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The problem of estimating neuronal fiber tracts connecting different brain regions is

important for various types of brain studies, including understanding brain functionality

and diagnosing cognitive impairments. The popular techniques for tractography are

mostly sequential—tracts are grown sequentially following principal directions of local

water diffusion profiles. Despite several advancements on this basic idea, the solutions

easily get stuck in local solutions, and can’t incorporate global shape information. We

present a global approach where fiber tracts between regions of interest are initialized

and updated via deformations based on gradients of a posterior energy. This energy

has contributions from diffusion data, global shape models, and roughness penalty. The

resulting tracts are relatively immune to issues such as tensor noise and fiber crossings,

and achieve more interpretable tractography results. We demonstrate this framework

using both simulated and real dMRI and HARDI data.
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1. INTRODUCTION

This paper considers an important problem of estimating major white matter fiber tracts in
human brain using diffusion magnetic resonance imaging (dMRI) images (Mori et al., 2005). The
construction of fiber tracts connecting different brain regions is an important first step toward
studying brain connectomics and its implications in assessment of brain functionality, including
cognitive abilities and general health. Spurred by experimental development of large databases
involving human subjects, with samples across different demographic groups, there is a emerging
interest in representing and quantifying brain connectivity patterns. Therefore, efficient and
reliable fiber tracking algorithms are urgently needed. However, the problem of estimating fiber
tracts using dMRI data is far from being solved (Maier-Hein et al., 2016). The current solutions
have many limitations, including inefficiency and susceptibility to noisy, corrupt, and low-quality
data. The data mostly comes from pre-processed dMRI images, providing at each voxel a measure
of diffusivity of water molecule at that location. The representation of this diffusivity is generally a
3 × 3 symmetric, positive definite matrix (SPDM), also called a tensor. In situations where higher
resolution data are available, one constructs high angular resolution diffusion imaging (HARDI)
data; at each spatial location the orientation diffusion function (ODF, a function on a unit sphere
§2) is estimated (Descoteaux, 2015). Given these local diffusivity measures, one seeks to form
fiber tracts, or their collections in the form of fiber bundles, between regions of interest (ROIs),
and to further develops structural networks (Cheng et al., 2012; de Reus and van den Heuvel,
2013; Fornito et al., 2013; Durante and Dunson, 2017). This paper focuses on estimation of fiber
tracts, also termed tractography, using dMRI and HARDI data. For any two regions (voxels) in
a brain coordinate system, the goal is to estimate a collection of curves that follow an optimal
pattern of fluid flow connecting these locations, while conforming to anatomical reasonings and
interpretations.
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Due to the importance of tract-based connectivity in brain
connectomic analysis, there have been a number of solutions
developed for estimating fiber tracts. They can be loosely grouped
into two categories: local and global methods. Local methods
construct fiber curves sequentially based on the estimated
local diffusion directions. Depending on the mechanism for
specifying a local propagation direction, one can further classify
the local methods into deterministic methods (Mori et al.,
1999; Basser et al., 2000) or probabilistic methods (Hagmann
et al., 2003). While the deterministic methods mainly follow the
local principal directions to grow fiber curves, the probabilistic
methods propose a propagation direction from voxelwise
probability distribution, e.g., orientation distribution function
(ODF), for growing fibers. The first successful deterministic
tractography algorithm was dubbed FACT (fiber assignment by
continuous tracking), which has been widely studied in the
literature (Mori and van Zijl, 2002). But the limitations of FACT
and similar methods are obvious. They include sensitivity to
initialization, the susceptibility of principal direction estimation
to local noise, and lack of connectivity information between
regions of the brain. These limitations drive people to use
the probabilistic algorithms. One advantage of the probabilistic
methods is that they are based on the full, albeit local, distribution
of fiber directions, rather than just the principal direction. They
can output a connectivity index measure, e.g., the number of
fiber curves, between any two regions of interest, indicating
the probability with which the regions are connected to one
another. However, this creates problems when the local diffusion
directions are not well estimated or are overly smooth. On the
other hand, the global methods try to reconstruct fiber curves
simultaneously by optimizing the configuration that best matches
the given data. Finding the fiber curves that best matches the
given data is a hard inverse problem. Current solutions are to
translate this inverse problem into a forward problem using a
Bayesian approach. For example, Reisert et al. (2011) used a
Metropolis Hastings sampler to propose small line segments to fit
the given dMRI data and use them to further generate long fiber
curves. The global methods provide a better stability with respect
to the noise and imaging artifacts. However, there are some issues
with the current global methods also. The Bayesian methods
typically have high computational cost and require huge memory
space, to compute and store a whole ensemble of solutions. Also,
in an optimization setting, it is difficult to avoid local solutions
since no additional structure is imposed on the optimization.

We can summarize the limitations of current methods as
follows: (a) The local methods are essentially sequential—they
start fibers from one end and grow them over time. This one-
boundary solution is not natural for tractography, which is
actually a two-boundary problem. (b) The local tractography
algorithms are highly susceptible to fiber crossing, noise and
imaging artifacts. Incorrect recording or noisy observations of
tensors can send algorithms in wrong directions and it is difficult
to recover from such misdirections. (c) The global tractography
algorithms achieve better stability with respect to noise, but they
are very computationally expensive. (d) Both local and global
methods tend to produce a large proportion of false positive fibers
because of the noise and ambiguity at fiber crossings. Figure 1

shows some examples of limitations of a local streamline method,
where the blue lines denote ground truth, the red and green lines
are tractorgraphy results from the classic FACT method. The left
panel shows the challenge of fiber crossing, where the sequential
approach fails to reach the target region. The right panel shows
the effect of having a patch of noisy data in the middle. The
fibers from either regions run into this noisy patch and fail
to reach the other end. Additional examples of the challenges
faced by streamline methods on the real data, are shown later
in the experimental results section. A global approach used for
estimating fiber tracts, or curves in general image data, is called
active contours, where one evolves a curve in order to minimize
an energy functional (Pichon et al., 2005; Lankton et al., 2008;
Melonakos et al., 2008; Eckstein et al., 2009; Mohan et al., 2009;
Zach et al., 2009; Li and Hu, 2013). Other global techniques
(Faugeras et al., 2004), including a variation of Kalman Filter
(Cheng et al., 2015), have also been applied to this problem.

