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INTRODUCTION, GOAL, AND SCOPE

Real-time sonification of human movement (conversion of motion signals into sound) can be
used as augmented feedback for motor skill learning. With sonification, motor skills can, in
some instances, be learned more quickly and successfully (Sigrist et al., 2013a). The goal of
such sonification systems is a permanent (or at least, lasting) improvement in performance at a
physical task or skill, which persists in the absence of augmented feedback. Many experimental
investigations of feedback, however, show that when performance is tested without feedback,
a decline occurs (Park et al., 2000; Maslovat et al., 2009). This finding has become known as
the “guidance effect” (Buchanan and Wang, 2012). It has been suggested that this effect is a
consequence of learner overreliance on the “guidance” provided by augmented feedback, at the
expense of task-intrinsic sensory feedback. For effective learning, this is clearly not desirable.

In this paper, we advocate a perception-action approach to sonification when used as feedback
for skill learning, which may lead researchers and trainers to design more effective prototypes. We
highlight three main issues: 1. The learner’s task should be conceived as perception-action based
and sonification designed accordingly, 2. Sonification should provide Ecological information for
perception rather than propositional knowledge-of-performance, and 3. Ecologically meaningful
sound morphologies should be harnessed effectively.

PERFORMANCE

Successful coordination requires the pickup and use of event-structured information through
perception and action (Gibson, 1972). Perceptual information available to a moving agent can be
said to specify the state of the agent-environment system (i.e., the task); this enables the skilled agent
to control movement and perceive its outcome “directly” (Warren, 2006; for a formal explanation
of the relation between Ecological information and task dynamics, see Turvey et al., 1981). Through
repeated interactions with a task, novices can become selectively sensitive to informational variables
which best serve task goals, and become more adept at bringing these variables into use for
coordination—a process described by Eleanor Gibson as “education of attention” (Gibson, 1969;
Jacobs and Michaels, 2007). Motor skill learning is therefore characterized by the “tuning in” of
perception and action—a progression toward the active pickup of better-specifying andmore useful
informational variables (Huys et al., 2009; Gray, 2010; Wilson et al., 2010a). Stoffregen and Bardy
(2001) propose that action is controlled via the pickup of multisensory informational variables,
which better specify the state of the perception-action system than can unimodal variables.
Sonification can therefore provide higher-order information—available via interaction and specific
to that interaction—which enables better perception and control of movement. With sonification,
novices can practice with an enhanced, more responsive perceptual-motor workspace (defined as
the emergent resources and constraints of organism and environment in the context of a task, which
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are perceptually available through dynamic interaction: see
Newell et al., 1991), which employs sound as a helpful constraint
on action.

A model of the informational variables available and useful
for the learner in a task can be guided by existing literature, or
refined by pilot testing. However, the most useful informational
variable(s) for the perceiving learner may not necessarily
correspond to the motor variable being tracked by the researcher
as a measure of performance. In other words, measurement
and experience are not isomorphic. As an example, consider
research on sonified reaching and target tracking (Oscari et al.,
2012; Schmitz and Bock, 2014; Boyer et al., 2016). The task
as instantiated here is to track or reach for a target, while
using whatever information is provided by the system to guide
one’s effector/pointer. The variable of interest for measurement
in this task (and others) is the absolute positional difference
between hand/pointer position and target position (error). This
variable is frequently sonified, by mapping error to a sonic
variable such as pitch, amplitude or inter-aural panning, with
mixed results (Konttinen et al., 2004; Rosati et al., 2012; Sigrist
et al., 2013b). It is not certain that instantaneous positional
error is a relevant variable for a moving individual in an
everyday context. Everyday pointing for example, is primarily
a visuomotor task with a criterion for success often defined in
social terms (Kennedy, 1985). It makes sense from the detached
perspective of an experimenter to measure positional error as
an objective performance index, but perhaps another, possibly
higher-order variable might be more useful for the learner as a
perceiver (Runeson, 1977). The choice of what to sonify may have
additional implications for the guidance effect, as the next section
will detail.

LEARNING AND THE GUIDANCE EFFECT

An analysis of the task can enable identification of the perception-
action resources used by a skilled performer in an everyday
context, including important informational variables and control
parameters (Wilson and Golonka, 2013; Bruineberg and Rietveld,
2014). Sonification systems can then be designed to highlight
these same useful variables/parameters, rather than to create
new parameters—control of which might be independent of how
the task would be performed without feedback. The value of
highlighting task-intrinsic information lies in the possibility to
avoid the guidance effect of augmented feedback. As an example,
Ronsse et al. (2011) provided direct sonification of changes in
hand-movement direction with a set of two tones. Participants
were required to learn a 90◦ out-of-phase bimanual wrist
coordination task in which a two-tone isochronous galloping
rhythmwas produced by perfect performance.When sonification
was withdrawn, participant performance remained stable. In
contrast, a second group of participants who had practiced
with movement-coupled graphical feedback showed a decline
in performance following withdrawal. In this task, sonification
preserved the spatio-temporal structure of relevant task-
intrinsic events in the perceptual-motor workspace, therefore the
information required to control movement was perceivable with

or without feedback. Sonification had acted as a guide for its
pickup. Conversely, graphical feedback provided information for
the direct control of bimanual phase-relationship; its removal
meant that coordination was no longer possible as the required
information was absent (see Wilson et al., 2010b). If learning is
seen as education of attention (Jacobs and Michaels, 2007), the
need to sonify task-intrinsic events to avoid the guidance effect is
clear (for similar findings, see Dyer et al., 2017).

