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The whole-brain functional connectivity (FC) pattern obtained from resting-state

functional magnetic resonance imaging data are commonly applied to study

neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different

machine learning models. Recent studies indicate that both hyper- and hypo-

aberrant ASD-associated FCs were widely distributed throughout the entire brain

rather than only in some specific brain regions. Deep neural networks (DNN) with

multiple hidden layers have shown the ability to systematically extract lower-to-

higher level information from high dimensional data across a series of neural hidden

layers, significantly improving classification accuracy for such data. In this study, a

DNN with a novel feature selection method (DNN-FS) is developed for the high

dimensional whole-brain resting-state FC pattern classification of ASD patients vs.

typical development (TD) controls. The feature selection method is able to help the

DNN generate low dimensional high-quality representations of the whole-brain FC

patterns by selecting features with high discriminating power from multiple trained

sparse auto-encoders. For the comparison, a DNN without the feature selection method

(DNN-woFS) is developed, and both of them are tested with different architectures

(i.e., with different numbers of hidden layers/nodes). Results show that the best

classification accuracy of 86.36% is generated by the DNN-FS approach with 3

hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms

DNN-woFS for all architectures studied. The most significant accuracy improvement

was 9.09% with the 3/150 architecture. The method also outperforms other feature

selection methods, e.g., two sample t-test and elastic net. In addition to improving the

classification accuracy, a Fisher’s score-based biomarker identification method based

on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs

come from or cross different pre-defined brain networks including the default-mode,

cingulo-opercular, frontal-parietal, and cerebellum. Thirteen of them are statically

significant between ASD and TD groups (two sample t-test p< 0.05) while 19 of them are
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not. The relationship between the statically significant FCs and the corresponding ASD

behavior symptoms is discussed based on the literature and clinician’s expert knowledge.

Meanwhile, the potential reason of obtaining 19 FCs which are not statistically significant

is also provided.

Keywords: autism spectrum disorder, resting-state fMRI, deep neural network, sparse auto-encoder, feature

selection

INTRODUCTION

Autism spectrum disorder (ASD) is a serious lifelong condition
characterized by repetitive, restricted behavior as well as deficits
in communication and reciprocal social interactions (American
Psychiatric Association, 2013). The traditional procedure for
diagnosing ASD is largely based on narrative interactions
between individuals and clinical professionals (Yahata et al.,
2016). Such methods, lacking biological evidence, not only are
prone to generate a high variance during the diagnosis (Mandell
et al., 2007) but also require a long period to detect abnormalities
(Nylander et al., 2013). As a complement to the current behavior-
based diagnoses, functional magnetic resonance imaging (fMRI)
has been widely applied to explore the functional characteristics
or properties of a brain. It is able to assist neuroscientists to get
valuable insights into different neurological disorders (Martin
et al., 2016). A human brain can be understood as a complex
system with various regions performing different functions.
Although, some structural regions may not be connected
locally, they are integrated globally to process different types
of information. fMRI measuring the changes of blood oxygen
level-dependent (BOLD) signal in a non-invasive way has been
applied to reveal regional associations or brain networks. In 1995,
Biswal et al. (1995) discovered that various brain regions still
actively interact with each other while a subject was at rest (not
in any cognitive task). Since then, resting-state fMRI (rs-fMRI)
has become an important tool for investigating brain networks
of different brain disorders such as Alzheimer’s disease (Chase,
2014), schizophrenia (Lynall et al., 2010), and ASD (Monk et al.,
2009) and has generated many invaluable insights into neural
substrates that underlie brain disorders.

Previous ASD studies based on rs-fMRI images have examined
anatomical and functional abnormalities associated with ASD
from cohorts at different age levels, e.g., for the adolescence
cohort (10–19 years approximately; Assaf et al., 2010; Keown
et al., 2013; Starck et al., 2013; Bos et al., 2014; Chen S.
et al., 2015; Doyle-Thomas et al., 2015; Iidaka, 2015; Jann
et al., 2015), for the adult cohort (≥20 years) (Cherkassky
et al., 2006; Monk et al., 2009; Tyszka et al., 2013; Itahashi
et al., 2014, 2015; Chen C. P. et al., 2015; Jung et al.,
2015), and for the cohort covered all age levels (Alaerts
et al., 2015; Cerliani et al., 2015). The results helped clarify
the relevant neurological foundations of ASD in different age
levels. Extant literature suggests that the basic organization of
functional networks is similar across all age levels. However,
the levels of connectivity and modulation appear altered in
ASD. The results suggested that both hypo- and hyper-
connectivity occurred in ASD relative to typical developed

(TD) controls. By studying an adult cohort, Monk et al.
(2009) found that poorer social functioning in the ASD group
was correlated with hypo-connectivity between the posterior
cingulate cortex and the superior frontal gyrus, and more severe
restricted and repetitive behaviors in ASD were correlated with
stronger connectivity between the posterior cingulate cortex
and right parahippocampal gyrus. These findings indicated that
ASD adults showed altered intrinsic connectivity within the
default network, and connectivity between these structures is
associated with specific ASD symptoms. Assaf et al. (2010)
discovered that compared to adolescent controls, adolescent
ASD patients showed decreased functional connectivities (FCs)
between the precuneus and medial prefrontal cortex/anterior
cingulate cortex, DMN core areas, and other default mode
sub-network areas. The magnitude of FCs in these regions
inversely correlated with the severity of patients’ social and
communication deficits. Keown et al. (2013) found that local FCs
were atypically increased in adolescents with ASD in temporal-
occipital regions bilaterally by applying rs-fMRI and a graph
model. Hyper-connectivity in the posterior brain regions was
found to be associated with higher ASD symptom severity.
Supekar et al. (2013) claimed that hyper-connectivity of short
range connections in ASD was observed at the whole-brain and
subsystems levels. It demonstrated that at earlier ages, the brains
of children with ASD are largely functionally hyper-connected
in ways that contribute to social dysfunction. Above finding are
spread in different brain networks including cingulo-opercular
(CO), default-mode (DM), cerebellum (CB), and frontal-parietal
(FP).

The above findings indicated that aberrant ASD-associated
FCs were widely distributed throughout the entire brain, as
opposed to showing a restricted pattern within only a few specific
brain regions. Thus, in this research, we developed the machine
learning model to explore ASD-related FCs from the whole-brain
FC pattern (FCP) which is a set of FCs including each FC between
every pair of pre-defined brain regions. Themethodwas tested on
the dataset from an adolescent cohort.