In this paper, we propose a new approach that is essentially
a global method but using additional geometry information
for ensuring optimal solutions. The proposed method is fast
and easy to implement, and robust to the noise in the data.
Most importantly, it can incorporate the prior knowledge
from anatomical structure and brain connectomics. Rather than
growing fiber tracts sequentially, our idea is to initialize fiber
tracts between regions of interest as Euclidean curves and then
deform them iteratively using gradients of a posterior energy.
This approach, termed Bayesian Active Contours (Joshi and
Srivastava, 2009; Bryner et al., 2013), estimates fiber tracts under
an energy function that has contributions from three sources:
the given data or the likelihood term, the prior knowledge
on the geometric shapes of fibers connecting these ROIs, and
a roughness penalty. The algorithm uses the gradient of this
posterior energy to iteratively update curves into high probability
and highly interpretable fiber tracts. The prior on the geometric
shapes relies on developing statistical shape models of fiber
curves between ROIs, using atlas data, and evaluating expressions
for gradient of resulting shape model energy with respect to
the shape variable. We use advances in elastic shape analysis of
Euclidean curves to develop efficient statistical models for fiber
bundles using training (or atlas) data. The training data can be
generated using existing local or global tractography algorithms,
or can use manual inputs. These models form prior information
for future tractography and, in conjunction with diffusion data
likelihood, they provide tract estimation results.

In contrast to the probabilistic tractography method (Behrens
et al., 2003, 2007), the proposed Bayesian method is a global
one. We start with an initial fiber connecting two pre-specified
regions and update it under an energy function. The final fiber
can best explain the diffusion data under the constraints of prior
shape distribution and desired smoothness. Previously, there are
some Bayesian tractography methods proposed in the literature
(Friman et al., 2006; Cook et al., 2008; Yap et al., 2011). These
methods are different from the proposed one: in our method,
we assign a prior on the fiber shape space, while in (Friman
et al., 2006; Cook et al., 2008; Yap et al., 2011), the prior is
imposed on local fiber orientation distribution. Probably, the
most similar work to ours is (Christiaens et al., 2014), where an
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FIGURE 1 | Two examples of the classic streamline method does not work. The blue lines are ground truth fibers. The red and green lines are the tractorgraphy

results from the FACT method. Starting from area A, FACT failed to reconstruct the fiber tracts that connect A and B.

atlas-guided global tractography is introduced with a prior on
the local tract distribution. However, our work is different in two
aspects: Firstly, we have a different energy function.We introduce
a novel data term and a smoothness term separately to measure
alignment between fibers and diffusion data, and the smoothness
of fiber tracts. Secondly, we have a different prior.We incorporate
the prior information of fiber shape from the atlas space while
(Christiaens et al., 2014) obtains the prior information of local
tract distribution from the atlas space.

The rest of this paper is organized as follows. We describe the
three components of the posterior energy—data likelihood, shape
prior and roughness penalty—and their gradients in Section 2.
The resulting tractography algorithm is laid out in Section 3,
and experimental results using both simulated and real data, the
extension to HARDI data are presented in Section 4.We close the
paper with a short discussion in Section 5.

2. MATHEMATICAL FRAMEWORK FOR
BAYESIAN TRACTOGRAPHY

Although the framework can be easily generalized to 3D data, we
will restrict to 2D data in this paper for simplicity. The theory is
general enough to be applicable to 3D data directly.

First, we develop a mathematical framework for estimation
of fiber tracts using tensor data and prior shape models. Let
P be the set of 2 × 2 symmetric, positive definite matrices (or
tensors). For the domain, D = [0, 1]2, let M : D → P denote
a continuous vector field of tensors defined on this domain. Let
β :[0, 1]→ D be an absolutely continuous curve contained in this
domain, and let B be the set of all such curves. Our goal is to find
a β with certain boundary constraints that optimizes a chosen
objective function that comes from a Bayesian formulation. Thus,
we pose the problem of tractography as aMAP estimation. In this
formulation we seek parameterized curve β̂ that minimizes an
energy functional according to: β̂ = argminβ∈B Etotal(β), where

Etotal(β) = λ1Edata(β)+ λ2Eprior(β)+ λ3Esmooth(β). (1)

This total energy functional has contributions from three
different criteria that are weighted by the coefficients
λ1, λ2, λ3 > 0. The data energy Edata is defined solely
from the diffusion data in the image, Eprior is the prior shape
energy defined from a statistical model on shapes of the fiber
β , and the smoothing energy Esmooth is a penalty that ensures a
certain amount of smoothness in the estimated fiber. In order to
minimize Etotal we use a gradient descent procedure that updates
the curve according to β 7→ β − δ∇βE, where

∇βE = λ1∇Edata(β)+ λ2∇Eprior(β)+ λ3∇Esmooth(β). (2)

That is, we search for a local minimization of Equation (1)
via gradient descent. The weights λi will certainly affect curve
evolution, i.e., a large penalty on the smoothness term favors
shorter fibers and so on. Through trial and error, one can adjust
the λ’s depending on the data and problem context. In the next
three sections, we summarize the formulation of each of the three
energy terms.

