cores has now been made available via the Neuromorphic
platformwithin the Human Brain Project Collaboratory (Muller,
2016). This allows users to submit jobs to the machine where
they are managed using a custom batch processing system; users
are notified via email when results are available for collection.
The facility is a step forward in facilitating easy access to the
SpiNNaker computing platform.

2.4. The Electronic Retina
The electronic retina used in this work is a Dynamic Vision
Sensor (DVS) (Serrano-Gotarredona and Linares-Barranco,
2013), a novel bio-inspired technology that emulates the spiking
behavior of the retinal ganglion cells (Lichtsteiner et al., 2008;
Lenero-Bardallo et al., 2011; Posch et al., 2011, 2014). Each
pixel in a DVS senses the reality in a continuous way and
autonomously generates output spikes whenever it detects
temporal variations in the illumination impinging on it; the
rate of output spikes is proportional to the relative change
in the illumination. If the relative change in the illumination
impinging on the pixel increases over a given threshold value,
the pixel will generate a positive output spike; conversely, when
the relative change of the pixel illumination decreases below a
given threshold the pixel will generate a negative output spike.
Figure 4A illustrates the underlying circuit of a DVS pixel:

The illumination impinging on the pixel is detected by a
photo-diode which converts it to a current Iph. A logarithmic
block transforms the photo-current into a voltage Vlog such that
Vlog = K ·Log(Iph), whereK is some transformation constant; the
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FIGURE 3 | Average population membrane potential with (A) periodic spike-train, and (B) Poisson spike-train input at 40 Hz. All neuronal and connectivity parameters

are as in Tables 1–3.

voltage Vlog is the input to a differentiator block with a “Reset”
input signal. Whenever the Reset signal is activated, voltage Vdiff

is set to some reference value Vref , where V
−
t < Vref < V+t , and

V
+/−
t are two comparison threshold voltages. When the Reset

signal is deactivated, the output of the differentiator follows the
variation of the input voltage Vlog through the following relation:

1Vdiff = A ·1Vlog = A · K ·
1Iph

Iph
(5)

VoltageVdiff is compared with the two thresholds voltages.When

Vdiff > V+t , it implies that the variation of Vdiff since the last

reset verifies 1Vdiff > V+t − Vref . Thus a positive relative
increase in the current has taken place since last reset verifying
1Iph
Iph

>
(V+t −Vref )

A·K . In that case, the positive comparator would

trigger a positive (“ON”) output spike and voltage Vdiff will self-
reset to valueVref . In a similar way, when voltageVdiff goes below

threshold V−t , it means that a negative relative variation in the

current verifying that
1Iph
Iph

<
(V−t −Vref )

A·K has taken place since last

pixel reset, so that the pixel would generate a negative (“OFF”)
output spike and voltage Vdiff will reset to Vref .

Figure 4B illustrates the behavior of the DVS pixel under
a sinusoidal illumination varying with a frequency of 10Hz.
The upper trace represents the pixel illumination along time.
The middle trace illustrates the positive spikes generated
versus time. As can be observed, when the illumination
increases the pixel generates positive spikes and the spikes
are denser when the relative change in the illumination
is higher. In a similar way, the lower trace illustrates the
negative spikes generated by the pixel when the illumination
decreases.

3. RESULTS

In Section 3.1, we present the experimental set-up for data
acquisition from the electronic retina. Methods for model
simulation, data processing and visualization are presented in
Section 3.2. The observation from the model and results are
presented in Sections 3.3–3.6. An estimation of the power
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consumed by simulation of a single instance of the model is
presented in Section 3.7.

3.1. Experimental Set-up of Electronic
Retina
To emulate the behavior of the model under a real periodic
visual stimulus, we have recorded the spikes generated by the
electronic retina when placed in front of an LED that is driven by
a periodic signal, thus producing a flashing light. This is similar
to experimental studies of SSVEP on humans and animals. For
the purposes of this work, the electronic retinal spike-train
corresponding to periodic LED flashing at 10, 20, and 40Hz are
recorded. As illustrated in Figure 4B, each pixel of the retina
produces a series of positive and negative spikes with every rising
(ON) and falling (OFF) edge of the flashing light respectively.

Figure 4C illustrates the raster plot of the spikes generated by
12 × 12 pixels of the retina stimulated by the LED flashing at
10 Hz recorded during 1 s. For brevity in this work, we assume
ON-center receptive fields for all retinal cells, and just consider
the positive spikes in response to the switching ON of the LED.
Furthermore, previous research indicates that around 80% of the
input information can be recovered from “first spikes” emitted by
retinal ganglion cells observing a static monochrome image (Sen-
Bhattacharya, 2008). Along these lines, we consider only the first
spike generated by each pixel after the switching ON of the diode;
the corresponding raster plot is shown in Figure 4D. A similar
procedure was followed for the spikes recorded at 20 and 40Hz.
The spike-train output of the retina recordings are provided as
input to the model; all simulation methods are the same as with
the synthetic model input, which is elucidated in the following
section.