Machine learning algorithms have been successfully employed
in the automated classification of altered FC patterns related
to ASD based on rs-fMRI images (Uddin et al., 2013). For
example, Yahata et al. (2016) developed a classifier achieves high
accuracy (85%) for a Japanese discovery cohort and demonstrates
a remarkable degree of generalization (75% accuracy) for two
independent validation cohorts in the USA and Japan. Models
developed by Deshpande et al. (2013) and Nielsen et al. (2013)
achieved 95.9 and 60% accuracy on a self-collected dataset and
the autism brain imaging data exchange I (ABIDE I) dataset,
respectively.
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As an important machine learning tool, deep learning has
been widely applied in various research areas (Krizhevsky
et al., 2012; Graves et al., 2013). Stacking several auto-encoders
(AEs) or restricted Boltzmann machine (RBMs) is a common
way of building a DNN. The DNN architecture is able to
improve the feature learning capacity by exploring latent or
hidden low-dimensional representations which are inherent
in high-dimensional raw data. With such representations, the
classification model performance can be enhanced effectively.
The DNN is widely used in neuroimaging studies (Brosch
et al., 2013; Suk et al., 2014; Kim et al., 2016). Hjelm
et al. (2014) demonstrated that the DNN constructed by
stacking RBMs extracted better spatial and temporal information
from fMRI data compared with ICA and PCA algorithms.
Suk et al. (2015) stacked several AEs to build the DNN
which was applied in a task of discriminating AD patients
from mild cognitive impairment patients, and obtained the
accuracy of 83.7% on the ADNI dataset. Plis et al. (2013)
conducted a validation study on structural and functional
neuroimaging data to show that a stacked RBMs can learn
physiologically important representations and detect latent
relations in neuroimaging data. Although, the DNN obtained
many competitive results, its feature learning capacity is still able
to be improved. Recently, researchers have tried using multiple
AEs to learn better representations of the data. Zhu et al. (2014)
developed a DNN-based framework to learn multi-channel deep
feature representations for the face recognition task. In their
design, multiple deep learning networks are applied to extract
representations of different parts of the face, e.g., eyes, nose
and mouth, and the combined representations used to train a
classification model. Similar studies can be found in literature
(Hong et al., 2015; Zhao et al., 2015). Inspired by ideas in above
papers, a novel feature selection method based on multiple SAEs
was proposed. Different from above studies, we constructed one
SAE with high feature learning capacity by selecting features
frommultiple trained SAEs instead of just stackingmultiple SAEs
together to form several DNNs.

In this study, a DNN-based classification model has been
developed for distinguishing ASD patients from TD controls
based on the whole-brain FCP of each subject. The DNN model
consists of the stacked SAEs for data dimension reduction,
and a softmax regression (SR) on the top of the stacked
SAEs for the classification. Moreover, a novel feature selection
method based on multiple trained sparse auto-encoders (SAEs)
has been developed. It can initialize weights between the first
hidden layer and the input layer (the first feature layer) of
the DNN by selecting a set of dissimilar features with high
discriminative power from multiple trained SAEs. In this study,
the first objective is to enhance the performance of the DNN
for classifying ASD patients and TD controls by applying a
novel feature selection method. The DNN-FS (3/150 hidden
layers/nodes) obtained the best classification accuracy of 86.36%.
Most importantly, it outperformed the DNN-woFS for each
comparison scenario. The most significant improvement, of
9.09%, occurred when the architecture had three hidden layers
with 150 nodes each. Meanwhile, by comparing the average
discriminating power of the same layer in both DNN-FS and

TABLE 1 | Abbreviation of terminologies used in sections Materials and Methods,

Results, and Discussion.

Terminology Abbreviation

Automated anatomical labeling AAL

Backpropogation BP

Correlation coefficient CC

Cross-validation CV

Deep neural networks DNNs

DNN with the feature selection method DNN-FS

DNN without the feature selection method DNN-woFS

Independent component analysis ICA

Left crus cerebellum LCCB

Left inferior temporal gyrus LITG

Left pars triangularis LPT

Left superior parietal lobule LSPL

Mixed national institute of standards and technology MNIST

National database for autism research NDAR

Neural network NN

Preprocessed connectomes project PCP

Principal component analysis PCA

Regions-of-interest ROI

Right inferior temporal gyrus RITG

Right putamen RP

Right superior frontal gyrus RSFG

Sparse auto-encoders SAE

Time series TS

University of Michigan: Sample 1 UM:S1

DNN-woFS, we found that the discriminating ability of any
layer in DNN-FS is higher than the discriminating ability of
the corresponding layer in DNN-woFS. In addition, using two
other feature selection methods—a two-sample t-test and an
elastic net—results showed that the proposed method (86.82%)
outperformed both the other methods (two-sample t-test:
70.67%, elastic net: 79.54%). The second objective is to identify
abnormal FCs related to ASD. To achieve the goal, a DNN-based
biomarker identification method was developed to locate 32 FCs
associated with ASD. Generally, the findings supported the points
of view in literature that (1) both hyper- and hypo-connectivity
exist in certain brain networks (e.g., DM) of the ASD patients; (2)
abnormal between-network connectivity exists in ASD patients.
More explanation is given in the Discussion section. For readers’
convenience, the abbreviations of terminologies used in the
following sections are listed in Table 1.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The rs-fMRI dataset used in this paper was obtained from UM:S1
site, ABIDE I (DiMartino et al., 2014). ABIDE I is the first ABIDE
initiative, a grassroots consortium aggregating. The UM:S1
dataset contains samples from 110 adolescent subjects among
which there are 55 ASD patients and 55 TD controls. Each sample
consists of one or more rs-fMRI acquisitions and a volumetric
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MPRAGE image (Nielsen et al., 2013). The dataset is publicly
available at http://fcon_1000.projects.nitrc.org/indi/abide/, and
all the patient health information associated with the data has
been de-identified. The access instructions were detailed in Di
Martino et al. (2014). A diagnosis of ASD was made by applying
the Autism Diagnostic Interview Revised (Lord et al., 1994) and
the Autism Diagnostic Observation Schedule (Lord et al., 2000),
and confirmed by clinical consensus (Lord et al., 2006). Exclusion
criteria common to all participants included any history of
neurological disorder (including seizures), a history of head
trauma, a history of psychosis, a history of bipolar disorder, and
if either verbal or non-verbal IQ score was lower than 85. The
performance and verbal IQ were obtained using the Peabody
Picture Vocabulary Test (Dunn et al., 1965) and the Ravens
Progressive Matrices (Lord et al., 1994). Full IQ estimates were
based on the average of the performance IQ and verbal IQ scores
available and provided in this dataset. More details about this
dataset are summarized in Table 2.

Imaging was performed on a long bore 3T GE sigma scanner
with a 4-channel coil at the University of Michigan’s Functional
MRI laboratory. For each participant, 300 T∗

2 -weighted BOLD
images were collected using a reverse spiral sequence (Glover
and Law, 2001). Whole brain coverage was obtained with 40
contiguous 3mm axial slices (TR = 2,000 ms, TE = 30 ms, flip
angle = 90◦, FOV = 22 cm, 64 × 64 matrix). Each slice was
acquired parallel to the AC-PC line. For the structural images,
a high-resolution 3D T1 axial overlay (TR = 8.9, TE = 1.8,
flip angle = 15◦, FOV = 26 cm, slice thickness = 1.4mm,
124 slices; matrix = 256 × 160) was acquired for anatomical
localization. Additionally, a high-resolution spoiled gradient-
recalled acquisition in steady state image acquired sagittally (flip
angle = 15◦, FOV = 26 cm, slice thickness = 1.4mm, 110 slices)
was used for registration of the functional images (Wiggins et al.,
2011).

All preprocessed rs-fMRI data were obtained from the PCP
which opens sharing of preprocessed neuroimaging data from
ABIDE I. PCP applied four pipelines to preprocess the rs-
fMRI data. Processing steps in these pipelines are highly similar.
However, the algorithm implementation and parameters used in
each step among different pipelines are specific. Although, there
is no consensus on the best method for preprocessing rs-fMRI
data, it is generally accepted that “scrubbing” the data of motion
artifact outliers provides a certain level of protection against this
motion-induced bias. The subject’s motion produces substantial
changes in the timecourses of rs-fMRI data, and can cause
systematic but spurious correlation structures throughout the
brain. Specifically, many long-distance correlations are decreased
by subject motion, whereas many short-distance correlations are
increased (Power et al., 2012; Satterthwaite et al., 2013; Yan et al.,
2013). These artifacts can distort the strength of FCs, and further
affect the diagnosis of all kinds of neurological disorders such as
ADHD and ASD (Fair et al., 2012; Alaerts et al., 2015). Among
the four pipelines, NIAK includes the “volume scrubbing” step
for reducing the head motion effect. In NIAK, the raw rs-
fMRI data were preprocessed using the following steps: motion
realignment, intensity normalization (non-uniformity correction
using median volume), nuisance signal removal, and registration.