KNOWLEDGE AND INFORMATION

Current understanding of augmented feedback and its role
in performance enhancement has its foundations in classic
studies on knowledge-of-results and knowledge-of-performance
(KR/KP) feedback (Adams, 1971). Today, sonification in
Psychology is still widely discussed using these terms (Konttinen
et al., 2004; Dyer et al., 2015; Sors et al., 2015; Fujii et al., 2016).
However, this continuity belies a subtle shift in what these terms
have come to mean over time as technology has improved to the
point where real-time sonification as KP is possible. In the late
twentieth Century, both KP and KRmeant explicit, propositional
knowledge—typically verbal (or verbalisable) knowledge about
movement outcome (KR) or performance (KP). Older reviews
of KP/KR research (Adams, 1971; Salmoni et al., 1984) show
that motor skill learning was explicitly conceptualized as a
knowledge and memory-based, problem-solving task, soluble by
the application of explicit knowledge and rules (typically, coach-
provided guidance, or scores/graphs of performance and error).
The goal was to improve performance by delivering instructions,
which could be applied to programming of motor output
“intellectually,” i.e., independently of perception and action.
Thomas and Thomas (1994) have argued that the traditional
knowledge-based approach to motor skill learning underplays
the role of selective sensitivity to perceptual information in skilled
performance, catering mostly to the earliest “cognitive stage” of
learning (Fitts and Posner, 1967).

Today, augmented feedback (including sonification) is often
delivered concurrently with movement (Sigrist et al., 2013a),
and could be considered something more like augmented
information for online, perceptual control of action. However,
the older style of thinking about feedback as explicit knowledge
is evident in many modern implementations. This thinking
manifests in the design of mappings intended to transmit a
signal to the learner, which can be said to contain knowledge—
in a description of current performance relative to an ideal
(often a sonified error score). This signal must be parsed by
the learner with the application of a remembered mapping
rule, and the decoded knowledge applied to update ongoing
movement. This bears directly on sonified feedback given the
requirement for learner interpretation associated with such rule-
based mappings. Time required to interpret the knowledge
contained in an auditory error signal puts an intellectual barrier
between perception and action, which may not be conducive
to fluid, skilful performance. The perception-action approach
contends that “knowledge” related to skill is primarily enacted
via perception-action engagement with the dynamics of a
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task—rather than through the rote application of schemas and
rules (for this argument, see Ingold, 2000, 2001; van Dijk et al.,
2015). Effenberg and colleagues (Vinken et al., 2013; Effenberg
et al., 2016) argue similarly that a “direct” approach to mapping
in which sound quality perceptually correlates with the dynamics
of ongoing movement is most appropriate for motor skill
learning. Learners can learn to use sonic information to perceive
movement directly, with no need for cognitive elaboration,
as the control of movement is directly related to the sensory
consequences of movement (for a related example, see Stienstra
et al., 2011). This approach preserves the immediacy of Ecological
perception, and “knowledge” emerges from two-way interaction
rather than being translated from an incoming coded signal.

ECOLOGICALLY-MEANINGFUL SOUND

A theme in this article has been that sonification researchers
interested in motor skill learning should understand that learners
are primarily perceivers, with pre-existing skills. Perception of
something meaningful, or action-relevant in a sonic experience
can be conceptualized as an active listening skill which is related
to the sociocultural context of its development (Steenson and
Rodger, 2015). It follows then that listeners might already know
how to listen and interact with certain sound morphologies,
in certain contexts/tasks. The use of sounds which cater to
existing bodily skills, such as physical modeling of metallic
scraping in a writing task (Danna et al., 2015) constrain the
learner’s relation to the task and guide perception and action
more effectively than might be possible with more basic pitch
mapping (see also Roddy and Furlong, 2014). However, Dubus
and Bresin (2013) show that pitch mapping (of a pure tone
or the center frequency of filtered noise) remains a common
strategy in sonification generally, but also in sonification ofmotor
tasks. Most individuals have little experience using a pure tone
for movement coordination, therefore such a mapping may be
challenging and require extensive training before it can be used.
The use of already-familiar sound morphologies (e.g., melodies,
rhythms, sounds of real-life noisy interactions) may produce
more “intuitive” feedback systems. What we advocate here is

not a distinction which is sometimes made, between “ecological”
sounds of the natural world on the one hand and “artificial,”
synthetic sounds on the other. “Meaningfulness,” in an Ecological
sense, is defined relative to a perceiver’s experience using the
information which a sound source provides.

CONCLUSION

In this paper, we have argued for a perception-action approach
to motor skill learning as the basis for understanding the
utility of sonification as augmented feedback. If information
supports performance, then sonification should highlight task-
intrinsic information to counter the guidance effect. A clearer
definition of what “information” is can help guide the design of
sonified feedback whereby knowledge is a product of interaction
rather than transmission (e.g., see Wilson and Golonka, 2013).
Lastly, learners have abundant socioculturally-situated listening
experience already; it is therefore undershooting the potential
of sonification as feedback to rely only on unfamiliar or
esoteric sound morphologies like pure tones. To speculate,
the common root of these three issues for design may be
related to the existence of different frames of reference for
the experimenter/designer and the learner. It is more helpful
to see the learner as a situated agent with a repertoire of
existing perception-action skills than an engine that must
apply propositional knowledge to enact a desired change in
state.
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