3.2. Simulation and Data Processing
Methods
Total simulation time of the model is set to 6 s. The time
resolution of simulation is set to 0.1ms for ensuring solution
accuracy of Izhikevich’s neuron models defined in Equations (1)–
(3). As elucidated in Section 2.3, our total simulation duration
is thus 60 s in real time, where 0.1ms simulation time runs on
SpiNNaker in 1 s real time. All results presented in this work ran
reliably on SpiNNaker within this time scale.

The frequencies of the synthetic model inputs, both periodic
and Poisson spike trains, are set to lie in the range 10–50Hz at
a resolution of 1 Hz. At each frequency, the model is simulated
for 10 “trials,” each with a different seed, thus simulating multiple
trials during SSVEP studies on humans. The output membrane
potential time-series of all neurons in each population is averaged
over time; this is done for all the 10 trials. The final membrane
potential of each population in the model is the average of
the mean membrane potentials across all the 10 trials. The
“model output” is the membrane potential time-series of the TCR
populations that are the main carriers of sensory information to
the visual cortex.

For frequency analysis, an epoch of 5 s from 0.5 s to 5.5 s of
the average membrane potential time-series is down-sampled
to 1,000Hz (i.e., sampled at every 1ms) and bandpass filtered

TABLE 3 | The synaptic weights wsyn in the model are parameterized so as to be

above the minimum threshold for spiking corresponding to a Poisson train input,

the corresponding thresholds for periodic spike-train inputs being comparatively

lower.

Post-synaptic→
TCR IN TRN

Pre-synaptic ↓

TCR X X
wsyn = 3 (nA)

dconn = 8 (ms)

IN
wsyn = 8 (nA) wsyn = 2 (nA)

X
dconn = 6 (ms) dconn = 4 (ms)

TRN
wsyn = 2 (nA)

X
wsyn = 2 (nA)

dconn = 8 (ms) dconn = 4 (ms)

RET
wsyn = 5 (nA) wsyn = 4 (nA)

X
dconn = 10 (ms) dconn = 10 (ms)

The delay parameters dconn are arbitrarily set as progressively diminishing so as to indicate

maximum delay (10 ms) for inter-population projections and minimum delay (4 ms) for

recurrent projections. The post-synaptic projections follow an exponential decay with

time constant τe = 1.7 ms for excitatory synapses, and τi = 2.5 ms for inhibitory

synapses (Roth and van Rossum, 2009).

between 1 and 100 Hz with a Butterworth filter of order 10. The
filtered signal is then transformed using 4-point FFT and the
power spectral density derived using the Welch periodogram.
Images of the model output vs input stimulus frequency in
Figures 5, 6 are generated using image processing toolbox
commands in Matlab.

3.3. Entrainment of Model Output with
Periodic Stimulus
Figure 5A depicts the model output power content against the
input stimulus frequency, and is an attempt to compare with
a similar classic depiction of experimental data corresponding
to SSVEP in human EEG by Hermann (2001). However,
Hermann’s depiction was modified in subsequent research with
the input stimuli frequencies (the independent variables) along
the abscissa (Robinson et al., 2015). The latter approach is
adopted by Labecki et al. (2016) as well as in this work as can
be seen in Figures 5A, 6A. Our results indicate entrainment of
the model output with the periodic visual stimulus and for all
frequencies within the tested range of 10–50Hz. Furthermore,
harmonics at integral multiples of the fundamental frequency are
also observed; 2nd and 3rd harmonic components are present
for all frequencies, while upto the 5th harmonic component
are observed for lower frequencies. Similar entrainment is
also observed when the LGN model input is provided by
the electronic retina output corresponding to periodic visual
stimulus and is discussed in Section 3.5. In addition, the results
imply a high fidelity performance of the circuit in response to
periodic spike-train input across the upper-alpha (10–13Hz),
beta (14–30Hz), and gamma (>30Hz) frequency bands, and are
in agreement with reports from experimental studies observed
for occipital (Hermann, 2001; Notbohm et al., 2016) as well as
parietal (Labecki et al., 2016) scalp electrodes in human EEG.
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FIGURE 4 | (A) Conceptual block diagram of a Dynamic Vision Sensor (DVS) pixel. (B) Illustration of the spikes generated by a DVS pixel with a sinusoidal illumination.