In the nuisance signal removal step, the scrubbing was employed
to clean confounding variation due to physiological processes
(heart beat, head motion, and respiration), and head motion. The
low frequency scanner drifts from the fMRI signal were cleaned
by setting up a discrete cosine basis with a 0.01 Hz high-pass
cut-off. The band-pass filtering (0.01–0.1 Hz) was applied after
nuisance variable regression. In the registration step, the data
were spatial normalized to the Montreal Neurological Institute
template with 3 mm isotropic voxel size, followed by spatial
smoothing using a 6-mm isotropic full-with at half maximum
Gaussian kernel. For more data preprocessing details, please
refer to Di Martino et al.’s paper (Di Martino et al., 2014). The
description of pipelines can be found at http://preprocessed-
connectomes-project.org/abide/Pipelines.html.

Neuroscientists at PCP extracted mean time-series for
several sets of ROIs atlases, including AAL which can be
obtained at http://preprocessed-connectomes-project.org/abide/
Pipelines.html. The mean BOLD TS across voxels in each region
of AAL was calculated from each rs-fMRI already registered
in standard space. This project used mean BOLD TS from the
AAL atlas containing 116 regions. Then Pearson’s CCs were
calculated using the resulting mean BOLD TS from all 6670
(C2

116) possible pairs of regions. Figure 1A illustrates all steps of
getting the whole-brain FCP. However, with the help of PCP,
only the final step was needed, i.e., calculating the functional
connectivity matrix based on BOLD TS of each voxel in each pair
of regions. As with any statistic, Pearson’s CCs has a sampling
distribution. It will be normally distributed when the absolute
value of the correlation in the population is low. However, if
high correlation values occur frequently in the population, the
distribution has a negative skew effect. To avoid this and force
samples to be normally distributed, CCs were Fisher’s r-to-z
transformed (Rosner, 2015). Then z-scores of each subject were
normalized (mean = 0, standard deviation = 1) via pseudo z-
scoring. Thus, each subject’s measurements were represented as
a vector of 6,670 z-scores—one for each pair of the 116 brain
regions. This vector is designated as the FCP for that subject, and
is used as input to the classifiers. Each element of the FCP vector
is termed a FC.

Overview of the Method
In this paper, a DNNmodel with a novel feature selectionmethod
based on multiple SAEs was proposed for predicting ASD from
brain resting-state functional connectivity patterns. The entire
model contains three parts: (A) functional connectivity analysis,
(B) feature selection based onmultiple SAEs, and (C) training the
DNN (Figure 1). First, each raw rs-fMRI data was preprocessed,
and the whole-brain FCP were obtained by calculating the
Pearson’s CC of TSs from any pair of ROIs. Let X ∈ RN×d

denote the training data, in which each row indicates a training
sample, and Y ∈ RN denote their corresponding labels. As
discussed above, the dimension of each whole-brain FCP is 6,670
(d = 6670). Multiple SAEs were then trained on the training
data using gradient descent learning. The hidden neurons of
these SAEs after training provided a feature pool. The feature
selection algorithm was then used to select features with high
discriminating power, which were used to form the first hidden
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TABLE 2 | Summary of demographics, neuropsychological performance, and clinical characteristics for each of the TD and ASD groups.

TD controls N = 55 ASD patients N = 55 t p-value

DEMOGRAPHICS

Age [Mean ± SD (years)] 14.2 ± 3.2 12.7 ± 2.4 2.52 0.01

Age range [youngest-oldest (years)] 8.2–19.2 8.5–18.6

Gender (male/%) 38/69.09% 46/83.64%

Handness (right/%)* 44/80% 41/74.55%

NEUROPSYCHOLOGICAL PERFORMANCE

Verbal IQ (Mean ± SD) 113.49 ± 13.72 107.04 ± 20.34 1.93 0.06

Performance IQ (Mean ± SD)* 100.96 ± 11.58 100.06 ± 20.08 0.28 0.78

Full IQ (Mean ± SD)* 106.85 ± 9.72 103.37 ± 17.63 1.24 0.22

CLINICAL CHARACTERISTICS

ADI-R social (Mean ± SD) 19.76 ± 4.82

ADI-R verbal (Mean ± SD) 15.43 ± 3.77

ADOS social affect (Mean ± SD) 8.26 ± 3.61

*Missing values from some subjects were removed in calculating the mean and SD.

FIGURE 1 | The DNN based method for predicting the ASD: (A) Functional connectivity (FC) analysis. (B) Feature selection based on SAEs. (C) Training the DNN. The

dashed arrow between (C) and (B) indicates that the low level SAE in (C) comes from (B). Arrows between (A) and (B), (A) and (C) indicate the data flow between

modules.
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layer of the DNN model (marked by the dashed rectangular
box in Figure 1C). It is hypothesized that this layer provides
low-dimension representations with higher quality compared
to representations obtained from a single trained SAE, and
such representations would allow the DNN to improve the
classification accuracy. Next, several SAEs and an SR model were
stacked on top of the constructed feature layer to form a DNN,
which was trained (excluding the first hidden layer) by following
steps shown in Figure 1C using labeled training data.

For training and testing the DNN, and optimizing parameters
in the model, the five-fold nested CV framework shown in
Figure 2 was used. After functional connectivity analysis, the
obtained whole-brain FCPs were applied as input to the DNN.
The DNN classifier was trained and parameters were optimized
using training and validation data during the training phase.
Then the classification task was performed on each individual
in the test data in the test phase to identify the corresponding
status (ASD patient or TD control). Finally, the weights of the
DNN were analyzed to understand patterns learned by it and to
determine ASD-related FCs.

The Novel Feature Selection Method Based
on Multiple Sparse Auto-Encoders
Sparse Auto-Encoders
An AE is a three-layer feed-forward NN as shown in Figure 3.
It comprises an input layer, a hidden layer, and an output layer.
The hidden layer is fully connected to the input layer and the
output layer through weighted feed-forward connections. The
AE is trained so that its output layer reproduces the stimulus
pattern on its input layer. Thus, the number of nodes in the input
layer and the output layer is the same, and are both equal to the
dimension of the data. Typically, the number of hidden nodes
in an AE is much smaller than the number of input and output
nodes. To achieve the required reconstruction of its input at the
output layer, the AE is forced to infer a maximally information-
preserving lower-dimension representation of the input in the
hidden layer, which can then be mapped to the output layer.
Thus, such an AE performs a dimension reduction function,
and each hidden node can be seen as representing a feature
of this lower-dimension representation. A convenient way to
visualize the feature represented by a hidden node is the pattern
of its connection weights from all input nodes (marked in red
in Figure 3). The AE is called an SAE if a sparsity constraint
is imposed on the mean activity of the hidden layer nodes
(Larochelle et al., 2009) to reduce overfitting. The number of
nodes in the input and output layers is denoted by d (each
variable of the observation maps to a node) and the number
in the hidden layer by m (m ≤ d); W(1,0) ∈ R(m×d) and
W(2,1) ∈ R(d×m), respectively, denote the encoding weight matrix
and the decoding weight matrix; b(1,0) ∈ Rm and b(2,1) ∈ Rd are,
respectively, the bias vectors for the hidden layer and the output
layer. The SAE learns a compressed representation of its input
by minimizing the reconstruction error between its input pattern
and the reconstructed output pattern (Suk et al., 2015).