2.1. Data-Likelihood Term
The data term is designed to quantify the agreement of the fiber
directions with the diffusion tensor at that location. Let M be a
given tensor field and β be a curve lying in the domain D, as
shown in the left panel of Figure 2. The data energy term is then
given by:

Edata[β] =
∫ 1

0
nβ (t)

TM−1
β(t)

nβ (t) dt, where nβ (t) =
β̇(t)

|β̇(t)|
.

(3)
Here nβ (t) denotes the unit vector tangent to β at β(t) andMβ(t)

is the tensor at location β(t) ∈ D. The integrand is lower at the
locations where the fiber tract is aligned with the tensor field and
vice-versa.

Wemotivate the choice of this expression by focusing on some
Riemannian frameworks used in tractography:

• Maximal Curves Matching the Given Tensor Field: One
generally wants to find curves such that their velocity vectors
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FIGURE 2 | (Left) A schematic showing a curve β passing through a tensor field M. (Middle) An example of gradient-based optimization under Edata, where black is

the initial curve and red is the final curve. (Right) The evolution of Edata during this optimization.

maximally match the given diffusion tensors. Therefore, one
may consider maximizing the term:

LM[β] =
∫ 1

0

√

(β̇(t)TMβ(t)β̇(t)) dt =
∫ 1

0
|β̇(t)|Mβ(t)

dt .

This quantity is nothing but the length of a curve β in D
under a Riemannian metric defined by the tensor fieldM. The
maximizers of LM are the longest paths between given points
in D. However, the problem with this is that there is no upper
bound on the length of the curve, and one can place arbitrarily
long curves in D irrespective ofM.
• Geodesics Under Inverse Tensor Field: A better idea is to

use the inverse of the given tensor field at each point and
then construct geodesic paths under that Riemannian metric
(O’Donnell et al., 2002; Duncan et al., 2004; Melonakos, 2009),
according to:

β∗ = argminβ

(∫ 1

0

√

(β̇(t)TM−1
β(t)

β̇(t)) dt

=
∫ 1

0
|β̇(t)|M−1

β(t)
dt

)

.

One can solve the optimization problem by minimizing an
energy, without the square-root in the integrand, as follows:

β∗ = argminβ

(∫ 1

0
β̇(t)TM−1

β(t)
β̇(t)dt

)

.

This way one gets shortest curves such that their velocities
agree with the dominant directions of the original tensor field.
This formulation also agrees with a probabilistic approach
where one uses the tensor field to define a Gaussian
distribution at each point (Lenglet et al., 2004), and seeks
maximum likelihood estimates. Although this method favors
fiber directions similar to the dominant eigen vectors of the
given tensor field, it additionally penalizes the lengths of the
such fibers. Similar to the previous bullet, it may be possible
to find shorter paths that do not agree with the tensor field.
Some other papers (Fuster et al., 2014). Hao et al. (2014)

have expressed this exact issue in different terms, citing the
inability of this method to handle high curvature regions.
They proposed a solution based on modifying the Riemannian
metric by a curvature-based scalar field and then constructing
geodesic paths (Hao et al., 2014). The real issue in these ideas
is that there is no independent way to control the lengths of
estimated fibers.
• Scale-Invariant Optimal Paths: We take a different approach

where the length of the fibers is separated from the agreement
of fiber directions with the given tensor directions. We weight
these two quantities differently and are able to better control
the length of the fibers. For the domain D, and a given tensor
fieldM : D→ P , we define an energy term given by

Edata[β] =
∫ 1

0
nβ (t)

TM−1
β(t)

nβ (t) dt , (4)

where nβ (t) = β̇(t)/|β̇(t)|. Note that if we scale the speed of
traversal along β by a constant, the energy function remains
unchanged. In other words, the integrand only depends on
the agreement of the direction nβ (t) with the dominant
eigen vectors of Mβ(t), and not on the speed of traversal at
β(t). However, this energy function is not invariant to a re-
parameterization of β . Let γ : [0, 1] → [0, 1] be a positive
diffeomorphism, the β ◦ γ represents a re-parameterization
of β . It can be seen that, in general, Edata[β] 6= Edata[β ◦
γ ]. If that invariance is desired, one can achieve it by
changing the measure of integration from dt to |β̇(t)| dt in
Equation (4).

The next step is to derive the gradient of Edata with respect to β

for use in gradient-based optimization. To specify the gradient
of Edata, we need some additional notation. Note that for any
location x = (x1, x2) ∈ D, the gradient of M : D → P has
two components, ∇x1Mx, ∇x2Mx ∈ TMx (P). Thus, the gradient
vector ∇xMx is a higher-order tensor of the size 2 × 2 × 2. For
any such tensor A ∈ R

2×2×2 and a vector x ∈ R
2, we will use the

notation: 〈〈A, x〉〉 to imply x1A(:, :, 1) + x2A(:, :, 2) ∈ TM(x)(P).
Therefore, 〈(〈〈Ax〉〉)x〉 denotes a 2-vector given by x1A(:, :, 1)x +
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x2A(:, :, 2)x ∈ R
2. With this notation, we can express the gradient

of Edata as follows.