Upper trace represents the pixel illumination versus time. Middle trace represents the positive spikes generated by the pixel along time. Lower trace represents the

negative spike timings. (C) Raster plot of the positive spikes generated by 12× 12 pixels of the electronic retina subjected to a 10 Hz flashing LED during 1 s, and (D)

raster plot of the first positive spike generated by the same 12× 12 pixels of the electronic retina after each illumination positive transition during the same 1 s.

FIGURE 5 | (A) Power spectra of the model output (y-axis) show a linear relation between the fundamental response frequencies and the periodic input at frequencies

in the range 10–50Hz at intervals of 1Hz (x-axis). There is a prominent second harmonic of the fundamental frequency for all frequencies in the tested range. (B)

Model power spectra with a Poisson (a-periodic) input spike-train at frequency ranges similar to as in (A). The power spectra is stationary with maximum power within

the range 40–60Hz.

However, there are no subharmonic components in the output
as reported by both Labecki et al. (2016) and Hermann (2001).

When an aperiodic (Poisson) spike-train input is applied

to the model, the evidence of entrainment of the output

vanishes as shown in Figure 5B. The output power spectra show
maximal power within the 40–60Hz range corresponding to

input frequencies '20Hz, implying an invariance to the change

in the “parameter” (defining the spikes per second) of the Poisson

distributed spike-train input. Also, the power amplitudes are
significantly lower than those corresponding to the periodic

inputs as indicated by the color bars.

3.4. Causality of Interneurons on Network
Dynamics
We compare the model output characteristics with the case
when the IN has reduced inhibitory role in the LGN
circuit, and the feed-back inhibition is dominant. This is
simulated by decreasing the parameter values of the feed-
forward synaptic connectivity from IN to the TCR population
(pconn = 0.07, wsyn = 1) with respect to their base values;
simultaneously, the feed-back inhibitory synaptic connectivity
parameters from the TRN to the TCR population are increased
(pconn = 0.309).

Frontiers in Neuroscience | www.frontiersin.org 9 August 2017 | Volume 11 | Article 454

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Sen-Bhattacharya et al. LGN on SpiNNaker

FIGURE 6 | The model output power spectra (y-axis) corresponding to (A) periodic and (B) Poisson spike-train inputs in the range 10–50 Hz at a resolution of 1 Hz

(x-axis), and spanning the upper-alpha (10–13 Hz), beta (14–30 Hz) and gamma (>30 Hz) EEG frequency bands. The figures correspond to the case when the IN

feed-forward inhibition is suppressed in the circuit and the TRN feedback inhibition is dominant. The power spectra in (A) show distinct subharmonic contents for

frequencies >40 Hz, and are indicated by arrows.

Figure 6A shows entrainment of the model output for
all frequencies within the tested range of 10–50Hz, and
harmonics at integral multiples of the fundamental frequency
f . Interestingly, subharmonic contents of the power spectra are
now observed at 1

2 f corresponding to the input frequency range
of ≈ 36–50Hz; for input frequencies '40Hz, sub-harmonic
components are also observed at 3

2 f ,
5
2 f and

7
2 f .

The appearance of subharmonics in Figure 6A and their
absence in Figure 5A imply a definitive role of the dominance
of feedback inhibition in the system along with a suppression
of the feed-forward inhibition. This validates the model-based
results showing the non-linearity induced by the TRN feedback
to the TCR in a simple mesoscopic-scale population model
effects subharmonics in the model response (Labecki et al., 2016).
However, the range of the input frequencies in our work are not
in agreement with Hermann (2001) and Labecki et al. (2016),
i.e., the model output do not show subharmonics for input
frequencies within the alpha and beta bands (10–30Hz).

In contrast, the power spectra corresponding to Poisson
distributed spike-train input in Figure 6B shows a vertical shift
in the dominant power “area” compared to Figure 6B, indicating
an overall reduction in the dominant frequency of oscillation
(“slowing” of power spectra) when the TRN feedback inhibition
is dominant in the circuit; interestingly, this is in agreement
with prior work on mesoscopic-scale population model (Sen-
Bhattacharya et al., 2011a).

3.5. Model Input from Electronic Retina: A
Comparative Study
As elucidated in Section 2.3, retinal recordings that are made
for the work presented here are at 10, 20, and 40 Hz periodic
visual stimulus, and are representative samples of frequencies
within the EEG upper-alpha, beta and gamma bands. The spike
trains generated by the electronic retina for each of the three
frequencies are provided as input to the LGN model. This is
done for both cases when the IN plays the dominant inhibitory

role within the LGN circuit, and when it is suppressed while
feedback inhibition from TRN is dominant. Thus we have a
total of six cases which are show-cased in Figure 7A. The top-
panel in the figure shows “zoomed in” sections of the time-series
such that four “cycles” of the model response can be observed.
The entrainment of the model output is clear both from the
time-series as well as the power density plots (bottom-panel).