Let x =
[

x1, x2, ...xw, . . . xd−1, xd
]

be an observation from the
training data set, y = [y1, y2, ..., yh, . . . yn−1, ym] the compressed

FIGURE 2 | The nested CV framework for the DNN training, testing, and

parameters optimization.

hidden layer representation of x (yh denotes any hidden layer
node between y1 and ym ), and z =

[

z1, z2, ..., zw, . . . zd−1, zd
]

the corresponding output vector. The mapping from x to y is

given by y = f
(

W(1,0)x+ b(1,0)
)

, where f ( ) is the non-linear

activation function of the hidden layer nodes. The work reported
in this paper uses a logistic sigmoid function (Equation 1) which
is widely used in machine learning and pattern recognition tasks
(Bengio et al., 2007; Lee et al., 2007; Ngiam et al., 2011; Shin et al.,
2013).

f (u) = 1/
(

1+ exp (−u)
)

(1)

The compressed representation y in the hidden layer is mapped
to the output z by a similar function:

z = f
(

W(2,1)y+ b(2,1)
)

(2)

The reconstruction error at the output layer is measured as:

J
(

W, b; x(i), z(i)
)

=
1

2
||z(i) − x(i)||22 (3)

where x(i) is the ith input pattern from the training dataset and
z(i) is the corresponding output of the network for the given
input. The network is trained by minimizing a two-term cost
function given by:

Cost = J
(

W, b
)

+ β

m
∑

j=1

KL(ρ||ρ′
j) (4)
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FIGURE 3 | The schematic structure of the SAE.

The first term J(W, b) also has two parts:

J(W, b) =
1

M

M
∑

i=1

J(W, b; x(i), y(i))+
λ

2

nl−2
∑

l=0

sl+1
∑

i=1

sl
∑

j=1

(W
(l+1,l)
ij )

2

(5)
whereM denotes the total number of observations in the training
dataset; nl indicates the number of layers in the network (nl = 3

here); sl denotes the number of nodes in layer l; andW
(l+1,l)
ij is the

weight of the connection from node i in layer l+1 to unit j in layer
l. The first term represents the reconstruction error averaged over
the training set, while the second term—called weight decay—is
a regularization term that tends to decrease the total magnitude
of the weights in the SAE and helps prevent overfitting. The
parameter λ controls the relative importance of the two terms.

The second term in the Cost function is also a regularization
term called a sparseness constraint. Its purpose is to ensure that
only a small number of hidden nodes have significant activity
for any given input pattern. Let yj(x) denote the activation of
the hidden node j for input x. Then the average activation of the
hidden node h over the entire training dataset is given by:

ρ′
j =

1

M

M
∑

i=1

[

yj

(

x(i)
)]

(6)

A target sparsity parameter ρ is defined as a small value (e.g.,
0.05) such that ρ′

j is required to be close to ρ for all hidden units
j. This means that any individual hidden node must be inactive
for most inputs (e.g., active only in about 5% of cases if ρ =

0.05). This is accomplished by adding the second term to the Cost
function that penalizes ρ′

j deviating significantly from ρ. Since
ρ and ρ′

j can be seen as the probabilities of Bernoulli random
variables to be 1, a Kullback-Leibler (KL) divergence (Shin et al.,
2013), denoted by the following formula, is used as the penalty
term:

KL(ρ||ρ′
j) = ρ log

ρ

ρ′
j
+ (1− ρ) log

1− ρ

1− ρ′
j

(7)

This has the characteristic that KL(ρ||ρ′
j) = 0 if ρ′

j = ρ,
and the value increases as ρ′

j deviates from ρ. The optimization
of the SAE using the Cost function in Equation (4) ensures
that the average reconstruction error for training data and the
deviation of hidden node activity from the target sparsity value
are both minimized, with β as the parameter controlling the
relative significance of the two objectives. A standard neural
network training method called BP (Werbos, 1974) was used
in conjunction with an optimization method called limited-
memory Broydon-Fletcher-Goldfarb-Shanno optimization (L-
BFGS; Liu and Nocedal, 1989) to obtain optimal parameters
of the SAE. The parameters of the SAEs, including the target
sparsity ρ, and the objective weighting parameters λ and β were
set using typical values recommended by other researchers: ρ =

10−2, λ = 10−4. Each SAE was trained until the Cost function
converged.

The Novel Feature Selection Method
As described above, each set of connection weights from the input
layer to a specific hidden node define a feature of the trained
SAE. The activation of the ith (0 < i ≤ m) hidden layer node

is given by Equation (8), where W
(1,0)
ij denotes the connection

weight from node j in the input layer to node i in the hidden

layer, pj denotes the jth component in the whole-brain FCP, bi
(1,0)

denotes the bias for hidden node i, and f is the logistic sigmoid
function:

ai = f (

n
∑

j=1

W
(1,0)
ij pj + bi

(1,0)) (8)

This can be seen as a filter tuned to a particular input pattern x

which maximizes ai. This pattern can be specified uniquely by
constraining the norm of the input whole-brain FCPs as:

||x||2 =

n
∑

i=1

p2i ≤ 1 (9)
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FIGURE 4 | The novel feature selection method: (A) Feature selection steps. (B) The feature selection algorithm.

Then the input pattern that maximally activates hidden node i is
given by setting the FC pj (for all n FCs, j= 1,...,n) to:

pj =
W

(1,0)
ij

√

n
∑

j=1
(W

(1,0)
ij )

2
(10)

which defines the pattern of whole-brain FCP which evokes a
maximal response from hidden node ai and is, therefore, the
feature defined by that node.

Many features of the whole-brain FCP can be detected by a
single trained SAE, e.g., an SAE with 200 hidden layer nodes
can learn 200 features of whole-brain FCP, each of which fires
the corresponding nodemaximally. However, redundant features
often emerge in the feature layer, so that many hidden layer nodes
have very similar activation values, reducing the representational
range of the hidden layer. Typically, even with regularization, the
number of diverse features in a single trained SAE after excluding
redundant features is not enough for a sufficiently informative
compressed representation. The proposed novel feature selection
method based on multiple SAEs can address this problem by
selecting a number of diverse features with high discriminating
power (ASD vs. TD) from a large diverse but redundant feature
pool. The accuracy of the classification model trained by such
representations from the new feature layer should improve as
a result. Figure 4 illustrates the steps of the proposed feature
selection method and the associated algorithm in detail.

As Figure 4A illustrates, first of all, L (L = 15 in this study)
SAEs, each with m hidden layer nodes, are trained on the
three-fold training dataset as shown in Figure 2. L—the number

of SAEs used to generate the feature pool—is an important
parameter. Using a larger value of L results in a larger, but possibly
more redundant, feature pool. Using a smaller L produces a
smaller feature pool with less feature diversity, which would cause
degraded performance. In our study, we actually tried different
values of L (5, 10, 15, 20) to decide the appropriate number, and
it turned out that the deep learning framework associated with
the proposed feature selection method obtained the best result
in the ASD vs. TD classification task when L is equal to 15. The
L × m features collected from these form a diverse, redundant
feature pool. The next step of the feature selection algorithm is to
determine the discriminating power of each feature in the pool
by calculating its Fisher’s score (Weston et al., 2000), which can
be defined as Equation (11):

Fi =

∣

∣

∣

∣

∣

(ETDi − EASDi )
2

(σTD
i )

2
− (σASD

i )
2

∣

∣

∣

∣

∣

(11)

Here, ETDi is the mean activation value of the ith hidden layer
node for all inputs in the TD group, i.e.,