LEMMA 1. The gradient of Edata with respect to β, under the L2

norm, is given by:

− 2{ 1

|β̇(t)|

(

M−1
β(t)

ṅβ (t)+
〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)
)

− β̇T(t)β̈(t)

|β̇(t)|3
M−1

β(t)
nβ (t)−

1

|β̇(t)|

(

ṅβ (t)n
T
β (t)M

−1
β(t)

nβ (t)

+ nβ (t)n
T
β (t)

〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)+ 2nβ (t)n
T
β (t)M

−1
β(t)

ṅβ (t)
)

+ β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t)} +
〈〈

tran(∇xM−1β(t)
), nβ (t)

〉〉

nβ (t) .

(5)

where tran(∇xM−1β(t)
) is transpose of ∇xM−1β(t)

.

A derivation of this expression is presented in the Appendix.
Having an analytical expression for ∇βEdata makes the
optimization problem more efficient, as compared to purely
numerical solutions.

Figure 2 shows an example of the gradient-based
minimization of Edata in the middle panel. It shows a tensor
fieldM and an initial curve β (in black). We update β iteratively
using −∇βEdata and the result is drawn as a red curve. The
corresponding evolution of Edata is plotted in the right panel.

2.2. Smoothness or Fiber Length Term
For regulating smoothness of the estimated curve, we follow
a common approach from geometric active contours that is
motivated in part by Euclidean heat flow. Define the smoothing

energy function as Esmooth(β) =
∫ 1
0 |β̇(t)|dt, which is equal

to the length of the curve and is naturally invariant to any
re-parameterization. It is shown in Kichenassamy et al. (1995)
that the gradient of Esmooth is given by the Euclidean heat
flow equation ∇Esmooth(β) = κβnβ , where κβ is the curvature
at each point of β and nβ is the unit normal field along
the curve. It is well known that this particular penalty on a
curve’s length leads to simultaneous smoothing and shrinking
of a curve. If we rescale the curve to keep the original length,
the main effect is that of smoothing. An example of this
idea is illustrated in Figure 3 that shows a curve evolving
according to −∇Esmooth. The left panel shows the initial curve
(in black), and its updates using the negative gradient of
Esmooth. The corresponding decrease in Esmooth is plotted on the
right.

2.3. Atlas-Based Shape Prior
The next term to consider is Eprior that forces the shapes of
estimated fiber tracts to be similar to certain desired shapes.
This term encodes the prior shape information about fibers
connecting two ROIs, and is based on a statistical model that is
learnt from the training or atlas data (generated by current local
or global methods). In a brain connectome study framework, the
brain is generally pre-segmented into small anatomical regions
using software such as Freesurfer and ANTs (Avants et al., 2011),
and fibers connecting two ROIs are extracted. However, due to

differences in sizes, orientations, and coordinate systems, these
fibers connecting the same ROIs across subjects can not be
directly used as prior for future fiber tractography. Removing
these nuisance variable requires a formal definition of shape and
shape space, and then one needs to develop a statistical model
on this mathematical representation. Here we use elastic shape
analysis developed in Srivastava and Klassen (2016) to represent
and model fiber shapes. Specifically, we define S , the shape space
of all curves in D and impose a truncated wrapped normal
distribution on this space to reach a statistical shape model. The
parameters of this model are estimated a priori from the training
or atlas data. We present a brief summary of the elastic shape
analysis here and refer the reader to the textbook (Srivastava and
Klassen, 2016) for more details. For a curve β : [0, 1]→ D, define

q(t) = β̇(t)/
√

|β̇(t)| be the square-root velocity function (SRVF)
of β . This SRVF representation has an important property that
a re-parameterization invariant Riemannian metric on the space
of curves becomes the simple L

2 metric under transformation.
As a corollary, for any q1, q2 ∈ L

2, we have ‖(q1, γ) − (q2, γ)‖ =
‖q1 − q2‖, for any γ ∈ Ŵ, where Ŵ is the set of all orientation
preserving diffeomorphisms of [0, 1]. Here (q, γ) stands for (q ◦
γ)
√

γ̇, representing the SRVF of the re-parameterized curve β ◦γ.
If we rotate β by O ∈ SO(2), we get O∗β , and the corresponding
SRVF is given by O∗q.

Let β be a rescaled fiber curve such that it has unit length
and let q be its SRVF. We define an orbit in the SRVF space
as [q] = {O(q ◦ γ)

√
γ̇|O ∈ SO(2), γ ∈ Ŵ}, which denotes an

equivalence class representing a shape. Let S be the set of all such
equivalence classes; S is called the shape space. The term Eprior
in the active contour model is a function of β , but our statistical
models are built on S such that Eprior can effectively encode the
shape information and be invariant to the different sizes and
coordinate systems of different brains. However, S is a nonlinear
manifold space. To build a statistical model on S , we need some
elementary tools such as efficient methods to calculate the mean
and covariance matrix for a given set of data. Here we employ
Karcher mean to calculate the mean shape of given fiber curves
and the covariance matrix is calculated on the tangent space of
S at the estimated Karcher mean denoted by T[µ](S). The reader
can refer to Srivastava et al. (2011) for the explicit procedures to
calculate the Karcher mean and the covariance matrix.

Given a set of prior training shapes {[qi], i = 1, ...n} in S , let
us assume that we have computed their Karcher mean [µ] and
covariance K. We define the prior shape model using a truncated
wrapped-normal density, which is estimated from the data as
follows. First, obtain the singular value decomposition of K as
[U, S,V] = svd(K), and let Um be the m-dimensional principal
subspace of T[µ](S) spanned by the first m columns of U. The
shape prior distribution is defined as a wrapping of the truncated
normal distribution mapped from Um to S using the exponential
map. The truncated normal density on Um is:

v ∼ 1

Z
e
− 1

2

(

vT‖ S
−1
m v‖+‖v⊥‖2/δ2

)

1‖v‖<π , (6)

where v = exp−1[µ]([q]), v‖ = UT
mv is the projection of v into Um,

v⊥ = v − Umv‖, Sm is the diagonal matrix containing the first
m singular values, and Z is the normalizing constant. The scalar
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FIGURE 3 | Evolution of a curve using negative gradient of Esmooth. (Left) The initial curve in black, intermediate curves as dotted lines, and the final curve in red.