The distinct effect of the IN inhibitory dominance in the
LGN model is that the input signal periodicity is represented
in the output with a high fidelity (shown in red). In contrast,
when the TRN inhibition is dominant, this transmission efficacy
is reduced and the output time-series (shown in blue) show
characteristics of “half-wave” rectification, where the negative
cycle is either clipped or minimally represented, and with a delay;
the effect is more pronounced for higher frequencies i.e., 40Hz.
The corresponding power spectra reflect the reduced efficacy: the
dominant frequency at the fundamental frequency f = 40Hz
is not distinct from its second harmonic content at 2f Hz, as

well as the subharmonic at
f
2 Hz. For 10Hz, the dominant power

is within the second harmonic at 20Hz, and power within the
harmonics >3f are significantly reduced compared to when the
IN is dominant in the circuit. Thus, clearly, the model response
loses the “frequency tagging” characteristics with a reduced effect
of the IN feed-forward inhibition in the circuit corresponding
to 10 and 40Hz. Conversely, dominance of IN effects a true
representation of the input frequency content in the circuit
response.

The model outputs corresponding to synthetic periodic
inputs in Figure 7B are in agreement with their respective
counterparts corresponding to electronic retina input in
Figure 7A. The only notable difference is at 10 Hz: the
power spectra dominant frequency for 10 Hz retains the
dominant characteristics of the input for the case when
IN is suppressed in the circuit. Furthermore, the response
to 20 Hz input is relatively unaffected by inhibitory role
changes in the model, with only an amplitude reduction in
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FIGURE 7 | (A) “Zoomed-in” plots (red) of the model output time-series (top row) and corresponding power spectra (bottom row) in response to spike-train inputs

generated by the electronic retina when subjected to periodic visual stimulation at 10, 20, and 40Hz. The input frequencies are chosen as representative samples of

upper-alpha (10–13Hz), beta (14–30Hz) and gamma (>30Hz) EEG frequency bands that are associated with cognitive brain states. A comparative study, when the IN

inhibition is suppressed in the LGN model with a simultaneous dominance of the TRN inhibition, is also indicated (blue) for all cases. (B) To validate the model output

corresponding to synthetic periodic input stimulus generated in PyNN with the results in (a), the “zoomed in” time-series and power spectral density for 10, 20, and

40Hz are shown. Both cases of when the IN is dominant (red) and suppressed (blue) are also displayed.

both fundamental and harmonic power. This observation is
consistent corresponding to both synthetic and electronic retina
inputs and may suggest a resonant frequency of the circuit
around 20 Hz; this may be investigated further in future
work.

3.6. LGN Multi-node Architecture: Studying
Alpha Band Behavior
It is widely believed that the lower band rhythms in the EEG,
for example the alpha rhythms, are a result of synchronous
oscillations in a larger population of neurons; in comparison,
higher frequency rhythms are known to involve smaller and
localized neuronal groups (Buzsáki, 2006). To test the effect of
an increased neuronal population corresponding to model input

within the alpha band, we simulate a multi-node architecture of
the LGN as shown in Figure 8.

Three “instances” of the LGN model shown in Figure 1 are
spatially arranged (virtually) as three vertices of an equilateral
triangle where all vertices are “nearest neighbors” of one another.
Thus, inter-node connectivities in the network are simulated to
be equidistant, andmay be assumed to have similar time-scales of
synaptic transmission. Interneurons are known to be inherently
local and rarely project outside their respective local radii. Thus,
the inter-node connectivities in the model are between the TCR
and TRN populations and recurrent inhibition between the TRN
populations. For example, the connectivity between LGN 1 and
LGN 2 is thus: the TCR population of LGN 1 (LGN 2) make
excitatory connections on the TRN population of LGN 2 (LGN
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1); the TRN population of LGN 1 (LGN 2) make inhibitory
connections on both the TCR and the TRN populations of LGN
2 (LGN 1); and so on. The resulting architecture in Figure 8

consists of 420 neurons.
The synaptic connectivity parameters and attributes for inter-

node projections are maintained at similar values to those for
intra-node projections for brevity. Along similar lines, the design
consideration for three vertices in this work is to avoid complex
calculations of synaptic delay for inter-node connectivities that
are not nearest neighbors, unlike the simple case of our initial
test framework in Figure 8.

A synthetic periodic spike-train input at 10 Hz generated
in PyNN is now provided to all nodes of the model shown
in Figure 8. The TCR membrane potential time-series from all
nodes are collected separately at the end of model simulation on
SpiNNaker. The mean of these three data sets provides a mean
membrane potential, which represents the output of the multi-
node model. The power spectral density plot of this multi-node
model output is shown in Figure 9A. The power at the peak
frequency of 10 Hz is now significantly higher than that within
the second harmonic compared to the corresponding response of
a single node of the model shown in Figure 7B. However, with
dominant feedback inhibition from TRN, the model output loses
its frequency tagging characteristics and is shown in Figure 9B.
Such a response of the scaled up model may be compared to
the “indifference” to IN suppression in Figure 7B (left panel),
thus confirming our speculation on a larger neuronal tissue being
involved in alpha band oscillations.