ETDi =
1

NTD

NTD
∑

k=1

aki =
1

NTD

NTD
∑

k=1

d
∑

j=1

W
(1,0)
(i,j)

sgm(x
(k)
j ) (12)

where sgm() is the sigmoid function; σTD
i = 1

NTD

NTD
∑

k=1

(aki − ETDi )
2

is the variance of the hidden node input for the TD group;
NTD and NASD are the number of subjects in the TD control

and ASD groups, respectively; and W
(1,0)
(i,j)

is the connection
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FIGURE 5 | The process of layer-wise training the stacked SAEs. (A) The first SAE. (B) The second SAE. (C) The Third SAE.

weight to the ith node in the hidden layer from the jth
node in the input layer. EASDi and σASD

i are defined similarly.
The feature is considered to have high discriminating power
(ASD vs. TD) when its Fisher’s score is high. Features with
high discriminating power are of interest during the feature
selection procedure due to the fact that they can generate
more informative representations for the classification model.
For selection, features in the pool are sorted by their Fisher’s
scores in descending order. Then a number of dissimilar
features from the pool with high discriminating power are
selected. In order to choose diverse features, a Euclidean
distance similarity metric is applied to measure the similarity
of a pair of features. Figure 4B illustrates the procedure
for feature selection in detail. feature_number indicates the
number of features to be selected from the pool, and
similarity_threshold indicates a threshold for the feature pair
similarity. The algorithm considers features in descending order
of discriminating power. The criterion for selection is that a
feature should be selected only if its similarity to any other
features in the set F of already selected features is below
the similarity_threshold value. Otherwise, the next feature is
considered. This procedure is not terminated until the number
of selected features is equal to feature_number, or all features
in the pool have been examined. Finally, a diverse and highly
discriminating feature layer is re-constructed using features
collected in F.

Training the DNN Model
The entire DNN training process comprises three steps as
illustrated in Figure 1C, including unsupervised training of
the stacked SAEs, supervised training of the SR model, and
fine tuning of the entire DNN. The first two steps are
considered to be pre-training of the DNN model. The DNN
is a multilayer NN constructed by stacking multiple SAEs and
the SR model together. The stacked SAEs are used to do
successive data dimension reductions, and the final reduced-
dimension representation is provided as input to the SR model.
In the DNN, weights in lower layers are difficult to update
by the standard back-propagation algorithm. This is because
the algorithm involves the backward propagation of objective
function gradients from upper layers to lower layers, and these
vanish quickly as the depth of the network increases (Hinton,
2007). As a result, weights in lower layers change slowly,
causing the lower layers to not learn much. A layer-wise pre-
training method (Hinton et al., 2006) can greatly improve the
training process of a multi-layer NN, and is widely used in
various DNN-based applications (Suk et al., 2014, 2015; Kim
et al., 2016). This is the approach used to train the current
model. Figure 5 shows the three SAEs used to form the stacked
SAEs and illustrates the layer-wise training process. The lowest
SAE was first trained with the training dataset (Figure 5A).
Then each image x was used as input to the trained SAE
to get the corresponding hidden layer activation vectors h(1)
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that are considered to represent latent features of the data.
After collecting this representation for each image, the middle
SAE was trained using these collected representations as input
as desired output, as Figure 5B illustrates. Then the hidden
layer activation vectors h(2) for each data point were collected
from this SAE and used as inputs to train the next SAE. This
process is shown in Figure 5C. Finally, the outputs of the third
SAE’s hidden layer, h(3), that are considered as representing
the most complex non-linear features latent in the raw data,
were generated in the same way as h(1) and h(2). The output
of h(3) was then used as input to train the SR model. The
data label information was not involved in the entire layer-wise
training process of the stacked SAEs, so it was considered to
be unsupervised training. The one exception is the training of
the lowest level SAE, which uses the feature selection algorithm
and uses labeled data to calculate the discrimination power
of features. The SR model is trained by both training data
representations and the corresponding labels so the training
process is supervised. The pre-training is able to provide
a reasonable initialization of parameters for the fine-tuning
step (Erhan et al., 2010) so that parameters can be adjusted
quickly according to training data labels in a few training
iterations.

The ultimate goal of training the DNN is to construct
a diagnosis model that distinguishes ASD patients from TD
controls. In the fine-tuning step, all training data associated
with labels were used to train the DNN. The BP algorithm in
conjunction with L-BFGS was applied to optimize all the weights.
The cost function of the DNN is defined by Equation (13) and
Equation (14).

Cost =
1

M

M
∑

k=1

J(W, b; x(k), y(k))+
λ

2

nl−2
∑

l=0

sl+1
∑

i=1

sl
∑

j=1

(W
(l+1,l)
ij )

2

(13)

J
(

W, b; x(k), y(k)
)

=
1

2
||hW,b(x

(k))− y(k)||22 (14)

In Equation (13), M denotes the total number of subjects in
the training dataset, W denotes the weights parameters in the
DNNs, b denotes the bias vector, x(k) denotes the input for kth
subject in the training dataset, y(k) is its corresponding label
which can indicate the condition status (ASD 1, TD control 0),
nl indicates the total number of layers of the DNNs, sl indicates

the total number of nodes in the layer l, W
(l+1,l)
ij presents the

weight between ith node in layer l+1 and the jth node in the

layer l. From Equation (4), it can be seen that J
(

W, b; x(i), z(i)
)

measures the error between the predicted label of a certain subject
hW,b(x

(k)) and the corresponding real label y(k). Based on the
cost function, the weights optimization process can be described
as following::

Wij
(l+1,l)(t + 1) = Wij

(l+1,l)(t)− α(t)[(
1

M
δWij

(l+1,l)(t))

+ λWij
(l+1,l)(t)] (15)

bj
(l+1,l)(t + 1) = bj

(l+1,l)(t)− α(t)[
1

M
δbj

(l+1,l)(t)] (16)

δWij
(l+1,l)(t) =

M
∑

k=1

∂

∂W
(l+1,l)
ij (t)

J(W(t), b(t); x(k), y(k))

(17)

δbj
(l+1,l)(t) =

M
∑

k=1

∂

∂b
(l+1,l)
j (t)

J(W(t), b(t); x(k), y(k)) (18)

where δW(l+1,l)(t) is the sum of partial derivatives of the
cost function with respect to W(l+1,l)(t); δb(l+1,l)(t) is the
sum of partial derivatives of the cost function with respect

to b
(l+1,l)
j (t), and t is the current iteration number. In this

work, all of the training data was used to update parameters
during each epoch until the cost function converged. The weight
decay parameter λ was fixed to 10−5 to prevent overfitting of
weights (Moody et al., 1995), the learning rate was initially
set to 0.0015 and then gradually reduced after 200 epochs
(Darken and Moody, 1990). The number of training epochs was
400.

The Learnt DNN Features
FCPs from all 110 subjects were used to train the DNNs once
rather than using the nested CV scheme illustrated in Figure 2.
This training scheme can save the complication of merging
DNN weights obtained from different training sets although
the classification accuracy is not available simultaneously. The
sparsity parameter was set to the value selected most frequently
for the final test during the nested CV scheme.