(Right) The evolution of Esmooth.

value δ is chosen to be less than the smallest singular value in Sm.
Suppose now that we have a test shape [q] that represents a fiber
tract during optimization process, and v = exp−1[µ]([q]) be the
shooting vector from the mean [µ] to [q]. Now define Eprior(q)
to be the negative of the exponent in the shape prior given by
Equation (6). That is, define Eprior(q) = 1

2v
T(UmS

−1
m UT

m)v +
1
2δ2
‖v − UmU

T
mv‖2. Minimizing this functional is, therefore,

equivalent to maximizing the likelihood of q under the chosen
shape model. The gradient of Eprior with respect to v is equal to

w = Av, where A is the matrix A = UmS
−1
m UT

m+ (I−UmU
T
m)/δ

2.
Notice that w is defined on the tangent space at µ rather than at
q, so the final step is to parallel translate w from µ to q. Denote
this parallel translation as w̄ = ∇qEprior(q). An evolution of
q along the negative gradient direction will result in an energy
minimization precisely at the mean µ. The translated shooting
vector w̄ now represent the gradient of Eprior with respect to q.
As the last step, this gradient is converted to ∇βEprior(β) using a
numerical approximation.

Figure 4 shows a simple example of evolving a curve
according to Eprior . The left panel shows the initial curve, and its
updates using the negative gradient of Eprior . The corresponding
decrease in Eprior is plotted on the right.

3. BAYESIAN TRACTOGRAPHY
ALGORITHM

When we put together the three components of the energy, the
shape of β is controlled by gradients of Edata, Eprior and Esmooth,
the smoothness is controlled by Eprior and Esmooth, and the
nuisance variables (placement, scale, and rotation) are controlled
only by Edata. Now we summarize the overall algorithm for
Bayesian tractography using the tensor field (Algorithm 1).

The advantage of the proposed framework is that it uses a
global optimization to overcome issues such as fiber crossing and
spatial noise. The final tracking result depends not only on the
diffusion data, but also on prior shape information. The inclusion
of shape prior distinguishes our method from other energy
minimization based fiber-tracking algorithms, and is essential for

Algorithm 1: Bayesian Tractography Using Geometric
Shape Priors

Data: Training fiber tracts connecting a pair of ROIs and
the dMRI data

Result: Fiber tract β connecting the given two ROIs
Initialization: Calculate normalized mean shape µ and
covariance K from training fiber tracts, perform SVD
[U, S,V] = svd(K). Use an existing method (e.g.,
probabilistic method) to obtain an initialization of β ,
denoted as β1.
for i← 1 to iter do

1. Calculate and save the length and the centroid of the
current curve βi;

2. Convert βi to SRVF representation qi and normalize it
qi = qi

‖qi‖ ;

3. Calculate A = UmS
−1
m UT

m + (I − UmU
T
m)/δ

2, where Um

be the firstm columns of U and δ ≤ λm, where λm is
them-th eigenvalue of K;

4. Calculate shooting vector from µ to qi, vi = exp−1µ (qi);

5. Parallel transport Avi from µ to qi, w̄i = (Avi)µ→ qi ;

6. Travel a short distance ǫ from qi along the geodesic
defined by the shooting vector w̄i, q

new
i = expqi (−ǫw̄i);

7. Convert qnewi to its curve representation

β̃new
i =

∫ t
0 q

new
i |qnewi |du and scale and center β̃new

i to
obtain βnew

i with the same length and centroid
as βi;

8. Set ∇Eprior(βi) = βi−βnew
i

ǫ
.

9. Evaluate ∇Edata(βi) using Equation (8).

10. Evaluate ∇Esmooth(β) = κβn, where κβ is the curvature
at each point of β ;

11. Update the curves:
βi+1 = βi − λ1∇Edata(βi)− λ2∇Esmooth(βi)− λ3
∇Eprior(βi).

end
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FIGURE 4 | Evolution of a curve using negative gradient of Eprior . (Left) The initial curve in black, intermediate curves as dotted lines, and the final curve in red.

(Right) The evolution of Eprior .

the optimization procedure to come out of local solutions and
reach a global solution. Most importantly, in our framework, the
brain is parcellated into small regions, and the shapes of fibers
connecting any pair of regions are found to be consistent. The
proposed truncated wrapped-normal distribution can effectively
capture the variation of shapes for each connection in the
training data. In addition, since we reconstruct the whole fiber
simultaneously by minimizing an energy function, the issue
of fiber crossing has almost no detrimental effect of our fiber
tracking algorithm.

As stated earlier, this Bayesian approach requires either a
the training data or an atlas of fiber tracts between regions of
interest, to estimate shape model and develop Eprior . We can
construct such data using existing tractography algorithms with
maybe human inspection for quality control. However, since
such a construction is needed only once, it can be performed
offline.

4. EXPERIMENTAL RESULTS

In this section we present some results using both simulated
and real data to illustrate the performance of the proposed
method.