3.7. Evaluating Power Consumption
A basic set-up that is developed in-house to estimate the power
consumption by a board with 48 SpiNNaker chips (also referred
to as 48-node board) is shown in Figure 10A. The SpiNNaker
board has several components for board management and
communication, which are powered by six DC/DC converters.
Each converter has voltage rating sufficient for powering up
specific blocks of components on the board: (a) 1.2 V for
powering up a specific block of nodes, referred to as “ARM-core
banks” in the legend of Figure 10A. The nodes on the board are
organized into three such “ARM-core banks” labeled as “A–C”
and powered by three of the DC/DC converters; (b) 1.8 V for
SDRAM in all chips; (c) 1.2 V for FPGA logic cores; and (d) 3.3
V for several other components such as the Board Management
Processor (BMP), the Ethernet (ETH) circuitry, indicator LEDS,
etc. To measure the power delivered by each DC/DC converter,
a resistor (“R-shunt” in Figure 10A) is placed in series with the
converter. The current drawn through each R-shunt is converted
into voltage and recorded by the Analogue-to-Digital (ADC)
circuitry of an Arduino board. The Arduino calculates the power
delivered by the DC/DC converters inWatts, and sends the result
to a desktop computer for logging and visualization via a serial
port.

A software report generated by sPyNNaker (available to the
user upon completion of each simulation) indicates upto 8
processors being utilized by our LGN model, and on a single
chip in ARM-cores Bank-A. Figure 10B shows the instantaneous
power consumption by ARM-cores Bank-A. The board is

FIGURE 8 | The multi-node LGN model synaptic layout with three instances of

the LGN model shown in Figure 1, consisting of a total of 420 neurons. The

TCR (TRN) cells of each node make excitatory (inhibitory) synapses to the TRN

(TCR) cells of every other node. Also, the TRN cells of every node make

inhibitory synapses to the TRN cells of every other node. For simplicity, the

inter-node synaptic connectivity attributes pconn,wsyn,dconn are maintained

as in respective pathways of the basic LGN model.

switched on around after 5 s from the start of recording time. The
total power consumed by all the ARM-cores Banks is around 12
W, and the power plots for ARM-cores Bank-B and C are same
as that of ARM-cores Bank-A shown in Figure 10B, indicating
an average consumption of 4W per ARM-cores Bank. The power
consumption due to other components in the circuit viz. FPGA,
SDRAM, BMP, ETH-port, LEDs, and which are not affected
by model simulation, is around 12 W. This agrees with the
observed total power drawn during this idling condition (i.e.,
power switched on, but board not booted) P ≈ 24W. The
machine is booted at around 12 s and the power plots for each
ARM-cores Bank show a step increase of average power Pboot ≈
5W. The corresponding total power P ≈ 27W. However, during
the LGNmodel simulation from around 20 to 50 s, the power plot
of ARM-cores Bank-A is observed to ride on a slow modulating
wave at ≈0.16 Hz, and with a peak-to-peak amplitude of Psim ≈
300mW. As expected, the corresponding plots for ARM-cores
Bank-B and C do not show any effects of the running simulation
and stays stable at 5 W. The corresponding total power
P ≈ 27–28 W.

Therefore, the overall power consumed by the model
simulation on SpiNNaker Psim ≪ 1W. This conforms with
theoretical estimations that are based on prior research reporting
≈1 W power consumed per SpiNNaker chip working full
load and simulating 256 neurons per ARM processor (each
chip has 17 ARM processors available for neuronal model
simulation) (Painkras et al., 2013). This is a rough indication
of the power consumption for our model to be ≪1 W, as
it uses only 8 ARM processors within a single chip (above-
mentioned). It is worth mentioning here that the periodicity
of the slow wave in Figure 10B is not an artefact of the
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FIGURE 9 | (A) The power spectral density plot corresponding to 10Hz

periodic input to the multi-node LGN model implies entrainment of the model

response when the IN is dominant in the circuit. However, the output loses the

fidelity when (B) the IN is suppressed in the circuit and the TRN inhibition is

dominant. The dominant frequency is now at twice the fundamental frequency

and reflects the frequency traits of the dominant TRN inhibition in the circuit

(not shown).

periodic nature of the model input and is invariant to change
in input spike train frequencies, as well as to aperiodic model
stimulus. The exact source of this slow wave is currently being
investigated.