Analyzing the weights from the input layer to hidden nodes
and between successive layers of hidden nodes can help in
explaining the basis of classification learned byDNNs. Features in
DNNs trained on the MNIST dataset (Haykin and Kosko, 2001)
have been shown to correspond to simple image components
such as edges by analyzing the weights between the input and the
first hidden layers, and the linear combination of these features to
the second layer can be seen as detecting more complex elements
such as corners. An approach similar to these and other studies
(Denil et al., 2013; Suk et al., 2014; Kim et al., 2016) was used
to analyze the feature for each hidden layer node in each hidden
layer in the DNNs. The feature vector of ith node in the (l+ 1)th
layer is specified as:

Fl+1
i =

Z
∑

j=1

W
(l+1,l)
(i,j)

Flj and F1i = W
(1,0)
(i,:)

(19)

Here,W
(l+1,l)
(i,j)

is the weight between the ith node in the (l + 1)th

layer and the jth node in the layer l. To define the feature for
each hidden node, the Z connections with the highest weight
magnitudes between (l + 1)th and lth layer were chosen, and
used in the analysis of features. For each node in the first
hidden layer, the weights between itself and all input nodes are

considered as the learnt feature. So W
(1,0)
(i,:)

which is actually F1i ,

indicates all weights of connections connecting ith node in the
first hidden layer to all nodes from the input layer. Figure 6
illustrates the feature construction procedure for a hidden layer
node in the third layer. It can be seen that a feature existing
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FIGURE 6 | An example of the representation of learnt features from DNN

(Connections used to construct features are presented by solid arrows).

in the higher hidden layer of the DNN is actually the linear
combination of features from lower hidden layers. Because the
DNN features have the hierarchical property, a top-down ASD
related biomarker identification method can be developed. The
detailed procedure and the result will be detailed in Section
Visualization of Significant FCs Identified by Learning.

RESULTS

Comparing the Performance of the DNN
with and without the Feature Selection
Method
To assess the benefit of the proposed feature selection method,
the performance of the DNN-FS illustrated in Figure 1 was
compared with that of the DNN-woFS. In DNN-FS, the weights
between the first hidden layer and the input layer of the stacked
SAEs were selected by the proposed feature selection method,
and were trained further during the 3-step DNN training. All
other weights were initialized randomly. The training proceeded
from the second hidden layer onward, i.e., weights to the second
hidden layer from the first were trained first, then those from
the second to the third, and so on). The reduced-dimension
representations of the whole-brain FCPs from the first hidden
layer were considered as the input to the network from the second
hidden layer on. In DNN-woFS, all weights were randomly
initialized and training proceeded from the first hidden layer with
the whole-brain FCPs were the input. The hypothesis was that the
stacked SAEs in DNN-FS would generate reduced-dimension,
highly discriminative representations with higher quality than
those generated by DNN-woFS, and that, after training, this
would be visible in the classification accuracy of the SR classifiers
using each system. Several comparison scenarios were designed
to test the hypothesis. In each scenario, DNN-FS and DNN-
woFS had the same configuration in the number of hidden layers
and the number of hidden layer nodes. This configuration varied
among different scenarios so that the performance of the systems
could be evaluated with different architectures. The evaluation
scheme for both models in each scenario was the five-fold CV,

TABLE 3 | Results from the DNN-woFS in different scenarios.

No. of nodes No. of Layers

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

50 56.36 61.82 70.91 66.36 67.27

100 63.64 71.82 81.82 77.27 74.55

150 65.45 70.00 77.27 73.63 70.91

200 68.18 70.91 76.36 78.18 76.36

The best performance is marked with bold.

TABLE 4 | Results from the DNN-FS in different scenarios.

No. of nodes No. of Layers

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

50 59.09 64.55 72.73 67.27 69.09

100 67.27 75.45 85.45 81.82 77.27

150 68.18 78.18 86.36 75.45 72.73

200 69.09 72.73 77.27 79.09 78.18

The best performance is marked with bold.

and both used the parameter settings discussed in Section Sparse
Auto-Encoders and The Novel Feature Selection Method.

Tables 3, 4 present the classification accuracy from DNN-
FS and DNN-woFS, respectively in different scenarios. From
Table 3 it is clear that, for the DNN-woFS, the best performance
was 81.82% when it had three hidden layers, each of which
had 100 nodes. The best performance in Table 4 was 86.36%
coming from the DNN-FS with three layers, each of which had
150 hidden nodes. From both tables, it can also be observed
that simply increasing the number of hidden layer nodes does
not always help improve accuracy when the number of hidden
layers stays the same. Similarly, simply increasing the number
of layers does not always help the stacked SAEs generate
more robust representations when the number of nodes is
fixed.

The results in Tables 3, 4 provide strong support for the
hypothesis that the feature selection method used in DNN-FS
networks helps the stacked SAEs generate more competitive
representations for the ASD diagnosis task. Compared with
the results from DNN-woFS, DNN-FS classification accuracy
was always higher in every comparison scenario (Table 5). The
color scale green-yellow-red corresponds to low-medium-high
improvement, while the numerical values indicate the exact
percentage improvement. The most significant improvement
(9.09%) occurs in the DNN-FS with three hidden layers, each of
which has 150 nodes. However, the improvement of the DNN-FS
is low when each hidden layer contains 200 nodes, even when the
number of hidden layers is varied.

Analysis of Layer-Wise Discriminative
Power
To quantitatively determine the discriminative power of each
hidden layer in the DNN-FS and the DNN-woFS, DNN-FS and
DNN-woFS networks with the same architecture were trained
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TABLE 5 | The improvement of the DNN-FS in different scenarios compared with

the DNN-woFS.

No. of nodes No. of layers

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

50 2.73 2.73 1.82 0.91 1.82

100 3.63 3.63 3.63 4.55 2.72

150 2.73 8.18 9.09 1.82 1.82

200 0.91 1.82 0.91 0.91 1.82

on FCPs from all subjects, and the discriminative powers of
the corresponding layers were determined by calculating the
mean Fisher’s score and its standard deviation for each layer.
Since the DNN-FS with three hidden layers with 150 nodes each
generated the best performance among all scenarios, the analysis
was conducted on networks with this architecture.

The results showed that the higher layer always have higher
mean Fisher’s score in both DNN-FS and DNN-woFS (Figure 7).
This demonstrates that the hierarchical property of the DNN
can help it improve its discriminative power for classifying the
two groups (ASD patients/TD controls) in a systematic manner,
and multiple hidden layers are necessary. It was also observed
that the DNN-FS has stronger discriminative power in each
layer compared with DNN-woFS. Clearly, the proposed feature
selection method improves the DNN classification accuracy by
generating highly discriminative representations.

Comparing the Performance of the
Stacked SAEs in DNN-FS with Other
Feature Selection Methods
The work reported in this paper used stacked SAEs for dimension
reduction in the DNN-FS framework. The proposed feature
selection method helps the stacked SAEs generate reduced-
dimension representations with high quality. Training with such
representations, the classification accuracy of the SR model
is improved significantly. To compare the data dimension
reduction performance of the stacked SAEs in the DNN-FS with
the performance of other methods, two other feature selection
methods—two sample t-test and elastic net (Zou and Hastie,
2005)—were also implemented and tested, using individual FCs
as the pool of features. The low-dimension representations
generated by each method were used to train SR classifiers,
and the performance of these classifiers as well as the DNN-
FS-based SR classifier was evaluated on the test dataset. The
training scheme for all three SR models was five-fold CV, and the
training data was the same for them in each fold. As discussed
above, the proposed feature selection method allowed a DNN
with three layers and 150 nodes per hidden layer to generate the
best performance, so this was the DNN architecture used here. In
the two sample t-test, the distributions of each FC for the ASD
and TD sets were compared, and the 150 FCs with the lowest p-
values were selected out of 6,670 connections in each fold. The
mean FCPs for the ASD and TD groups, and the 150 features with
the lowest p-values are shown in Figure 8. The elastic net was also
applied to select 150 FCs from the 6,670 FCs. To obtain reliable

results, each method was run 10 times. In each trial, subjects were
randomly divided into five-folds. The average accuracy as well as
the standard deviation from each method is shown in Figure 9.
As the figure illustrates, the DNN-FS method outperformed the
other two methods, producing more robust, better quality low-
dimensional representations for the SR model to classify TD
controls.