4.1. Simulated 2-D tensor data
We first study our proposed tracking algorithm in the simulated
settings. Let domain D = [0, 1]2 for all our simulation examples.
The tensor field on D, denoted byM :D→ P , is generated using
certain fibers that play the role of ground truth. We discretize the
domain D into a 20 × 20 grid, and the tensor within each grid is
decided by the tangent directions of the line segments within this
grid. In addition, a 2D Gaussian smoothing is applied to smooth
the tensor field before applying our algorithm.

In the experiment presented in Figure 5, we use the blue lines
as ground truth fiber tracts and generate a tensor field as shown
in these panels. Then, using this tensor data, we estimate the
fiber tracts using our and other methods, and the results are

shown in red lines. On the left side we show results from standard
streamline tractography, using starting points on one end. Due
to a crossing of fibers in the middle, these tracts get diverted and
sent to wrong directions. In the middle panel, we show results
from our method but without using the shape prior term. This
time the end points of the tracts are correct (by initialization) but
some of the fibers don’t quite reach the desired shape. Finally, we
optimize fiber tracts using the full energy functional, including
the shape prior, and display these results in the right panel. By
including all the three terms, we overcomed issues caused by fiber
crossing and local noise, and reached correct global structures.
To better evaluate the tractography results, we calculate the
distance between reconstructed fibers and ground truth using the
L2 norm. We first calculate the distance of each fiber from the
ground truth and then use the mean of all distances to quantify
the difference between reconstructed fiber bundle and ground
truth fiber bundle. The distances for each method are given in
Figure 5.

Additional details of this simulation experiment are presented
in Figure 6, which shows evolution of a single fiber under Etotal.
The left panel shows the initial curve (black), the final curve (red),
and the ground truth curve (blue). The right panel shows the
evolution Etotal during this iteration. In this experiment, we used
the weights λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1.

4.2. Experiments Using Real Data
Next, we apply our method to some real datasets—dMRI images
downloaded from the Human Connectome Project (HCP) (Van
Essen et al., 2012). HCP contains about 900 subjects with
diffusion MRI, but here we have used only 30 subjects for
our experiments. The dMRI images in HCP has an isotropic
resolution of 1.25 mm. To estimate a diffusion tensor at each
voxel, we use the open source software Dipy (Garyfallidis et al.,
2014). Figure 7A shows one slice of the 3 × 3 diffusion tensors
estimated from a randomly selected dMRI image in HCP; a
zoom-in of a small part of the image is shown on its right. Since
in this paper we restrict to a 2D domain to illustrate our idea,
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A B C

FIGURE 5 | Tractography results on a simulated tensor field and distances from ground truth: (A) Streamline tractography from either region , d = 1.5e− 2, (B) our

method without a shape prior, d = 2.2e− 3, and (C) our method with a shape prior, d = 3e− 4. The details of the prior are presented in Figure 6.

FIGURE 6 | Detailed tractography results in the simulation example. Here we only focus on reconstruction of one of the curves. The black line is initialization, the red

line is our result and the blue line is the ground truth.The right panel shows the evolution of the energy function.

A B

FIGURE 7 | An example of a sagittal slice of diffusion tensor data. (A) Original data. (B) Projected 2D data.

we convert 3 × 3 diffusion tensors in the original data to 2 × 2
tensors by removing the diffusion directions perpendicular to the
2D slice plane. Figure 7B shows an example of this projection
and shows the 2D tensors in form of their level sets or ellipses at
each pixel location.

In the results presented here, we focus on estimating a set of
fiber curves connecting the left and right superior frontal gyri.

In order to generate a prior shape model, we use tracts extracted
for 30 subjects between these regions as the training dataset.
These tracts were manually identified with the help of Freesurfer
Destrieux Atlas (Destrieux et al., 2010) and the fiber curves built
using the FACT method. These fibers are displayed on the left
side of Figure 8. The Karcher mean µ of these fibers in the shape
space S is shown in the middle panel and the five dominant
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principal components of the Karcher covariance are displayed
in the right panel. These dominant directions are computed by
projecting the given shapes [qi] in the tangent space T[µ](S)
using the inverse exponential map, i.e., vi = exp−1[µ]([qi]), and
the computing principal components of the set {vi} in the vector

space T[µ](S). These principal directions, which as straight lines
in T[µ](S) passing through [µ] in the middle, are then wrapped
back on S using the exponential maps. Each row of the right
panel in Figure 8 shows plots one such direction, going from the
largest variability to smallest from top to bottom.

FIGURE 8 | Thirty training samples of fiber tracts, their Karcher mean and principal directions of shape variation. The rightmost panel from top to bottom represents

the first 5 principal directions of variation in the training data.

FIGURE 9 | Results comparison between streamline method and our method. In the top row, the left panel shows the results using a streamline method, the middle

panel shows some selected curves from that set that reach the two ROIs (different colors represent curves passing different regions), and the right panel shows

tractography result using our Bayesian method. Here the blue line shows the initialization and red line is final result. The middle row shows the evolution of the three

energy components in this estimation. The bottom row shows our tractography results under different weights of the energy components.
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Having developed a prior model for fiber shapes from the
training data, we then apply our Bayesian method to the tensor
data, especially focusing on the areas where the streamline
method fails, and the results are presented in Figure 9. We first
show the results of the streamline method, using seeds from
either ROI, in the first two panels. While the left panel in the top
row gives an appearance that we have some fibers connecting the
two ROIs, a closer look shows that this is actually not the case.
In the middle panel we color the curves differently depending
on which ROI is the seed located in. One can see that the set
of curves—red and green—do not not reach the other ROI.
They start from the ROI containing the seeds and diverge in

the middle. This is in contradiction to the anatomical knowledge
that the two regions are indeed connected through white matter
fiber tracts. Using the proposed Bayesian technique, we obtained
result shown in the rightmost panel of the top row. This picture
shows an arbitrarily initialized curve drawn in blue, and the
final estimated curve drawn in red color. The corresponding
evolutions of the three energy terms—Edata, Eprior , and Esmooth—
are shown in the middle row of this figure. Each one of these
terms show a substantial decrease in their values during the
iteration process.