4. DISCUSSION

We have presented a spiking neural network model of the
Lateral Geniculate Nucleus (LGN), the thalamic nucleus in the
visual pathway, simulated on the SpiNNaker machine, which
uses state-of-the-art low-power digital neuromorphic framework
to facilitate massively parallel implementation of spiking neural
networks in real time for time-steps dt > 1 ms. The synaptic
layout of the model is consistent with biology and consists
of three cell populations viz. the thalamo-cortical relay cells
(TCR: the main carriers of visual sensory information to the
cortex), thalamic interneurons (IN: the main source of feed-
forward inhibition in the retino-geniculate pathway), and the
thalamic reticular nucleus (TRN: a thin sheet of inhibitory
tissue that is a major source of feedback inhibition for the
TCR cells). The total number of neurons in the model is
140, representing an area of thalamic tissue spanning a few

micrometers. The justification of designing and studying such
a “tiny” (in biological terms) network on the SpiNNaker
machine, which is a contradiction-in-terms with the design
objectives of the latter, is to develop a robust and flexible “basic
building block” that can be used for designing and developing
larger modular frameworks on the SpiNNaker machine in
future.

Themotivation behindmodeling the LGNhas been to emulate
real time biologically plausible dynamic visual processing using
the SpiNNaker machine. One paradigm that is particularly
gaining popularity in both clinical neuroscience as well a BCI
research is the steady state visually evoked potentials (SSVEP),
which are signals recorded via scalp electroencephalography
(EEG) corresponding to periodic visual stimulus input. The
“frequency tagging” (of the input stimuli) characteristics of the
SSVEP signal facilitated by a high signal to noise ratio make
it an “easy-to-read” tool for studying brain mechanisms in an
awake cognitive state. It is worth mentioning here that the
SSVEP (like EEG) signals are a representation of oscillations
of the neocortical neuronal populations that lie beneath the
recording scalp electrodes. On the other hand, recordings from
the thalamus (TCR) cells are obtained largely via local field
potentials (LFP). Thus, in principle, our model output mimics
the LFP corresponding to periodic visual stimulus. Experimental
research has shown that the LFP recorded from TCR cells of
the LGN bear a strong correlation with EEG recorded over the
occipital lobe (where the visual cortex resides) in a healthy brain.
Moreover, it is now known that the thalamus is a key player
in generating and sustaining brain rhythms observed via EEG.
Based on such reports and findings, we validate our model results
with the key findings of SSVEP recorded from human EEG
by Hermann (2001), as well as with a combined experimental and
model-based validation study by Labecki et al. (2016).

The model is simulated with synthetic periodic visual stimuli
in the range 10–50 Hz at a resolution of 1 Hz. The model
output validates experimental reports of entrainment with the
periodic stimuli, displaying high fidelity in the fundamental
frequency, as well as displaying harmonics of the fundamental
frequency. However, there are no observed subharmonics of
the fundamental frequency as reported by Hermann (2001).
Indeed, the neuronal mechanisms that underpin harmonics
and subharmonics in SSVEP are yet unclear and there is no
consensus on their definitive source(s) (Notbohm et al., 2016).
The authors in Labecki et al. (2016) demonstrate that even
the non-linearities in a simple closed-loop circuit consisting
of two cell populations can validate the SSVEP-like harmonics
and subharmonics demonstrated by Hermann (2001). While
the model used in this work indeed has such a closed-loop
feedback circuit consisting of the TCR and TRN, also present
is a feed-forward inhibitory circuit fed to the TCR by the LGN
interneurons, which in turn receive direct input stimuli from the
retinal spiking neurons. In a recent mesoscopic-scale population
model-based study of the LGN dynamics, IN population feed-
forward inhibition is implicated as a key attribute for ensuring
efficacy of information transmission in the retino-geniculo-
cortical pathway (Sen-Bhattacharya et al., 2016). This is aligned
with experimental and theoretical studies emphasizing the key
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FIGURE 10 | (A) The SpiNNaker machine as a 48-node board, where each “node” is the SpiNNaker chip. The chips are divided into 3 “ARM-cores bank” based on

their common sources of power supply via a DC/DC converter, each of 1.2 V. The resistors referred to as “R-shunt” are used to measure the current drawn from

power supply by the various board components. The power consumed in Watts is calculated by the Arduino board, which is then communicated to a normal desktop

computer via a serial port. (B) The instantaneous power consumption by the LGN model running on one SpiNNaker chip in ARM-cores Bank-A: (i) When the machine

is powered, the average power consumption settles down to ≈4 W after a short period of activity. (ii) When the machine is booted, the average power consumption by

the core bank increases to an average of 5 W. (iii) With start of simulation, the instantaneous power rides a slow modulating wave with peak to peak power of around

300 mW, corresponding to work done during neural computation by the cores. (iv) After completion of simulation, a drop in average power to around 5 W indicate a

return to the boot state.

function of the IN in information processing corresponding to
“attentive” brain states.