Visualization of Significant FCs Identified
by Learning
As discussed earlier, the DNNs learn patterns from FCPs as
features in a hierarchical manner: a feature in a higher layer is the
linear combination of features from the layer below it. Thus, it is
possible to look at what features each layer has learned, and use
them to infer what elements of the FCPs were most important for
classification and, therefore, for the diagnosis of ASD. Applying
this approach, important FCs with significant discriminative
power were identified, and visualized in the circular graph.
More specifically, after conducting the experiment described
in Section Analysis of Layer-Wise Discriminative Power, the
four nodes with the largest Fisher’s scores were located in the
third hidden layer of the DNN-FS-based network with the best
performance. For each of these, the two nodes with the largest
connection weights from the second hidden layer were selected,
giving up to eight second hidden layer nodes that contribute
most to important features in the third hidden layer. The same
process was iteratively applied on the first hidden layer and the
input layer, resulting in 32 FCs which made high contribution
to discriminate ASD patients from TD controls. These 32 FC
elements are visualized in Figure 10. Furthermore, for purposes
of network analysis, they are summarized in Table 6, with both
terminal brain areas of each identified FC assigned to a brain
functional network according to the literature. A few terminal
areas that are not in any network defined in the extant research,
i.e., the DMnetwork, the FP network, the COnetwork and the CB
network, are left blank. For each included FC, the mean r value
for each group as well as the group difference was calculated, and
the p-value obtained by the two sample t-test used to evaluate the
significance. The significance threshold for discriminative power
is p < 0.05. The FC was marked in green when its terminal brain
regions were significantly positively correlated, and in red when
they were significantly negatively correlated. All brain regions
in the table were named by AAL labels (Tzourio-Mazoyer et al.,
2002).

DISCUSSION

In the present study, a DNN model with a novel feature
selection method was developed for classifying ASD patients
and TD controls based on the whole-brain FCPs. The first
contribution of this work is the proposed feature selection
method based on multiple trained SAEs to improve the quality
of low-dimension representations learned from stacked SAEs.
The proposed method (DNN-FS) was able to select diverse
features with high discriminating power from a large feature
pool consisting of all features from multiple trained SAEs, and
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FIGURE 7 | The mean Fisher’s score and its SD (mean/SD) for each hidden layer from the DNN-FS and the DNN-woFS. (A) The first hidden layer. (B) The second

hidden layer. (C) The third hidden layer.

FIGURE 8 | The visualization of group FCs. (A) Mean FCs of TD group (−0.2 ≤ r ≤ 1). (B) Mean FCs of ASD group (−0.2 ≤ r ≤ 1). (C) Group differences in the 150

FC patterns (evaluated by a two sample t-test with a threshold of p < 0.0014). Both x and y axes of each subfigure indicate areas in AAL atlas (SC, subcortical area,

CB, cerebellum).

these selected features, in turn, led to better classification of
ASD patients and TD controls compared to the performance of
DNN-woFS, and models with other feature selection methods
(two sample t-test and elastic net). To test the efficacy of
the method, both DNN-FS and DNN-woFS systems were
trained and evaluated by the five-fold nested CV scheme under
different comparison scenarios. Both models had the same
architecture (the same number of hidden layers/nodes) in each
scenario, and different scenarios used different architectures.
The DNN-FS (3/150 hidden layers/nodes) obtained the best
classification accuracy of 86.36%. Most importantly, the DNN-
FS outperformed the DNN-woFS for each comparison scenario.
The most significant improvement, of 9.09%, occurred when the
architecture contained three hidden layers with 150 nodes each.
Among many ASD diagnosis models, Deshpande et al. (2013)
developed a recursive cluster elimination based support vector
machine classifier using effective connectivity weights, behavior

assessment scores, FC, and fractional anisotropy obtained from
DTI data. Themodel achieved amaximum classification accuracy
of 95.9%. Unlike the work presented here, they combined analysis
of multiple types of data. The feature selection part of the
model was thus able to extract and integrate discriminating
features from heterogeneous data, which potentially enhanced
classification accuracy. In addition, the number of ROIs (18)
defined in their model was small, which kept their input
data dimension a reasonable size compared to the sample size
(30 adolescents and young adults), and inhibited overfitting.
However, this method still needs to be validated on a larger
dataset. Nielsen et al. (2013) developed a classification model
to perform ASD classification, but only achieved up to 60%
accuracy. They collected data from multiple sites of ABIDE I,
and different sites had different imaging protocols and quality
control protocols. Training the model with a large dataset was the
most likely reason for obtaining the low accuracy. In addition,
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the lower heterogeneity of the large dataset might be another
reason for the low accuracy. Compared to the dataset (964) they
used, the present study used a smaller dataset from one site
of ABIDE I, so the data quality is expected to be higher. To
avoid overfitting of the DNN model, a nested cross validation
evaluation scheme was applied. The effectiveness of the proposed
feature selection method was also compared with others feature

FIGURE 9 | The comparison of three feature selection methods.

selection methods: two sample t-test and elastic net. Results
showed that the classification model trained by representations
from the stacked SAEs outperformed the models trained by
features from other two methods. A comparison of the average
Fisher’s score of features in each layer in the DNN-FS and DNN-
woFS also showed that discriminative power increased layer-wise
in both DNN-FS and DNN-woFS, with higher layers providing
more discrimination.

The second contribution of this work is a DNN-based
biomarker identification method to locate 32 FCs associated
with ASD, and exploration of the biological implications of the
findings. Among these 32 FC elements, 13 were within pre-
defined brain networks including CO, DM, CB and FP, and 19
were between-network FCs. 13 FCs were statistically significant
(p < 0.05) between ASD and TD groups. Five significant FCs
(1, 17, 23, 30, and 32 in Table 6) were associated with the
insula. The previous study showed that this area was involved
in interoceptive, affective, and empathic processes. Network
analysis indicated that it was uniquely positioned as a hub
mediating interactions between large-scale networks involved in
externally- and internally-oriented cognitive processing, and it
was a consistent locus of hypo- and hyper- activity in autism
(Uddin and Menon, 2009). Menon and Uddin (2010) have
hypothesized that impaired hub function of the anterior insula
would reduce the ability of people with ASD to flexibly move
from the executive control networks to the default mode. In the
findings, one FC (1 in Table 6) was within-network (CO), and
four FCs were between-network (one CO and CB, two DM and
CO, one CO and CP). The results indicated that both hyper-
and hypo-connectivities associated with the insula were existed

FIGURE 10 | The visualization of 32 identified FC elements. (A) The circular visualization. Thicker connections indicate regions are strongly correlated, and vice versa.

“circularGraph” toolbox (www.mathworks.com/matlabcentral) was applied to draw the figure. (B) The axial visualization in AAL atlas. Labels information was from AAL

atlas. The thicker connection indicates two regions are strongly correlated, and vice versa. The BrainNet Viewer software (www.nitrc.org/projects/bnv) was applied to

draw the figure.
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TABLE 6 | The network analysis of 32 most significant FC elements.