In order to study the impact of the weights λ1, λ2, and λ3
on the final result, we generated estimates for a few different

FIGURE 10 | Another example similar to Figure 9.
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combinations of these weights. The results are shown in the
last row of this figure. In case where the weight for shape
prior is high, the final result is close to the prior mean.
In contrast, when the weight for the data term is high,
there is a better agreement between the curve and the tensor
field.

Another example of this Bayesian estimation is presented in
Figure 10 with similar settings. In this case the ROIs used are
right hippocampus and right percentral.

4.3. Extension to Tractography Using
HARDI Data
The proposed framework can be extended to HARDI data, where
an ODF is used to better represent the underlying diffusion
profile. The data term is now defined as:

Edata[β] =
∫ 1

0
−fβ(t)(nβ (t)) dt, where nβ (t) =

β̇(t)

|β̇(t)|
. (7)

Here nβ (t) denotes the unit vector tangent to β at β(t) and fp is
the ODF at p ∈ D. The integrand is low at a location where the
fiber tract is aligned with the ODF field and vice-versa. The next
step is to derive the gradient of Edata with respect to β for use in
gradient-based optimization. we can express the gradient of Edata
as follows.

LEMMA 2. The gradient of Edata with respect to β, under the L2

norm, is given by:

− β̇T (t)β̈(t)

|β̇(t)|3
(

I − nβ (t)n
T
β (t)

)

∇T
nβ
fβ(t)(nβ (t))−

2

|β̇(t)|
ṅβ (t)n

T
β (t)∇T

nβ
fβ(t)(nβ (t))

+ 1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

∇2
nβ
fβ(t)(nβ (t))ṅβ (t). (8)

A derivation of this expression is presented in the Appendix. We
also show an experiment result on an ODF data in Figure 11. We
use the blue lines as ground truth fiber tracts and generate ODF
data as shown in Figure 11A. Under this ODF field, we estimate
the fiber tracts using our method. The final reconstructed tracts
are shown in red lines. In the middle panel, we show an evolution
of a single fiber under Etotal. In the right panel, we show the
evolution Etotal of each iteration.

5. CONCLUSION AND DISCUSSION

This paper introduces a Bayesian approach for estimating
fiber tracts, between given pairs of points in a human
brain, using dMRI and HARDI data. The basic idea is
to define a composite energy functional, using a linear
combinations of terms that relate to data, curve smoothness,
and a prior shape model, and then use the gradient of this
energy to iteratively optimize a contour. There are several
novelties in this setup: (1) the data term is locally scale-
invariant and measures only the agreement of the fiber
direction with the given diffusion tensor field, (2) the length
of the fiber is kept as a separate term, in order to have
an additional control over fiber size, and (3) an external

FIGURE 12 | Examples showing that the proposed method can handle

crossing and kissing fibers. Red lines are our tractograhy results, blue lines are

ground truth and black lines are initializations. From upper left panel to bottom

left panel, more and more crossing bundles are added into the simulation. The

bottom right panel shows the shape prior used in our model.

A B C

FIGURE 11 | Tractography results on simulated ODF data. (A) Red lines are reconstructed fibers using our method and blue lines are the ground truth used to

generate the ODF field. (B) Evaluation of one curve under our method. (C) Evolution of energy term Etotal .
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term involving statistical shape models, of fibers tracts
connecting given regions, is used to improve optimization
and interpretability. These shape models can come from training
data developed using manual interventions or population atlases
established from previous studies. The gradients of all the terms
have analytical forms, making the gradient-based optimization
very efficient. This framework is demonstrated successfully using
simulated 2D tensor fields and 2D slices of volume dMRI data.

One advantage of our method is that it can naturally
handle crossing bundles since we construct the streamline as
a whole object. Relying on the prior shape information, we
can reconstruct a fiber curve that have similar geometry to
the prior knowledge. Figure 12 illustrates one example that the
proposed method is not sensitive to local fiber crossing. The blue
lines are ground truth to generate the tensor field. From upper
left to bottom left, more fibers were added to a region, which
complicates the underlying tensor field. For the two selected
regions, we initialize some black lines to connect them and the
red lines are the final tractograhy results using ourmethod. Those
results indicates that our method can successfully reconstruct the
fiber bundles in this challenge situation. The bottom right panel

shows the shape prior that being used in our implementation.
However, the proposed Bayesian method needs to specify the

starting and ending points for each extracted tract. To ensure
that there is a tract between two ROIs, we currently rely on the

atlas data. This procedure may end up with false positives, e.g.,
identifying a tract that does not exist. A future pruning procedure
can be added as a post processing step, relying perhaps on the
minimum energy as the reviewer has suggested. As another
criterion, the diffusion profile along a tract can possibly be used as
a feature to determine whether a tract is a false or a true positive.