Along these lines, the IN synaptic pathway in the model
is suppressed by changing appropriate synaptic connectivity
parameters, at the same time the TRN feedback inhibition in
the circuit is made dominant. The model output displays
entrainment; additionally, the power spectra display
subharmonic components for frequencies in the gamma
(>30Hz) range, which is associated with attentive and working
brain states. The results indicate a distinct causality of the
IN on the LGN dynamics, emphasizing the lead role of IN in
maintaining information fidelity during cognitive processing.
Furthermore, the results agree with the model-based study
by Labecki et al. (2016), which did not consider any feed-
forward inhibition, and thus simulated a condition similar to

TRN dominant inhibition in the LGN model in this work.
However, unlike in both these experimental (Hermann, 2001)
and model-based (Labecki et al., 2016) reports, we did not note
any subharmonic content in the model response corresponding
to input frequencies within the tested upper-alpha (10–13Hz)
and beta band (14–30Hz) frequencies.

To simulate real time periodic visual stimulus to the model,
a state-of-the-art electronic retina, developed at the Instituto
de Microelectronica de Sevilla, Spain, and based on a dynamic
vision sensor technology, is used to record periodic ON/OFF
stimuli from an LED in a controlled laboratory environment.
The recordings made for the purposes of this work are at 10,
20, and 40Hz, representative samples of the upper-alpha, beta
and gamma band EEG frequencies, respectively. The model
response validates experimental findings of entrainment with
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periodic input stimulus. Both cases corresponding to the IN
being dominant or suppressed in the LGN circuit are tested
with the electronic retina-generated spike trains. The power
spectral plots corresponding to the 20 and 40Hz inputs are
in agreement with the model response corresponding to the
synthetic input stimulus. As reported above, the 40Hz power
spectral plot shows subharmonic contents when the IN feed-
forward inhibition is suppressed in the circuit; in addition, the
distinct “frequency tagging” of the input frequency is lost for
40Hz (but not for 20Hz) and amplitudes of the fundamental,
harmonic and subharmonic components are not significantly
different.

In addition to the loss of fidelity with suppression of IN
inhibition in the model output corresponding to the 40Hz spike-
train input from the electronic retina, we also note a similar loss
in fidelity corresponding to the 10Hz input from the electronic
retina, when the maximum output power is within the second
harmonic. However, this is not the case for the synthetic model
input, and is unlike in a recent work with population models
of the LGN (Sen-Bhattacharya et al., 2016), where a distinct
causality is observed between the role of IN in the LGN and
the circuit output within the alpha (8–13Hz) band. One reason
may be the noise in the electronic retina output spike-train,
reflecting a realistic external environment that drives the retinal
spiking neuron. In comparison, the model synthetic data is
devoid of any noise. Another speculation toward the difference
in behavior is the reduced number of neurons in our LGNmodel;
lower frequency band EEG rhythms, for example alpha rhythms,
are known to be generated by synchronous behavior of larger
neuronal populations compared to localized population activity
corresponding to higher frequencies. To test the hypothesis, we
scale up our model architecture by creating three “instances” of
the “basic building block” LGN model, assumed to be arranged
spatially as three nodes of a lattice, which is a well known
arrangement in the retinal cell space. Thus, we have simulated a
relatively larger neuronal population of the LGN tissue consisting
of 420 neurons. Indeed, the response of this multi-nodal network
architecture corresponding to suppression of IN inhibition in
the circuit shows a loss of output fidelity corresponding to a
10Hz periodic visual stimulus. A more rigorous testing, and for
frequency ranges wider than the current range, is suggested as
future work on further scaled up multi-nodal LGN model.

To consolidate our observation of model entrainment with
periodic input, and to confirm that such behavior is not an
artefact of the materials and methods adopted in this work, we
have tested the model with aperiodic visual stimulus. This is
simulated by a spike-train following Poisson distribution with
parameters in the same range as the periodic input frequencies.
Results show no trace of entrainment. Furthermore, the model
output power spectra is invariant in the tested range. However,
this would need to be confirmed with larger LGN networks on
the SpiNNaker, which is aligned to the short-term plans for future
work. In contrast, our study shows that corresponding to periodic
stimulus, even the small network is able to simulate SSVEP, which
is a higher-level network dynamics. As above-mentioned, these
observations will be further tested with a scaled-up LGN model
as a part of ongoing research.