Connection ID Regions Network Mean CC in ASD group Mean CC in TDC group Mean difference P-value

1 (4) Frontal_Sup_R CO 0.86 0.59 0.27 0.007

(30) Insula_R CO

2 (74) putamen_R CO 0.74 0.68 0.06 0.27

(30) Insula_R CO

3 (31) Cingulum_Ant_L CO 0.11 0.19 −0.08 0.33

(74) Putamen_R CO

4 (36) Cingulum_Post_R CO 0.56 0.68 −0.12 0.032

(5) Frontal_Sup_Orb_L CO

5 (39) ParaHippocampal_L DM 0.89 0.83 0.06 0.45

(90) Temporal_Inf_R DM

6 (27) Rectus_L DM 0.11 0.18 −0.07 0.23

(46) Cuneus_R DM

7 (89) Temporal_Inf_L DM 0.88 0.68 0.2 0.004

(90) Parietal_Sup_L DM

8 (91) Cerebelum_Crus1_L CB 0.04 0.11 −0.07 0.12

(100) Cerebelum_6_R CB

9 (91) Cerebelum_Crus1_L CB 0.76 0.83 −0.07 0.17

(108) Cerebelum _10_R CB

10 (101) Creebelum_7b_L CB 0.17 0.11 0.06 0.23

(115) vermis_9 CB

11 (32) Cingulum_Mid_L FP 0.91 0.74 0.17 0.0043

(10) Frontal _ Inf_Orb_L FP

12 (10) Frontal _ Inf_Orb_L FP 0.56 0.55 0.01 0.56

(8) Frontal_Mid_R FP

13 (59) Parietal_Sup_L FP 0.23 0.19 0.04 0.78

(13) Frontal_Inf_Frontal_Tri_L FP

14 (4) Frontal_Sup_R CO 0.31 0.38 −0.07 0.015

(90) Temporal_Inf_R DM

15 (36) Cingulum_Post_R CO 0.78 0.66 0.12 0.002

(90) Parietal_Sup_L DM

16 (32) Cingulum_Mid_L FP 0.12 0.15 −0.03 0.19

(46) Cuneus_R DM

17 (30) Insula_R CO 0.07 0.11 −0.04 0.032

(101) Cerebellum_7b_L CB

18 (8) Frontal_Mid_R FP 0.23 0.46 −0.23 0.17

(27) Rectus_L DM

19 (13) Frontal_Inf_Tri_L FP 0.56 0.44 0.12 0.026

(74) Putamen_R CO

20 (89) Temporal_Inf_L DM 0.68 0.65 0.03 0.34

(36) Cingulum_Post_R CO

21 (91) Cerebelum_Crus1_L CB 0.88 0.75 0.13 0.045

(90) Parietal_Sup_L DM

22 (110) Vermis_3 CB 0.23 0.18 0.05 0.34

(13) Frontal_Inf_Tri_L FP

23 (39) ParaHippocampal_L DM 0.89 0.84 0.05 0.036

(30) Insula_R CO

24 (52) Occipital_Inf_L 0.91 0.85 0.06 0.45

(55) Fusiform_L

25 (14) Frontal_Inf_Tri_R FP 0.23 0.16 0.07 0.76

(42) Amygdala_L

(Continued)
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TABLE 6 | Continued

Connection ID Regions Network Mean CC in ASD group Mean CC in TDC group Mean difference P-value

26 (71) Caudate_L 0.35 0.32 0.03 0.68

(14) Frontal_Inf_Tri_R FP

27 (71) Caudate_L 0.78 0.83 −0.05 0.32

(17) Rolandic_Oper_L

28 (71) Caudate_L 0.87 0.84 0.09 0.61

(25) Frontal_Med_Orb_L

29 (81) Temporal_Sup_L DM 0.12 0.18 −0.06 0.12

(90) Temporal_Inf_R

30 (30) Insula_R CO 0.12 0.09 0.03 0.043

(13) Frontal_Inf_Tri_L FP

31 (31) Cingulum_Ant_L CO 0.45 0.58 −0.13 0.034

(14) Frontal_Inf_Tri_R FP

32 (30) Insula_R CO 0.2 0.23 −0.03 0.036

(90) Parietal_Sup_L DM

Red indicates the pair of regions are significantly negative correlated.

Green indicates the pair of regions are significantly positive correlated.

within certain network or between networks, which can back
up the point view in literature. Four significant FCs (4, 11, 15,
and 31 in Table 6) were detected associated with the cingulate
cortex. The right posterior cingulum were strongly correlated
with the superior parietal gyrus, and were weakly correlated with
the superior frontal gyrus in the ASD group. The left anterior
cingulum was weakly correlated with the right pars triangularis,
and the left middle cingulum was strongly correlated with the
left pars orbitalis in the ASD group. The connections of the
cingulate cortex to other brain structures are extensive, and
thus the functions of the region are varied and complex. It
makes important contributions to emotion, and various types
of cognition such as the decision-making and the management
of social behavior (Ikuta et al., 2014). The findings can help
people to explore the neurological basis associated with abnormal
symptoms in emotion and cognition. Meanwhile, another four
ASD-related significant FCs were identified: LITG was strongly
connected to LSPL (7 in Table 6), RSFG was weakly connected
with RITG (14 in Table 6), LPT was strongly connected RP
(19 in Table 6), and LCCB was strongly connected to LSPL (21
in Table 6). Brain areas associated with these FCs are involved
in different brain functions such as spatial orientation (LSPL),
visual shape processing (LITG&RITG), self-awareness (RSFG),
and motor skills (LPT; Frackowiak, 2004; Lee et al., 2007).
The dysfunctionality of certain brain areas might lead to such
abnormal FCs in autistic children. However, the mechanism is
unclear, and needed to be explored in the future. Other than
above findings, 19 FCs which were not statistical significant
were detected by the method too. They are not, respectively,
discriminating may be because the sample size was not large
enough to build the significant statistical power for each of them.
However, they should be important in the classification task
because all FCs made contribution during the learning process,
and the model performance is supposed to be decreased if any of
them is missing.

In the future, we are going to extend the current research in
two aspects. First of all, the proposed method will be tested on
datasets from cohorts in different age groups. Age is an important
factor in the ASD diagnosis. ASD biomarkers may be altered
due to the age difference. It is especially meaningful to make a
convincing prediction before children develop ASD symptoms
at their early age. Hazlett et al. (2017) demonstrated that they
canmake reasonably accurate forecast about which of these high-
risk infants will later develop ASD themselves by examining the
growth rate of brain volume of infants between 6 and 24 months
based on anatomical brain images. The finding motivates us
to evaluate the proposed method on a dataset from early-age
children. NDAR (Hall et al., 2012) is an NIH-funded research
data repository that aims to accelerate progress in ASD research,
and it contains neuroimaging datasets from cohorts in different
age groups. We plan to validate the generalization of the method
onmultiple NDAR datasets from infants, adolescents, and adults.
We are optimistic about the model classification performance.
No matter what the age group the dataset belongs to, the strength
difference of certain FCs should exist between ASD patients
and the age-matched TD controls. The DNN-FS can not only
capture the discriminating FCs but also can learn high-quality
discriminating features from the whole-brain FCP to enhance the
classification accuracy of the SR model. However, the identified
ASD-related FCs may be altered in different age groups. So it
is necessary to work with neuroscientists closely to explore the
neurological basis of identified FCs in each age groups.

Second of all, more systematic methods will be developed
to decide the size of the feature pool for the proposed feature
selection method, and to determine how the size affects the
final performance. In addition, we will continue to explore the
way of deciding the architecture (No. of layers/No. of nodes per
layer) of the DNN-FS. It was found that the performance of the
DNN-FS did not increase by adding more hidden layer nodes
when the number of hidden layers was fixed. The most plausible
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explanation is that additional hidden layer nodes may learnmany
redundant features, which decreases the feature learning capacity
of the stacked SAEs and further reduces classification accuracy.
It was also found that the performance of the DNN-FS cannot be
increased simply by adding more hidden layers when the number
of hidden layer nodes is fixed. Themost reasonable explanation is
that the gradients vanish quickly in lower layers when the DNN
has a very deep architecture, and even the pre-training step is not
able to help much. Both these issues will be studied further as part
of future research to obtain optimal DNN-FSs for classifying ASD
patients and TD controls.
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