As a future work, this framework can be naturally
implemented using 3D dMRI data, and resulted tractography
can be compared with some state of the art techniques.
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APPENDIX

Lemma 1
In this section we derive an expression for the gradient of Edata[β] with respect to β . Let h ∈ B be a perturbation to the curve β such

that it is zero at the boundaries, i.e., h : [0, 1]→ R
2 and h(0) = h(1) = 0. Since, Edata[β + ǫh] =

∫ 1
0 nT

β+ǫh
(t)M−1

β(t)+ǫh(t)
nT

β+ǫh
(t)dt, the

directional derivative of Edata in the direction of h is given by:

d

dǫ
|ǫ=0Edata[β + ǫh] =

∫ 1

0

(

2nTβ (t)M
−1
β(t)

uβ ,h(t)

+ nTβ (t)
〈〈

∇xM−1β(t)
, h(t)

〉〉

nβ (t)
)

dt ,

where: uβ ,h(t) = d
dǫ
|ǫ=0(nβ+ǫh(t)) = 1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

ḣ(t) ≡ Aβ (t)ḣ(t). The last equality is used to define Aβ (t). We simplify

the two terms one by one:

• First Term: Using integration by parts and using the boundary conditions h(0) = h(1) = 0, the first term becomes:

∫ 1

0
2nTβ (t)M

−1
β(t)

uβ ,h(t)dt =
∫ 1

0
2nTβ (t)M

−1
β (t)Aβ(t)ḣ(t))dt

= −
∫ 1

0

〈

2
d

dt

(

Aβ(t)M
−1
β(t)

nβ (t)
)

h(t)
〉

dt

Here

d

dt

(

Aβ(t)M
−1
β(t)

nβ (t)
)

= d

dt

(

1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

M−1
β(t)

nβ (t)

)

= 1

|β̇(t)|

(

M−1
β(t)

ṅβ (t)+
〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)
)

− β̇T(t)β̈(t)

|β̇(t)|3
M−1

β(t)
nβ (t)

− 1

|β̇(t)|

(

ṅβ (t)n
T
β (t)M

−1
β(t)

nβ (t)+ nβ (t)n
T
β (t)

〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)+ 2nβ (t)n
T
β (t)M

−1
β(t)

ṅβ (t)
)

+ β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t), where ṅβ (t) =
d

dt
nβ (t) =

β̈(t)

|β̇(t)|
− β̇(t)β̇T(t)β̈(t)

|β̇(t)|3
.

• Second Term: The second term can be rearranged as:

∫ 1

0

〈〈〈

tran(∇xM−1β(t)
)nβ (t)nβ (t), h(t)

〉〉

dt

where tran(∇xM−1β(t)
) is transpose of ∇xM−1β(t)

.

Thus, the full gradient of Edata with respect to β is given by:

− 2{ 1

|β̇(t)|

(

M−1
β(t)

ṅβ (t)+
〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)
)

− β̇T(t)β̈(t)

|β̇(t)|3
M−1

β(t)
nβ (t)

− 1

|β̇(t)|

(

ṅβ (t)n
T
β (t)M

−1
β(t)

nβ (t)+ nβ (t)n
T
β (t)

〈〈

∇xM−1β(t)
, β̇(t)

〉〉

nβ (t)+ 2nβ (t)n
T
β (t)M

−1
β(t)

ṅβ (t)
)

+ β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t)} +
〈〈

tran(∇xM−1β(t)
), nβ (t)

〉〉

nβ (t) .

Lemma 2
Let’s denote fp as the ODF at p ∈ D and for simplicity, f (t) will be used to denote fβ(t)(nβ (t)) in the following derivation. In this section
we derive an expression for the gradient of Edata[β] with respect to β . Let h ∈ B be a perturbation to the curve β such that it is zero at

the boundaries, i.e., h : [0, 1]→ R
2 and h(0) = h(1) = 0. Since, Edata[β + ǫh] =

∫ 1
0 f (nβ+ǫh(t))dt, the directional derivative of Edata in

the direction of h is given by:

d

dǫ
|ǫ=0Edata[β + ǫh] =

∫ 1

0
∇nβ

f (t)uβ ,h(t)dt ,

Frontiers in Neuroscience | www.frontiersin.org 14 September 2017 | Volume 11 | Article 483

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Dong et al. Bayesian Tractography

where: uβ ,h(t) = d
dǫ
|ǫ=0(nβ+ǫh(t)) = 1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

ḣ(t) ≡ Aβ (t)ḣ(t). Using integration by parts and using the boundary

conditions h(0) = h(1) = 0, the term becomes:

∫ 1

0
∇nβ

f (t)uβ ,h(t)dt =
∫ 1

0
∇nβ

f (t)Aβ(t)ḣ(t))dt = −
∫ 1

0

〈 d

dt

(

Aβ (t)∇T
nβ
f (t)

)

h(t)
〉

dt

Here

d

dt

(

Aβ(t)∇T
nβ
f (t)

)

= d

dt

(

1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

∇T
nβ
f (t)

)

= − β̇T(t)β̈(t)

|β̇(t)|3
(

I − nβ (t)n
T
β (t)

)

∇T
nβ
f (t)− 2

|β̇(t)|
ṅβ (t)n

T
β (t)∇T

nβ
f (t)

+ 1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

∇2
nβ
f (t)ṅβ (t),

where ṅβ (t) =
d

dt
nβ (t) =

β̈(t)

|β̇(t)|
− β̇(t)β̇T(t)β̈(t)

|β̇(t)|3
.

Thus, the full gradient of Edata with respect to β is given by:

− β̇T(t)β̈(t)

|β̇(t)|3
(

I − nβ (t)n
T
β (t)

)

∇T
nβ
f (t)− 2

|β̇(t)|
ṅβ (t)n

T
β (t)∇T

nβ
f (t)+ 1

|β̇(t)|

(

I − nβ (t)n
T
β (t)

)

∇2
nβ
f (t)ṅβ (t).
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