We note three specific areas that may contribute to enhance
the framework presented here:

First, the power spectra and amplitude in the model are bound
to change with increased stimulus strength, which can be effected
in the model by changing connectivity parameter attributes.
In the current model, these attributes are set to the minimal
threshold values for initiating a spike output response in the
model. During preliminary investigations, we have indeed noted
increases in both the spike rate and amplitude of membrane
voltage for increased connectivity parameter values, along the
lines as noted in Notbohm et al. (2016). We leave this to be taken
up in future research on the model.

Second, we have explored the tonic behavior for all cell types.
However, it is known that the bursting nature for all cell types
in the LGN underpins brain rhythms not only in the resting
state but also in regulating attention. Simulating both tonic
and bursting behavior in the LGN will certainly enhance the
biological plausibility of the model.

Third, introducing synaptic plasticity in the model will enable
implementation of learning rules, which will be vital toward
introducing “intelligence” to the model in future works.

It may be noted that for brevity in this work, the retinal
spike-train output is not provided to the model in real
time. However, the interface of the electronic retina with
the SpiNNaker machine is already available (Galluppi et al.,
2012); thus, real time input using the interface can be
potentially considered as a future work. Another point to note
is that the SpiNNaker toolchain, sPyNNaker, provides access
to several spiking neuron models other than the Izhikevich
neuron models (“IZK-curr-exp”) used in this work. We have
discussed above the modular structure of our LGN architecture;
besides being easy to scale up, such a “basic building block”
approach provides a “friendly” flexible substrate to explore
the repertoire of spiking neuron model options provided by
sPyNNaker.

The main drawback of the model is the lack of cortical
circuitry, as thalamo-cortico-thalamic dynamics form the basis
of brain rhythms observed via EEG and LFP. However, a
decorticated (disconnected from the cortex) model of the LGN
in this work is by design rather than any other constraint, and
is justified as a necessary step prior to building larger interfaced
structures; similarities can be drawn with several decades of
research on isolated thalamic slices of mammals and rodents, that
has paved the way for the current advanced understanding of the
thalamo-cortical dynamics.

In terms of performance evaluation of model simulation
on SpiNNaker, two areas take precedence: Real time
implementation—we note that the differential equations
defining a single neuro-computational unit in the model
(current-based Izhikevich’s neuron) need a 0.1 ms time-step
for solution accuracy. However, the SpiNNaker hardware is
designed inherently to simulate at time-steps >1ms in real
time. Thus, all simulation of the LGN model on SpiNNaker ran
10 times slower than real time; for example, if the simulation
duration is set to 3 s with a time-step of 0.1ms in the PyNN
code describing the LGN model, the actual execution time
of the model on SpiNNaker is 30 s with a time-step of 1ms
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in real time. However, such scaling up of simulation time
is not a concern for this small LGN network, serving as
a test-bed for future large-scale simulations, particularly
because the model is guaranteed to run in the expected time.
However, sPyNNaker is in development mode, and we do
expect to see issues upon scaling up the model. Thus, we
expect to be able to provide a more realistic evaluation on
the real time performance of SpiNNaker when we run scaled-
up versions of this model, as well as others that are under
development.

Power consumption—Prior work has provided estimated
figures for maximum power consumption by a SpiNNaker
chip as 1 W. Simulation of the LGN network uses 8 (of 17
available) processors on a single SpiNNaker chip, implying
a power consumption ≪1 W. This is verified by an in-
house power measurement set-up that records the active power
(wattage) drawn from the mains by the SpiNNaker board. This
demonstrates a very low power consumption by our LGN model
on the SpiNNaker platform.

5. CONCLUSION

Computational neurology and psychiatry provide an excellent
means for in-depth investigations of vital structures such as
the thalamus, which are otherwise hard to study in wet-
laboratories (Sen-Bhattacharya et al., 2017). Besides dealing
with sensory and cortical inputs, the thalamic nuclei play
strategic roles in the functioning of the limbic brain, and are
known to link decision making and action selection circuitry
to the motor circuitry. Thalamic dysfunction is often believed
to underpin several neurological and psychiatric disorders.
On the other hand, the thalamus forms the primary output
target of the Basal Ganglia (BG) circuit, a brain structure
and mechanism that has been the primary focus of the
autonomous robotics community toward incorporating learning
and decision making in machines (Humphries and Gurney,
2002). Advanced frameworks for building large-scale biologically
plausible models such as the SpiNNaker provide a timely impetus
to computational model-based research in neuroscience, and
may inspire further research for understanding the functioning
of the thalamus, a vital “cog” in the “wheel” that is the central
nervous system. We believe that the spiking neural network
model presented in this work, simulated on the SpiNNaker
machine, and tested with realistic periodic stimulus from an
electronic retina, will act as a “basic building block” toward future
endeavors in both computational neuroscience and autonomous
robotics.
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